Dia do Cláudio L. Lucchesi De um furtivo grafo a uma mítica matriz

Alberto Alexandre Assis Miranda

IFNMG-Montes Claros

06 de novembro de 2015

Sumário

- Mestrado: Algoritmo Bipartidos Pfaffianos
 - Teorema Principal
- 2 Doutorado: Quase-bipartidos Pfaffianos
- 3 Doutorado: Grafos k-Pfaffianos

O Tema Grafos Pfaffianos

- Problema completo em uma classe = todos os problemas da classe se reduzem a ele.
 - NP é bem conhecido
 - G tem ciclo?
 - G tem emparelhamento perfeito?
 - G tem ciclo hamiltoniano?
 - NP-completo
 - G tem ciclo hamiltoniano?

O Tema Grafos Pfaffianos

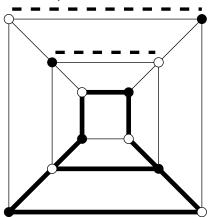
- Problema completo em uma classe = todos os problemas da classe se reduzem a ele.
 - #P = problemas de contagem de soluções de problemas NP.
 - quantos ciclos G tem?
 - quantos emparelhamentos perfeitos G tem?
 - quantos ciclos hamiltonianos G tem?
 - #P-completo
 - contar soluções para o 3-SAT
 - quantos emparelhamentos perfeitos G tem?

Grafos Pfaffianos são Interessantes

- contagem de emparelhamentos perfeitos é polinomial para grafos Pfaffianos (#P-completo)
- Decidir se um grafo é Pfaffiano está em aberto
- Conjectura (Norine & Thomas, resultados parciais)
 "G Pfaffiano 2-conexo 3-regular é 3-aresta-colorável"
 - Implica o Teorema das 4 cores, pois todo G planar é Pfaffiano.
- Resolve problemas interessantes:
 - Química quântica (cálculo de propriedades termodinâmicas)
 - D orientado tem ciclo orientado de comprimento par? (ímpar é fácil)
 - G bipartido tem ciclo com 4k arestas, para algum k?
 - Resolver sistemas lineares de sinais.
 - outros...

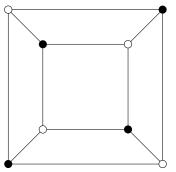
Definições

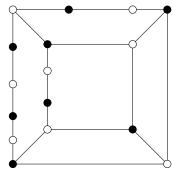
• Um subgrafo H de um grafo G é conforme se G - V(H) tem emparelhamento perfeito;



Definições para caracterizações

 Obtém-se uma bissubdivisão de um grafo G substituindo-se arestas de G por caminhos com número par de vértices internos.

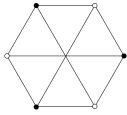




Resultados Anteriores sobre grafos Pfaffianos

Grafos planares são Pfaffianos (Kasteleyn, químico, 1963)

K_{3,3} não é Pfaffiano



- Grafos bipartidos são Pfaffianos sse não tiverem uma bissubdivisão conforme de K_{3,3} (Little, 1975)
- Algoritmo polinomial para decidir se G bipartido é Pfaffiano aparece em 1999 (McCuaig e ind. Robertson, Seymour e Thomas)

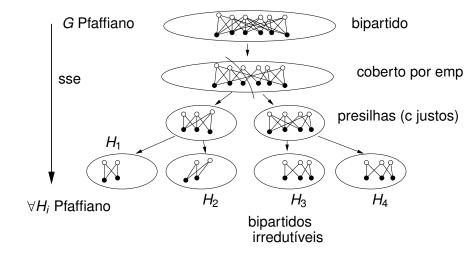
Sumário

- Mestrado: Algoritmo Bipartidos Pfaffianos
 - Teorema Principal
- Doutorado: Quase-bipartidos Pfaffianos
- Doutorado: Grafos k-Pfaffianos

Orientação no Mestrado

- Em 2004, Lucchesi começa a orientação do mestrado de Miranda
- Objetivo: prova alternativa para algoritmo de reconhecimento de bipartidos Pfaffianos
- Em 2006, a prova alternativa é apresentada (apoio Fapesp e CNPq).

Algoritmo para Bipartido Pfaffiano: Redução



Redução 4-somas

Das reduções, a mais interessante é a última, que é específica deste algoritmo:

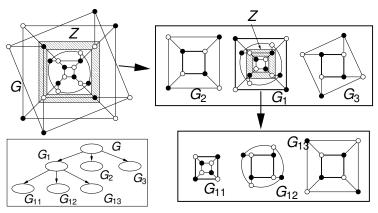
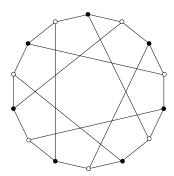


Figura : Redução a grafos bipartidos irredutíveis.

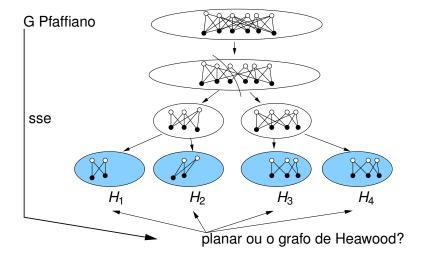
Algoritmo: Teorema Principal

Teorema Principal: O grafo de Heawood é o único grafo

- bipartido,
- "irredutível",
- o não planar, e
- Pfaffiano.



Algoritmo: Aplicação do Teorema Principal



Sumário

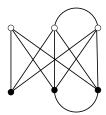
- 🕕 Mestrado: Algoritmo Bipartidos Pfaffianos
 - Teorema Principal
- 2 Doutorado: Quase-bipartidos Pfaffianos
- Outorado: Grafos k-Pfaffianos

Doutorado

- Em 2006, Lucchesi começa a orientação do doutorado de Miranda
- O tema é "Grafos Pfaffianos e Problemas Relacionados"
- Até 2009, no fim do doutorado, são obtidos (apoio Fapesp):
 - Um algoritmo para quase-bipartidos
 - Uma caracterização para uma generalização de quase-bipartidos
 - Um método para geração de grafos k-Pfaffianos
 - A descoberta de que existem grafos com número Pfaffiano
 6

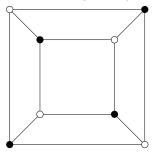
Definições

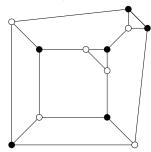
- Grafo G é quase-bipartido se:
 - G é conexo
 - G é coberto por emparelhamentos
 - G e f é bipartido e coberto por emparelhamentos (e e f são orelhas removíveis, equivalem a arestas)



Definições

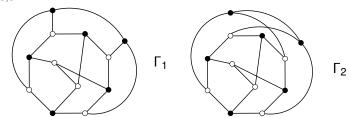
• Uma K_4 -decoração de um grafo G é obtida substituindo-se vértices de grau 3 por triângulos. (sem iterar)





Resultados anteriores

 (Fischer e Little, 2001) G quase-bipartido é Pfaffiano sse não contém bissubdivisão conforme de K₄-decoração de K_{3.3}, Γ₁ ou Γ₂.



 No entanto, a caracterização não induz um algoritmo polinomial

Resultados anteriores

- (definição) Grafo G é Pfaffiano sse G tem orientação D
 Pfaffiana
- (Vazirani & Yannakakis, 1989) São polin. equivalentes:
 - Decidir se G é Pfaffiano
 - Decidir se D orientado é Pfaffiano
- (Carvalho, Lucchesi e Murty, 2005) Definem orientação canônica D de G, obtida em tempo polinomial
 - G é Pfaffiano sse D for Pfaffiana
 - uma orientação de G é separada em tempo polinomial em um dentre:
 - canônica
 - não Pfaffiana

Algoritmo de Reconhecimento

(Miranda e Lucchesi 2007) Algoritmo polinomial p/quase-bipartidos Pfaffianos.

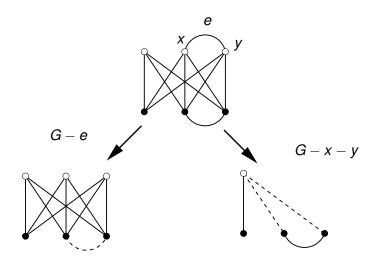
Theorem

Sejam:

- D grafo orientado;
- e = xy aresta de D;
- M emp. perf. de D com e ∈ M;
- N emp. perf. de D com e ∉ N.

Então, D é Pfaffiano se e somente se:

- D e é Pfaffiano;
- \bullet D x y é Pfaffiano;
- sgn(M, D) = sgn(N, D).

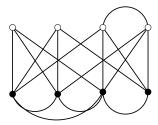


O algoritmo para quase-bipartidos

- Dado um grafo G quase-bipartido
- Obtém-se uma orientação canônica D de G (polin.)
- Obtém-se e.p. M e N, $e \in M$ $e \notin N$ (polin)
- Sinais de M e N em D são calculados (polin)
- Teorema. Reduz p/ se D e e D x y são Pfaffianos
- Equivale a decidir se G e e G x y são Pfaffianos (VY & CLM)
- Aplica-se MRST

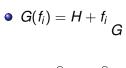
Definição de Meio-Bipartidos

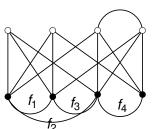
- Um grafo G é meio-bipartido se ele é:
 - coberto por emparelhamentos;
 - tem equipartição $\{A, B\}$ de V(G) (|A| = |B|);
 - E(G[A]) tem precisamente uma aresta;
 - $\mathbf{H} := G E(G[A]) E(G[B])$ é cob. emparelh. (e bipartido).

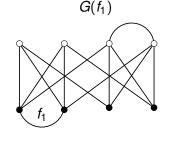


Relação Meio-Bipartidos Quase-Bipartidos

(definição alternativa)
 D é Pfaffiano sse sgn(M, D) = sgn(N, D)∀M, N e.p.







• Máximo um f_i em um e.p. M. Partição $\{\mathcal{M}(H), \mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_t, \}$

Algoritmo para Meio-Bipartidos

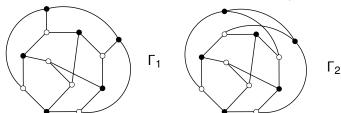
- D é Pfaffiano sse D restrito a cada $G(f_i)$ for Pfaffiano
 - Se D restrito a cada $G(f_i)$ é Pfaffiano, sgn(M, D) é constante em cada \mathcal{M}_i
 - Existe e.p. N de H que está em $\mathcal{M}(H)$
 - Então, todos os sinais concordam, e D é Pfaffiano.
- Tomando D canônica, temos algoritmo polinomial para decidir se G meio-bipartido é Pfaffiano

Relação Meio-Bipartidos Quase-Bipartidos

- (CLM) Grafos bipartidos Pfaffianos têm uma única orientação Pfaffiana, e portanto uma única canônica, (a menos de similaridade)
- Se cada G(f_i) for Pfaffiano, as orientações canônicas de G(f_i) concordarão em H (bipartido)
- Ajustando e, a união das canônicas de G(f_i) é canônica de G
- Então, G é Pfaffiano sse cada $G(f_i)$ é Pfaffiano

Caracterização de Meio-Bipartidos Pfaffianos

- Isso implica que a caracterização para quase-bipartidos se estende para meio-bipartidos
- G meio-bipartido é Pfaffiano sse não contém bissubdivisão conforme de K₄-decoração de K_{3,3}, Γ₁ ou Γ₂.



Sumário

- Mestrado: Algoritmo Bipartidos Pfaffianos
 - Teorema Principal
- Doutorado: Quase-bipartidos Pfaffianos
- 3 Doutorado: Grafos k-Pfaffianos

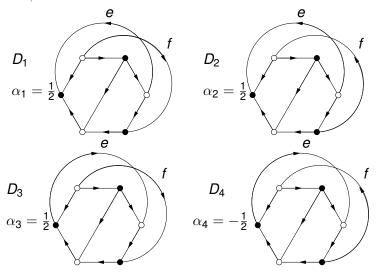
Motivação para Grafos k-Pfaffianos

- contar emparelhamentos perfeitos é #P-completo;
 - polinomial em k | V(G)| para grafos k-Pfaffianos.
- Um grafo *G* é *k-Pfaffiano* se:
 - existe (D_1, D_2, \dots, D_k) de orientações de G;
 - existe $(\alpha_1, \alpha_2, \dots, \alpha_k)$ de reais;
 - e $\sum_{i=1}^{k} \alpha_i \operatorname{sgn}(M, D_i) = 1$, para todo emp. perf. M.
- Se G é k-Pfaffiano,

$$\sum_{i=1}^k \alpha_i P(D_i)$$

é o número de emparelhamentos perfeitos de G.

K_{3,3} é 4-Pfaffiano



$K_{3,3}$ é 4-Pfaffiano

Motivação para Número Pfaffiano

- O número Pfaffiano de um grafo G, pf(G), é o menor k tal que G é k-Pfaffiano;
 - O número Pfaffiano é sempre finito.
- Interessante estudar o número Pfaffiano de grafos:
 - Se pf(G) for limitado por um polinômio em |V(G)|, encontrar uma k-tupla de orientações Pfaffiana de um grafo é NP-difícil;
 - Ainda não se sabe muito sobre o número Pfaffiano de grafos.

Resultados Anteriores sobre números Pfaffianos

Resultados sobre número Pfaffiano de grafos.

- Um grafo imersível em superfície S_g orientável de genus g é 4^g-Pfaffiano [1998];
 - provado por Galluccio e Loebl e independentemente por Tesler.
- Um grafo com desenho em S_g t.q. todo emp. perf. tem um número par de cruzamentos é 4^g -Pfaffiano [2006];
 - provado por Norine;
 - A recíproca vale para $g \le 1$.
- Não existe número Pfaffiano igual a 2, 3 ou 5.
 - provado por Norine[2006];

Baseado nisso, Norine conjecturou:

O número Pfaffiano de todo grafo é uma potência de 4.

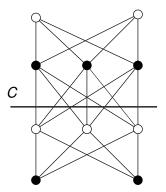
- A prova de Norine de que 5-Pfaffiano é 4-Pfaffiano se baseia em:
- Se existe matriz de sinais de 5 colunas "boa"
- Então, existe matriz de sinais de 4 colunas boa
- O mesmo é feito para 3 e 1.
- No entanto, este método falha para matriz de tamanho 6

\mathcal{M}	D_1	D_2	D_3	D_4	D_5	D_6
M_1	+	+	+	_	+	_
M_2	+	+	+	_	_	+
M_3	_	+	_	+	+	+
M_4	+	_	_	+	+	+
M_5	_	+	+	+	+	_
M_6	+	_	+	+	_	+
M_7	_	+	+	_	+	+
M_8	_	+	+	_	+	+
α_{i}	1/2	1/2	<u>1</u>	<u>1</u>	1/2	1/2

Dica do Lucchesi:
"Focar nesta matriz,
até entender o motivo do
grafo ser 6-Pfaffiano"

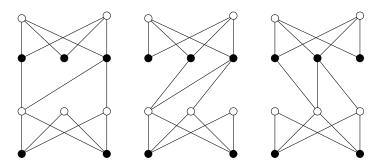
Teorema da Composição

 Um corte C de um grafo cob. emparelh. é justo se todo emparelhamento perfeito tem precisamente uma aresta em C;



Teorema da Composição

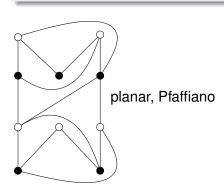
- Dada uma partição {C₁, C₂,..., C_r} das arestas de um corte justo C de um grafo cob. emparelh. G;
- Seja $G_i := (G C) \cup C_i$;
- Dizemos que $G_1, G_2, \dots G_r$ é uma r-decomposição de G.

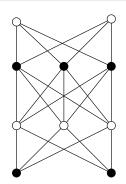


Teorema da Composição

Theorem

Se G tem uma r-decomposição em grafos Pfaffianos, então G é 2r-Pfaffiano.

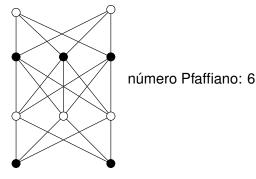




6-Pfaffiano

Contra-exemplo para a Conjectura

- Provamos também que este grafo não é 4-Pfaffiano;
- provando assim que seu número Pfaffiano é 6;



 Um contra exemplo para a conjectura de que o número Pfaffiano é sempre potência de quatro. Mestrado: Algoritmo Bipartidos Pfaffianos Doutorado: Quase-bipartidos Pfaffianos Doutorado: Grafos k-Pfaffianos

Perguntas?