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A function where both U and W are real subsets (i.e., RWU ⊂, ) is called a
real function.  Examples of real functions include:

Figure 2.1: Graphical representations of some types of functions (see text for
explanation)
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The visual representation of real functions is always useful as a means to
better understand their characteristics.  Figure 2.2 depicts the graphical
representations of the aforementioned functions.

Some special types of functions include:

Differentiable (analytical, or smooth) functions: These are functions for

which all derivatives exist.  For instance, the function ( ) 2ttf =  is

differentiable in R, and its first derivative is ( ) t
dt

df
tf 2' == .  In case the

derivatives exist only up to a maximum order k , the function is said to be
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angle y with the real axis.  Observe that this ray does not reach the plane
origin. The above mapping can be graphically represented as in Figure 2.27.

 j j

 exp{a}

 c
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 c

Figure 2.27: The mapping of vertical and horizontal lines by ( ) ( )zzg exp= .

Now, consider the rectangular region of the domain space defined as

bxa ≤≤    and    dyc ≤≤

The reader should have no difficulty verifing that this rectangular region is
mapped by g(z) as illustrated in Figure 2.28.
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Figure 2.28: The mapping of a rectangle by ( ) ( )zzg exp= .

Figure 2.29 presents a more comprehensive illustration of the mapping
implemented by ( ) ( )zzg exp=  with respect to an orthogonal grid in the

domain space.
As is clear from the above example, it is not always easy to identify the

more interesting behavior to be illustrated for each specifically considered
complex function.
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A non-empty subset X of a vector space S, such as the addition between
any of its elements and the product of any of its elements by a scalar result a
vector in X (i.e., closure with respect to addition and multiplication by a scalar),

is called a subspace of S .  It can be readily verified that the null vector 0
r

 must
be included in any subspace.  For instance, the space R is a subspace of R2.  In
addition, observe that a subspace is also a vector space.

Given M vectors ip
r

; i = 1, 2, … , M; in the vector space S, the linear

combination of such vectors, resulting a vector q
r

 also in S, is defined as

MM papapaq
r

L
rrr

+++= 2211

where ai are any scalar values. The above M vectors are said to be linearly
independent (l.i.) if and only
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In other words, it is not possible to express one of the vectors as a linear
combination of the other vectors.  Otherwise, the M vectors are said to be
linearly dependent (l.d.).  A practical way to determine whether a set of
vectors is l.i. can be obtained by using the determinants or rank of matrices, as
described in Sections 2.2.5.3 and 2.2.5.6, respectively.

For any vector space S, it is always possible to identify a minimal set, in the
sense of involving the minimum number of elements, of linearly independent
vectors in S whose linear combinations produce (or span) all the possible
vectors in S.   Such a set of elementary vectors is called a basis of S.  For
instance, both
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are valid bases for R2.  The dimension of a vector space is defined as the
number of vectors in any of the bases spanning this space.  It should be
observed that the vector space containing only the null vector has dimension
zero and not one.  The above examples (vii) and (viii) of vector spaces have
infinite dimension.

Let S be an N-dimensional vector space and { }NbbbB
r

L
rr

,,, 21= be one

of its possible bases.  Then any vector p
r

 in this space can be represented as

a unique linear combination of the vectors in B, i.e.,

NN bababap
r

L
rrr

+++= 2211 , and scalars Naaa ,,, 21 L  are called
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coordinates of the vector p
r

 with respect to basis B, which are often

represented as
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Although a vector space can have an infinite number of alternative bases,
it always has a special basis, in the sense of being the most elementary and
simple one, which is called its respective canonical basis.  For instance, the
space RN  has the following canonical basis:
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These are the bases normally adopted as default for representing vectors.
In such situations, the subscript indicating the basis is often ommited.  For
instance:
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It makes no sense to think about the orientations of these vectors with
respect to some absolute reference, since this is not known to exist in the
universe. What does matter are the intrinsical properties of the canonical
basis, such as having unit magnitude and being orthogonal (see Section 2.2.4).
Observe that all the thus far presented examples in this chapter have
considered canonical bases.

 Now, let v
r

 be a vector originally represented in terms of its coordinates
with respect to the basis { }NaaaA

r
L

rr
,,, 21= .  What will the new coordinates

of this vector be when it is expressed with respect to the new basis

{ }NbbbB
r

L
rr

,,, 21= ?  This important problem, known as change of

coordinates, can be addressed as follows.  We start by expressing the vectors
in the new basis B in terms of the coordinates relative to the original basis A:

NN aaab
r

L
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1,21,211,11 ααα +++=
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 (2.9)

Now, provided C is invertible (see Section 2.2.5.8), we have

AB vCv
rr 1−=  (2.10)

which provides a practical method for changing coordinates.  The above
procedure is illustrated in the accompanying box.

 Example: Change of Coordinates

Find the coordinates of the vector ( )TAv 2,1−=
r

(represented with respect to

the canonical basis) in the new basis defined by

( ) ( ){ }TT bbB 0,2;1,1 21 −===
rr

.

Solution:

Since matrix C is readily obtained as 






 −
=

01

21
C , we have

 







=







−








−

== −

5.1

2

2

1

5.05.0

101
AB vCv

rr

Figure 2.32 shows the representation of the above vector with respect to
both considered bases.

Figure 2.32: The vector v
r

 represented with respect to both considered bases.
The axes defined by bases A and B are represented by thin and thick arrows,

respectively.
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Linear transforms taking vectors from an N-dimensional space into an M-
dimensional space, M<N, (i.e., transformations which are not full rank) are said
to be degenerated, and to find its inverse in this case is impossible.  It should
be observed at this early stage of the book that this type of transformation
characterizes a large number of practical situations in shape analysis and
vision.  For instance, the 2D projections of the 3D world falling onto our
retinas (or onto a digital camera) provide but a degenerate representation of
the 3D imaged objects.

An important class of linear transformation is that implementing rotations.
Figure 2.33 illustrates such a situation with respect to a vector v

r
 in the plane

pointing at a point P, where the new and old coordinate systems are
represented by full and dotted axes, respectively.  It should be observed that
rotating the old system by an angle θ (counterclockwise, with respect to the x-
axis) corresponds to rotating vector v

r
, with respect to the coordinate system,

by an angle –θ.  Consequently, both these problems can be treated in the same
unified way.

The matrix representing the linear transformation, which rotates the
coordinate system of the two-dimensional space R2 by an angle θ
counterclockwise, is immediately obtained by using the coordinates exchange
procedure discussed in Section 2.2.2. We start by expressing the basis vectors

of the new space, i.e., { }jiB ~,~~ = , in terms of the vectors of the old basis

{ }jiB ˆ,̂ˆ = :

Figure 2.33: Rotations of the coordinate system can be implemented by a specific
class of linear transformations.

( ) ( ) jii ˆsinˆcos~ θθ +=
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It is easy to see that a space allowing an inner product is also a normed and
metric space, since we can always define a norm in terms of the inner product

by  making  ppp
rrr

,+= .

Although not every vector space is normed, metric or allows inner
products, most developments in the present book deal with concepts related
to vector spaces with inner products.  The box Metrics in CN exemplifies some
of the valid norms, distances and inner products in those spaces.

 Example:   Metrics in CN

Let ( )T
Npppp ,,, 21 L

r
=  and ( )T

Nqqqq ,,, 21 L
r

=  be two generic vectors in

the N-dimensional complex space CN.

Norms of p
r

:

 Euclidean:     22
2

2
12 Npppp +++= L

r

City-block : Npppp +++= L
r

211

Chessboard : { }NpppMaxp ,,, 21 L
r

=
∞

Distances between p
r

 and q
r

:

Euclidean:     

( ) ( ) ( )22
22

2
112 NN qpqpqpqp −++−+−=− L

rr

City-block : 

NN qpqpqpqp −++−+−=− L
rr

22111

Chessboard : 
{ }NN qpqpqpMaxqp −−−=−

∞
,,, 2211 L

rr

Inner product between p
r

 and q
r

:

 ( ) NN
T qpqpqpqpqpqp *

2
*
21

*
1

*
., L

rrrrrr
++===

 Example:  Norms, Distances and Inner Products in Function Spaces

Let f(t) and g(t) be two generic functions in the space of the continuous
functions in the interval [a, b], i.e., C[a, b].

Norm of f(t):
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Consequently, the elements of the vector resulting from a linear
transformation can be understood as a measure of similarity between the
orientations of the input vector p

r
 and each of the respective vectors defined

by the rows of the transformation matrix.  This interpretation is essential for
the full conceptual understanding of several properties in signal and image
transforms, including the Fourier and Karhunen-Loève transforms.

2.2.5 More about Vectors and Matrices
We have thus far limited our discussion of vectors and matrices as elements of
vector spaces, and as representations of linear transforms.  This section
provides additional concepts and properties including the more general cases
of complex vectors and matrices, i.e., those vectors and matrices having
complex numbers as elements, such as
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2.2.5.1 Some Basic Concepts
The null N×N matrix, henceforth represented as Φ, is a matrix having all
elements equal to zero.  A matrix A having dimension N×N is said to be a
square matrix.  Its main diagonal corresponds to the elements ai,i, i = 1, 2, …,
N.  A square matrix having all the elements below (above) its main diagonal
equal to zero is said to be an upper (lower) triangular matrix, as illustrated in
the following:
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A  is upper triangular,

and
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jB  is lower triangular.

The identity matrix, represented as I, is a square matrix having ones along
its main diagonal and zeroes elsewhere.  For example, the 3×3 identity matrix is
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The complex conjugate of a matrix (vector) is obtained by taking the
complex conjugate of each of its elements.  For instance, the complex
conjugate of the above matrix B is
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The derivative of a matrix is given by the derivatives of each of its
components.  For instance

If 
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Given an N×M matrix A and an M×N matrix B, the product between A and
B, indicated as C = AB, is defined as

∑
=

=
M

k
jkkiji bac

1
,,,    (2.11)
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Figure 2.39: The original points (squares) and the obtained cubic polynomial.

The procedure illustrated in the above example can be generalized to any
polynomial or function.  As a matter of fact, in the particular case of straight
line fitting, we have the general line equation:

xaay 10 +=

and, therefore:
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Applying Equation (2.15):
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Designing Matrices to Have Specific Eigenvectors:  Section 2.2.5.9 has briefly
addressed the situation where we wanted to identify the eigenvalues and
eigenvectors of a specific square matrix A.  Here we present how to build a
matrix A having a specific N×1 eigenvector v

r
 or a set of Nk ≤  orthogonal

eigenvectors iv
r

 with dimension N×1.   In the former case, the sought matrix

is TvvA
rr

= , since:

( ) ( ) RvvrvrvvvvvvvAvvA TTTT ∈====⇒=
rrrrrrrrrrrr

,

Observe that the matrix product Tvv
rr

 can be understood in terms of the
above concept of building a matrix by columns. This product implies that
vector v

r
 is copied into a subsequent column j of A weighted by each of its

respective coordinates vj.  This implies that matrix A columns are all equal
except for a multiplicative constant, and therefore A  necessarily has rank 1.

In the latter case, i.e., we want Nk ≤  orthogonal eigenvectors iv
r

; i = 1, 2,

…, k ; the matrix A is also easily obtained as

( )
( ) Rvvrvrvvv

vvvvvvvvAvvvvvvA
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kk
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∈===

=+++=⇒+++=
rrrrrr

rrr
L

rrrrrrr
L

rrrr

,

22112211

It can be verified that the so obtained matrix A has rank k .

To probe further:  Functions, Matrices and Linear Algebra

A good and relatively comprehensive introduction to many of the covered
issues, including propositional logic, functions, linear algebra, matrices,
calculus and complex numbers can be found in [James, 1996].  A more
advanced reference on mathematical concepts include the outstanding
textbook by [Kreyszig, 1993], which covers linear algebra, calculus, complex
numbers, and much more.  Other good general references are [Bell, 1990] and
[Ma Fong 1997].  Interesting references covering complementary aspects
related to mathematical physics, including variational calculus, are provided by
[Boas, 1996] and [Dettman, 1988].  For those interested in probing further into
function vector spaces (i.e., functional analysis), the books [Oden, 1979;
Halmos, 1958; Michel and Herget, 1981; Kreyszig, 1993] provide excellent
reading, also including good reviews of basic concepts.  An interesting
approach to complex number and analysis, based on visualization of the
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( ) ( )
( )tp

tp
tn

&&r

&&rr
=

Figure 2.48 illustrates the unit normal field for the curve in Figure 2.45. For
an arc length parametrized curve ( )tp

r
, the magnitude of its second derivative,

i.e., ( ) ( ) ( )tatptk R== &&r , is said to be the curvature of the curve at t.

Observe that this expression always produces a non-negative curvature value.
In the general case, i.e., the curve is not necessarily arc length parametrized,
the curvature of a plane curve can be calculated as

( ) ( ) ( ) ( ) ( )
( ) ( )( ) 2/322 tytx

txtytytx
tk

&&

&&&&&&

+

−
= (2.21)

Figure 2.48: Unitary normal field for the curve in Figure 2.45. Only a few of the
infinite unit normal vectors are shown.  All vectors have unit magnitude.

Unlike in the previous equation, the signal of the curvature calculated by
Equation (2.21) can be positive or negative, indicating the respective local
concavity (see below).  The curvature is an extremely important  concept
because it nicely expresses the local “geometric nature” of a curve.  For
instance, if zero curvature is observed along a portion of a curve, this  portion
will correspond to a straight line segment.  On the other hand, a  constant
curvature value indicates a circle or an arc of circle.  Generally, the  curvature
value is proportional to the local variation of the curve.  More precisely, as
defined above, it corresponds to the radial acceleration magnitude of the
arclength parametrized version of the  curve, therefore indicating how fast the
tangent vector changes its orientation. Another interesting feature  exhibited by
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curvature is the fact that it is invariant to rotations, translations and reflections
of the original curve (observe that it is not invariant to scaling).  Moreover, the
curvature is information preserving in the sense that it allows the original curve
to be recovered, up to a rigid body transformation (i.e., combinations of
translations, rotations and reflections that do not alter the size of the shape –
see Section 4.9.3).  Thus we have that, if k(t) is a differentiable function
expressing the curvature of a curve from t0 to t, its reconstruction can be
obtained as

( ) ( )( ) ( )( ) 












++= ∫∫ 21

00

sin,cos cdrrcdrrtp
t

t

t

t

αα
r

,  where ( ) ( ) 3

0

cdrrkt
t

t

+= ∫α

and ( )21, cc  and c3 represent the translation vector and the rotation angle,

respectively.
Although it is clear from the above curvature definition

( ) ( ) ( )tatptk R== &&r  that its values are non-negative, it is often interesting to

consider an alternative definition allowing negative curvature values.  This is

done by considering the standard coordinate system ( )kji ˆ,ˆ,ˆ  of R3 (i.e.,

jik ˆ^ˆˆ = ).  The signed curvature ( )tk s , which can be calculated by Equation

(2.21), can be defined as

( ) ( ) ( ){ } ( )tkjitntptk s
ˆ^ˆ,^sgn

r&r=

This means that positive curvature will be obtained whenever the sense of

the vector ( ) ( )tntp
r&r ^  agrees with that of the unit vector ji ˆ^ˆ .  Negative

curvature is obtained otherwise.
An immediate advantage allowed by the signed curvature is that its sign

provides indication about the concavity at each of the curve points. It should
however be taken into account that the sign of ( )tk s  depends on the sense of

the curve, and will change with the sense in which the curve is followed and
with the sign of t. Figure 2.49 illustrates the change of curvature sign
considering two senses along a closed curve, and the respective concavity

criteria. A point where ( ) 0=tk s  and ( ) 0≠tk s
&  is said to be an ordinary

inflection point.  Such a point corresponds to a change of concavity along the
curve.
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Figure 2.49: The sign of the signed curvature k s changes as the sense of the curve
is inverted.  The concavity criterion also depends on the adopted curve sense.

The curvature can also be geometrically understood in terms of osculating
circles and radius of curvature.  Consider Figure 2.50 and assume that the
curvature is never zero.  The circle having radius ( ) ( )tktr /1= , called radius of

curvature, and centered at ( ) ( ) ( )tktntu /
rr

+ , where ( )tu
r

 is an arc length

parametrized curve and ( )tn
r

 is the unit normal field to ( )tu
r

, is called the

osculating circle at t.

x

 y

( ) ( )tktn /
r

osculating circle

 r(t)

Figure 2.50: Osculating circle and radius of curvature at a point t.
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Table 2.4: Some particularly important bivariate real scalar fields.
2D Dirac Delta:

( )


 ==

=
otherwise

yandxifdefinednot
yx

00

0
,δ

and

( )∫ ∫
∞

∞−

∞

∞−

= 1, dxdyyxδ

2D Kronecker Delta:

( )


 ==

=
otherwise

yandxif
yx

00

0

1
,κ

A circularly symmetric Gaussian:

( ) ( )( )
0

;exp, 22

>
+−=

awhere

yxayxg

A real vector field ( )vgqRRg MN rrrr
=→ |:  is said to be continuous at a

point Rq ∈0

r M if for each open ball Bε with radius ε centered at 0q
r

 (i.e., the

vectors MRq ∈
r

 such as ε<− 0qq
rr

), it is always possible to find an open

ball Bδ with radius δ  centered at NRv ∈0

r
 (i.e., the vectors NRv ∈

r
 such as

δ<− 0vv
rr

), such as  the mapping of this ball by the vector field g
r

, i.e.,

( )δBg
r

, falls complely inside εB .   A vector field that is continuous at all the

points of its domain is simply said to be continuous.  The continuity of a
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vector field can be understood as a particular case of the above definition in
the case M=1.

Given a bivariate function z = g(x,y), we can think about this function in
terms of unidimensional functions by taking slices of g(x,y) along planes
perpendicular to the (x,y) plane.  Observe that any of such planes is
completely specified by the straight line L defined by the intersection of this
perpendicular plane with the plane (x,y).  It is particularly useful to define such
lines in a parametric fashion (see Section 2.3.1), which can be done by
imposing that these lines are parallel to a vector ( )bav ,=

r
 and contain a

specific point, identified by the vector  ( )dcp ,0 =
r

.  Therefore the general

form of these straight lines is ( )dbtcatptvpL ++=+= ,: 0

rrr
.

Since this line will be used to follow the line along the slice, defining a
function of a single variable, unit speed (see Section 2.3.2), and therefore arc
length parametrization, is required.  This can be easily achieved by imposing

that 122 =+ ba .  Now, the values of the function g along the slice can easily
be obtained by substituting the x and y coordinates of the positions defining
the line L into the function z = g(x,y) to yield z = g(at+c, bt+d), which is a
function on the single variable t.  The Box Slicing a Circularly Symmetric
Bivariate Gaussian provides an example about scalar fields slicing.

 Example:  Slicing a Circularly Symmetric Bivariate Gaussian

Consider the Gaussian scalar field ( ) ( ){ }4/exp, 22 yxyxF +−= .  Obtain the

univariate function defined by slicing this field along the plane that is
orthogonal to the (x,y) plane and contains the line L, which is parallel to the

vector ( )5.0,1=v
r

 and passes onto the point ( )2,0 −=b
r

, which defines the

origin along the slice.

Solution:

First, we obtain the equation of the line L.  In order to have arc length

parametrization, we impose 
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.  Now, the

sought line equation can be expressed as
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Substituting these coordinates into the scalar field we obtain the following:
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speaking, these two operations provide a means for “combining” or “mixing”
the two functions as to allow important properties, such as the convolution
and correlation theorems to be presented in Sections 2.7.3.7 and 2.7.3.8. In
addition, convolution provides the basis for several filters, and correlation
provides a means for comparing two functions.  These operations are
presented in the following, first with respect to continuous domains, then to
discrete domains.

2.5.1 Continuous Convolution and Correlation
Let g(t) and h(t) be two real or complex functions.   The convolution between
these functions is the univariate function resulting from the operation defined
as

( ) ( ) ( ) ( )( ) ( ) ( )∫
∞

∞−

−τ=τ∗=τ∗τ=τ dtthtghghgq (2.22)

The correlation between two real or complex functions g(t) and h(t) is the
function defined as

( ) ( ) ( ) ( )( ) ( ) ( )∫
∞

∞−

+=== dtthtghghgq τττττ *oo                       (2.23)

As is clear from the above equations, the correlation and convolution
operations are similar, except that in the latter the first function is conjugated
and the signal of the free variable t in the argument of h(t) is inverted.  As a
consequence, while the convolution can be verified to be commutative, i.e.,

( )( ) ( ) ( ) ( ) ( ) ( )( )ττττ
τ

ghdaahagdtthtghg
ta

** ∫∫
∞

∞−

−=∞

∞−

=−=−=

we have that the correlation is not, i.e.

( )( ) ( ) ( ) ( ) ( ) ( )( )ττττ
τ

ghdaahagdtthtghg
ta

oo ∫∫
∞

∞−

+=∞

∞−

≠−=+= **

However, in case both g(t) and h(t) are real, we have

( )( ) ( ) ( ) ( ) ( ) ( )( )ττττ
τ

−=−=+= ∫∫
∞

∞−

+=∞

∞−

ghdaahagdtthtghg
ta

oo



SHAPE ANALYSIS AND CLASSIFICATION112

In other words, although the correlation of two real functions is not
commutative, we still have ( )( ) ( )( )ττ −= ghhg oo .  In case both g(t) and h(t)

are real and even, then ( )( ) ( )( )ττ ghhg oo = .  For real functions, the

convolution and correlation are related as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ττττττ
τ

ghdaahagdtthtghg
ta

o∫∫
∞

∞−

−=∞

∞−

=+=−=−*

If, in addition, h(t) is even, we have

( ) ( ) ( ) ( ) ( ) ( ) ( )( )ττττττ −==−= ∫
∞

∞−

hgghdtthtghg oo*

An interesting property is that the convolution of any function g(t) with
the Dirac delta reproduces the function g(t), i.e.

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ττδττδττδτδ gdttgdttgdtttgg ∫∫∫
∞

∞−

∞

∞−

∞

∞−

=−=−=−=*

An effective way to achieve a sound conceptual understanding of the
convolution and correlation operations is through graphical developments,
which is done in the following with respect to the convolution.  Let g(t) and
h(t) be given by Equations (2.24) and (2.25), as illustrated in Figure 2.53.

( )
otherwise

tif
tg

01

0

5.1 ≤<−





= (2.24)

and 

     ( )
otherwise

tif
th

20

0

2 ≤<





= (2.25)
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Figure 2.54: Illustration of the basic operations involved in the convolution of
the functions g(t) and h(t).  See text for explanation.

(g*h)(τ=1)

3

1

Figure 2.55: The convolution (g* h)(τ ) for τ =1.
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 t

 (g*h)(t)

3

  2   1 -1

Figure 2.56: The complete convolution (g* h)(t).

The correlation can be understood in a similar manner, except for the fact
that the second function is not reflected and, for complex functions, by the
conjugation of the first function.  Figure 2.57 shows the correlation of the
above real functions, i.e., ( ) ( )thtg o .

t

 (g o h)(t)

3

  3 0

Figure 2.57: The correlation ( ) ( )thtg o .

Let us now consider that both g(t) and h(t) have finite extension along the
domain, i.e., ( ) ( ) 0, =thtg  for rt <  and st > .  Recall from Section 2.2.4 that

the inner product between two functions g(t) and h(t) with respect to the
interval [a, b] is given by

( ) ( )∫=
b

a

dtthtghg *,

Observe that this equation is similar to the correlation equation, except that
the latter includes the parameter τ in the argument of the second function,
which allows the second function to be shifted along the x-axis with respect to
the first function.  As a matter of fact, for each fixed value of τ, the correlation
equation becomes an internal product between the first function and the
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2.6.2.5 Random Variables Transformations, Conditional Density Functions
and Discrete Random Variables

Given a random variable X, it is possible to transform it in order to obtain a new
random variable Y.  A particularly useful random variable transformation,
called normal transformation, is obtained by applying the following equation:

[ ]
X

XEX
Y

σ
−

=

It can be verified that the new random variable Y has zero mean and unit
standard deviation.

Table 2.6: Important density probability functions.
Uniform:

( )




 ≤<

−
==

otherwise

bxa
ab

cxu
0

1

[ ]
2

ba
xE

+
=

[ ] ( )
12

2ab
xVar

−
=

a b

c

u(x)

x

Exponential:

( ) { } 0,exp >−= xxxh αα

[ ]
α
1

=xE

[ ]
2

1

α
=xVar

h(x)

x

Gaussian:

( )





















σ
µ−

−
πσ

=

=
2

2

1
exp

2

1 x

xg



SHAPE ANALYSIS AND CLASSIFICATION132

and

         ( ) 1,,, 2121 =∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−
NN dxdxdxxxxp LLL

Given a density function ( ) ( )Nxxxgxg ,,, 21 L
r

= , it is possible to define

marginal density functions for any of its random variables xi, integrating along
all the other variables,  i.e.,

( ) ( ) NiiNii dxdxdxdxdxxxxxgxp LLLLL 112121 ,,,, +−

∞

∞−

∞

∞−

∞

∞−
∫ ∫ ∫=

where the fixed variables are represented by a tilde.  An example of joint
density function is the multivariate Gaussian, given by the following:

           ( )
( ) { }

( ) ( )






 −−−= −

X
T

XN
xKx

KDet
xp rr

rrrrr
µµ

π
1

2/ 2

1
exp

2

1

This density function is completely specified by the mean vector X
r

r
µ  and

the covariance matrix K (see below).

The moments and central moments of an N×1 random vector X
r

, modelled
by the joint density function ( )xp

r
, are defined as

(n1, n2,…, nN)-th moment: 

( )[ ] [ ]
( )∫ ∫ ∫

∞

∞−

∞

∞−

∞

∞−

=

==

N
n
N

nn

n
N
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nnn

dxdxdxxpxxx

XXXEXM

N

N
N

L
r
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L
r

L

2121

21,,,

21

21
21

(n1, n2,…, nN)-th central moment:

( )[ ] [ ]( ) [ ]( ) [ ]( )[ ]
[ ]( ) [ ]( ) [ ]( ) ( )∫ ∫ ∫

∞

∞−

∞

∞−

∞

∞−

−−−=

=−−−=

N
n

NN
nn

n
NN

nn
nnn

dxdxdxxpXExXExXEx

XEXXEXXEXEXM

N

N
N

L
r

LL

L
r

L

212211

2211,,,

21

21
21

where { }LL ,2,1,0,,, 21 ∈Nnnn .  As with scalar random variables, such

moments provide global information about the behaviour of the random
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In case Cov(X, Y) = 0, we say that the random variables X and Y are
uncorrelated.  It is important to note that the fact that two random variables X
and Y are uncorrelated does not imply that they are independent (see Section
2.6.1), but independence implies uncorrelation. The covariance can be
alternatively expressed as

( ) [ ] [ ] [ ]jijiji XEXEXXEXXCov −=,

In addition, it is interesting to observe that

( ) ( )iiiX XXCovXVar
i

,2 ==σ

and, consequently, the standard deviation of the random variable Xi can be
alternatively expressed as

( )iiX XXCov
i

,+=σ

Since the covariance between two random variables is not dimensionless, it
becomes interesting to define the correlation coefficient, which provides a
dimensionless and relative measure of the correlation between the two
variables.  The correlation coefficient ( )ji XXCorrCoef ,  is defined as

( ) ( )
jij

j

i

i

XX

ji

X

Xj

X

Xi
ji

XXCovXX
EXXCorrCoef

σσσ

µ

σ

µ ,
, =



























 −










 −
=

An important property of the correlation coefficient is that

( ) 1, ≤ji XXCorrCoef .

It should be observed that when the means of all the involved random
variables are zero, the correlation between two variables becomes equal to the
respective covariance.  Similarly, the covariance becomes equal to the
correlation coefficient when the standard deviations of all involved random
variables have unit value.  When all means are zero and all standard deviations
are one, the correlations are equal to the covariances, which in turn are equal
to the correlation coefficients.  In other words, the covariance and correlation
coefficient between random variables can be understood in terms of
correlations between versions of those random variables transformed in order
to have zero means and unit standard deviations (i.e., a normal transformation),
respectively.  These important and practical properties are summarized in the
following:
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{ } ( ) )()( *2
fGfGfGfPg ==

An important property of the power spectrum is that it does not change as
the original function is shifted along its domain, which is explored by the so-
called Fourier descriptors for shape analysis (see Section 6.5).

Consider the following example:

 Example:  Fourier Transform I

Calculate the Fourier transform and power spectrum of the function:

 ( ) { }ttg −= exp ,  0 ≤ t < ∞

First, we apply Equation (2.48):

( ){ } { } { } ( ){ }

( ){ }[ ]

[ ]
( )

( )fG
f

fj
fj
fj

fjfj

fjt
fj

dtfjtdtftjttg

=
+
−=
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−

+
=−





+

−=

=+−
+

−=

=+−=−−=ℑ

∞

∞∞

∫∫

2

0

00

21

21
21
21

21
1

10
21

1

12exp
21

1

12exp2expexp

π
π

π
π

ππ

π
π

ππ

Thus, the Fourier transform G(f) of g(t) is a complex function with the
following real and imaginary parts, shown in Figure 2.75.

( ){ }
( )221

1
Re

f
fG

π+
=   and  ( ){ }

( )221

2
Im

f

f
fG

π

π

+

−
=

 
Figure 2.75: The real and imaginary parts of G(f).

Alternatively, in the magnitude and phase representation, we have
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 ( )
( )[ ]22

22

21

41

f

f
fG

π

π

+

+
=     and  ( ){ } { }fatgfG π2−=Φ

The power spectrum can be calculated as

       { }
( ) ( )

( )
( )( )

( ) 2

22

2

22

*

21

21

21

21

21

21
)()( fG

f

f

f

fj

f

fj
fGfGfPg =

+

+=
+

+

+

−==
π

π

π

π

π

π

and is illustrated in Figure 2.76.

Figure 2.76: The power spectrum of the function g(t).

Although the Fourier transform of a complex function is usually (as in the
above example) a complex function, it can also be a purely real (or imaginary)
function. On the other hand, observe that the power spectrum is always a real
function of the frequency. Consider the following example:

 Example:   Fourier Transform II

Calculate the Fourier transform of the function:

( )
otherwise

ataif
tg

<≤−





=
0

1

Applying Equation 2.48:
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( ) ( ) ( )000 22
2sin ff

j
ff

j
tf −−+↔ δδπ

In a similar fashion

( ){ } { } { }

{ }{ } { }{ } ( ) ( )




 ++−=−ℑ+ℑ=

=






 −+

ℑ=ℑ

0000

00
0

2

1

2

1
2exp

2

1
2exp

2

1

2

2exp2exp
2cos

fffftfjtfj

tfjtfj
tf

δδππ

ππ
π

and , therefore ( ) ( ) ( )000 2

1

2

1
2cos fffftf −++↔ δδπ .

2.7.3.7 The Convolution Theorem
This important property of the Fourier transform is expressed as follows:

Let ( ) ( )fGtg ↔   and ( ) ( )fHth ↔
Then   ( )( ) ( ) ( )fHfGthg ↔*

and      ( ) ( ) ( )( )fHGthtg *↔

where ( )tg  and ( )th  are generic complex functions. See Sections 2.7.4 and 7.2

for applications of this theorem.

2.7.3.8 The Correlation Theorem
Let ( )tg  and ( )th  be real functions defining the Fourier pairs ( ) ( )fGtg ↔

and ( ) ( )fHth ↔ .  Then ( )( ) ( ) ( )fHfGthg *↔o .

2.7.3.9 The Derivative Property
Let the generic Fourier pair ( ) ( )fGtg ↔   and a be any non-negative real

value.  Then 

( ) ( ) ( )fGfD
dt

tgd
aa

a

↔ (2.51)

where   ( ) ( )a
a fjfD π2= .  This interesting property, which is used

extensively in the present book (see Section 7.2), allows not only the
calculation of many derivatives in terms of the respective Fourier transforms,
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( ) ( ) ( )[ ] ∑
∞

−∞=






 −






 −=Ψ=

i
L L

if
L

ifGffGfH
2

1

2

1
2/1 δ

The periodical function h(t) and its respective Fourier transform H(f) are
shown in Figure 2.81(b) and (d), respectively, considering a = 1 and L = 2.
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Figure 2.81: The function g(t) (a) and its Fourier transform G(f) (b).   The

periodical version ( ) ( ) ( )ttgth L2* Ψ=  of g(t), for a = 1 and  L = 2 (c), and its

respective Fourier transform H(f) (d).

A completely similar effect is observed by sampling the function g(t), implying
the respective Fourier transform to be periodical.  The above results are
summarized below:

g(t) G(f)
Periodical Discrete

Discrete Periodical
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Observe that the low-pass filter in Figure 2.82(a) attenuates all frequencies,
but the attenuation is smaller for the lower frequencies.  Low-pass filtering
tends to produce functions that are smoother and more intensely correlated
than the original function h(t) – see Section 2.6.5.

(a) (b)

Figure 2.82: Two possible low-pass filtering functions.

A typical low-pass filtering function is the zero-mean Gaussian (see
Section 2.1.4).  It is interesting to relate the Gaussian filtering function to its
inverse Fourier transform, since this allows us to understand the filtering effect
in terms of the standard deviation σ  of the Gaussian respectively defined in
the time domain (the higher this value, the more intense the low-pass filtering
effect).   Recall from Section 2.7.3 and Equation (2.50) that the Gaussian in the
frequency domain has as parameter ( )πσσ 2/1=f .  The henceforth adopted

Gaussian filtering function V(f) and its respective inverse Fourier transform
(which is a Gaussian in the strict sense), are given in terms of the following
Fourier transform pair:

( ) ( ) ( ){ }2
2

2exp
2

1
exp

2

1
ffV

t
tg πσ

σπσ
σ −=↔



















−=

Observe that the above Gaussian filter function V(f) always varies between
0 and 1.  Figure 2.83 illustrates the process of Gaussian low-pass filtering.  The
Fourier transform H(f) (b) of the function h(t) to be filtered (a) is multiplied by
the  filtering function ( )fV  (c), which in this case is the Gaussian

( ) ( ){ }22exp ffV πσ−=  with 1.0=σ , and the filtered function (d) is obtained

by taking the inverse Fourier transform of ( ) ( )fVfH .  The effect of this

filtering process over the original function, a cosine function corrupted by
additive uniform noise, is clear in the sense that the higher frequency
components of h(t), i.e., the sharp oscillations along the cosine function, have
been substantially attenuated, although at the expense of a substantial change
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in the amplitude of h(t).  An additional discussion about Gaussian filtering, in
the context of contour processing, is presented in Section 7.2.3.
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Figure 2.83: The function h(t) to be low-pass filtered (a), its respective Fourier
transform (b), the filtering function (in Fourier domain)  (c), the filtered function

q(t) (d), and its respective Fourier transform (e).

The second class of filters, known as high-pass filters, act conversely to
the low-pass filters, i.e., by attenuating the magnitude of the low frequency
components of the signal, while the higher frequency components are allowed
to pass.  Such an attenuation should again be understood in relative terms.
An example of high-pass filter is the complemented Gaussian V(f), defined as

( ) ( ) ( ) ( ){ }2
2

2exp1
2

1
exp

2

1
ffV

t
ttg πσ

σπσ
δσ −−=↔



















−−=

It is interesting to observe that the complemented Gaussian filter function
always varies between 0 and 1.  This function is illustrated in Figure 2.84 for σ
= 0.25.

As illustrated in Figure 2.85, a high-pass filter tends to accentuate the most
abrupt variations in the function being filtered, i.e., the regions where the
derivative magnitude is high (in image processing and analysis, such abrupt
variations are related to the image contrast).  In other words, high-pass
filtering reduces the correlation and redundancy degree in the original signal.
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called deconvolution (this follows from the fact that the filtering process can
be alternatively understood as a convolution in the time space).  If the original
function h(t) was filtered by a function V(f), yielding q(t), we may attempt to
recover the original function by dividing the Fourier transform Q(f) of the
filtered function by the filter function V(f) and taking the inverse Fourier
transform as the result.  Thus, the sought recovered function would be

obtained as ( ) ( ) ( ){ }fVfQth /1−ℑ= .  However, this process is not possible

whenever V(f) assumes zero value.  In practice, the situation is complicated by
the presence of noise in the signal and numeric calculation.  Consequently,
effective deconvolution involves more sophisticated procedures such as
Wiener filtering (see, for instance, [Castleman, 1992]).

2.7.5 The Discrete One-Dimensional Fourier Transform
In order to be numerically processed by digital computers, and to be
compatible with the discrete signals produced by digital measuring systems,
the Fourier transform has to be reformulated into a suitable discrete version,
henceforth called discrete Fourier transform –  DFT.

First, the function gi to be Fourier transformed is assumed to be a uniformly
sampled (spaced by t∆ ) series of measures along time, which can be modelled
in terms of multiplication of the original, continuous function ( )tg~  with the

sampling function ( ) ( )∑
∞

−∞=
∆ ∆−=Ψ

i
t titt δ . Second, by being the result of some

measuring process (such as the recording of a sound signal) the function gi is
assumed to have finite duration along the time domain, let us say from time

tia a ∆=  to tib b ∆= . The function gi is henceforth represented as

( )tigg i ∆= ~

Observe that the discrete function gi can be conveniently represented in
terms of the vector ( )

bbaa iiiiiii gggggggg ,,,,,,,, 1111 −+−+= LL
r

.  Figure

2.89 illustrates the generic appearance (i.e., sampled) of the function gi.
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ftt
f

N
∆∆

=
∆
∆= 1/1

Observe that we have ( )ftN ∆∆= /1  instead of ( ) 1/1 +∆∆= ftN  because

we want to avoid repetition at the extremity of the period, i.e., the function is
sampled along the interval [a, b).  The number M of sampling points in any
period of the output function H(f) is similarly given by

ftf

t
M

∆∆
=

∆
∆

=
1/1

By considering N = M, i.e., the number of sampling points representing the
input and output DFT functions are the same (which implies vectors of equal
sizes in the DFT), we have

ft
MN

∆∆
== 1

(2.53)

Since the input function is always periodical, the DFT can be numerically
approximated in terms of the Fourier series, which can be calculated by
considering any full period of the input function h(t).  In order to be
numerically processed, the Fourier series given by Equation (2.47) can be
rewritten as follows.  First, the integral is replaced by the sum symbol and the
continuous functions are replaced by the above sampled input and output
functions.  In addition, this sum is multiplied by t∆  because of the numerical
integration and the relationship Lfn 2=  is taken into account, yielding
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Observe that we have considered the time interval [0, 2L), in order to avoid

redundancies.  By considering the input function as having period 
f

L
∆

= 1
2 ,

we obtain
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=
∆∆−∆∆∆=∆=
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k tifkjtihftfkHH π
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Now, from Equation (2.53) we have 
N

ft
1

=∆∆ , which implies that

( ) ( )∑
−

= 





−∆=∆=

1

0

2
exp

1 N

i
k N

ikj
tih

N
fkHH

π
(2.54)

This equation, which is commonly known as the discrete Fourier
transform equation, allows us to numerically estimate the Fourier series of the
periodical function h(t).  It is easily verified that the computational execution of
Equation (2.54) for each specific value of k  demands N basic steps, being
therefore an algorithm of complexity order O(N).  Since the complete Fourier
series involves N calculations of this equation (i.e., k  = 0, 1, … , N-1), the
overall number of basic operations in the DFT algorithm is of O(N2).

2.7.6 Matrix Formulation of the DFT
Equation (2.54) can be compactly represented in matrix form, which is
developed in the following.  By defining the abbreviations







−=

N

ikj
w ik

π2
exp, ,  ( )tihhi ∆= , and ( )fkHH k ∆= ,

Equation (2.54) can be rewritten as

∑
−

=

=
1

0
,

1 N

i
iikk hw

N
H (2.55)

Before proceeding with the derivation of the matrix form of the DFT, it is
interesting to have a closer look at the discretized kernel function







−=

N

ikj
w ik

π2
exp, . Let us introduce ikki ww ,=  and observe that

kiik ww ,, = ; for instance 2,21,44,14 wwww === .  From Section 2.1, it is easy

to see that the complex exponential kernel function kiw ,  in the above equation

can be understood as the sequence of complex points uniformly distributed



Mathematical Concepts 189

  

Figure 2.98: The DFT output function H(k∆f).   The pairof  lower frequency
peaks for 11 =f  Hz are indicated by asterisks.

A more careful analysis of the Dirac delta approximations obtained in
Figure 2.98 indicates that the lower frequency peaks (marked with asterisks),
with respect to 11 =f  Hz,  have been better represented (there is less ripple

around it and the amplitude is exactly as expected, i.e., 0.5) than the deltas for

222 =f  Hz.  This is because 1f  is an integer multiple of

( ) 25.0/1 =∆=∆ tNf  Hz, while 2f  is not.  Indeed, a complete cancellation of

the ripple effect is observed in such a multiple situation, because the zero

crossings of ( )fG
~

 can be verified to coincide with the sampling points.

However, this welcomed effect cannot usually be guaranteed in practical
situations, and the unwanted rippling effect has to be somehow alleviated, for
instance by using a smoother window function.  Figure 2.99 illustrates this

possibility considering as windowing function ( ) { } ( )trtt 2exp −=φ , i.e., the

product of a Gaussian with the rectangular function (a truncated Gaussian
function).

The ripple attenuation is readily verified, though at the expense of a

decrease in the amplitude of the coefficients related to  222 =f  Hz.  The

reader is referred to the literature (e.g., Papoulis, 1977; Ingle and Proakis, 1997;
Kamen and Heck, 1997]) for a more detailed discussion about several
windowing functions and their respective properties.




