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Abstract

The Ramsey number R(H) of a graph H is the minimum number n such that there exists
a graph G on n vertices with the property that every two-coloring of its edges contains a
monochromatic copy of H. In this work we devise some numerical bounds for a few variants
of this notion when H is an acyclic oriented graph and restrictions are imposed on the graph
G. In particular, we study the oriented Ramsey problem for an acyclic oriented graph ~H,
in which we require that every orientation ~G of the graph G contains a copy of ~H. We also
study the threshold function for this problem in random graphs. Finally, we consider the
isometric case, in which we require the copy to be isometric, by which we mean that, for
every two vertices x, y ∈ V ( ~H) and their respective copies x′, y′ in ~G, the distance between
x and y is equal to the distance between x′ and y′. Our approach to these problems makes
use of the hypergraph container method applied to random graphs.

Keywords: Ramsey theory, random graphs, directed graphs, orientations of graphs, con-
tainer method.
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Chapter 1

Introduction

A classical problem of combinatorics consists of estimating the Ramsey number R(H) of
a graph H, which is defined as the smallest number n such that there exists a graph G on
n vertices with the property that every two-coloring of its edges contains a monochromatic
copy of H. Widely known results of Erdös [10] and Erdös and Szekeres [12] state that

2k/2 6 R(Kn) 6 22n.

Despite many recent improvements on these bounds, they have remained almost unchanged.
However, there has been more success on determining R(H) for some other specific choices
of H, e.g.: cycles and paths.

In Chapter 2, we study the following variant of this problem for directed graphs. Given
an oriented graph ~H, we define ~R( ~H) as the smallest number n such that there exists a graph
G on n vertices with the property that every orientation of its edges contains a copy of ~H.
Observe that ~H must be acyclic, since every undireced graph has an acyclic orientation. In
the aforementioned chapter, we survey some known bounds for ~R( ~H) for some choices of ~H,
and devise some new bounds of our own. Some of our results depend on the notion of Ramsey
numbers of ordered graphs, studied independently by Conlon, Fox, Lee, and Sudakov [9] and
Balko, Cibulka, Král and Kynčl [2].

In Chapter 3, we study the oriented Ramsey problem in the binomial random graph
G(n, p), which is the random graph in which each edge appears with probability p, inde-
pendently of each other edge. Making use of the hypergraph container method of Balogh,
Morris and Samotij [3] and Saxton and Thomason [23], and inspired by some ideas from
Nenadov and Steger [17] and Hàn, Retter, Rödl and Schacht [14], we prove a version for
acyclic oriented graphs of the following celebrated result of Rödl and Ruciński [19].

Theorem (Rödl and Ruciński [19]). Let r > 2 and H be a graph. There exists a constant
C = C(H, r) such that, if p > Cn−1/m2(H), then

lim
n→∞

P[G(n, p)→ (H)r] = 1,

where G(n, p) → (H)r denotes that every two-coloring of the edges of G(n, p) contains a
monochromatic copy of H.

Finally, in Chapter 4, we introduce the isometric oriented Ramsey problem, in which
we want every orientation to contain not only a copy, but an isometric copy, which means
that for every two vertices x, y ∈ V ( ~H) and their respective copies x′, y′ in ~G, the distance
between x and y is equal to the distance between x′ and y′. Moreover, the distance is taken

1



2 INTRODUCTION 1.0

with respect to the underlying undirected graphs. Using the same techniques of Chapter 3,
we prove an upper bound on the isometric Ramsey number of acyclic orientations of cycles.



Chapter 2

The Oriented Ramsey Problem

2.1 Definitions
An ordered graph G is a pair G = (G′, <G) where G′ is a graph and <G is a total

ordering of the vertices of G′. For convenience we write V (G) := V (G′) and E(G) := E(G′).
When a graph G is equipped with a total ordering of its vertices, we will simply refer to G
as an ordered graph without further qualifications.

An ordered graph G is said to contain an ordered graph H if there exists a function
φ : V (H) → V (G) such that, for every x, y ∈ V (H), we have φ(x) <G φ(y) if and only if
x <H y, and {i, j} is an edge of H only if {φ(i), φ(j)} is an edge of G. In this case, we call φ
a monotone embedding.

A directed graph or digraph ~G is a pair ~G = (V,E) where V is a set of vertices
and E is a set such that E ⊆ (V × V ) \ {(v, v) : v ∈ V }. Just as in the case of undirected
graphs, an element of E is called an edge; however, it may also be called an arc to differ
from the undirected case. An oriented graph ~G = (V,E) is a digraph where (u, v) ∈ E

implies (v, u) /∈ E for every u, v ∈ V . Moreover, an oriented graph ~G = (V1, E1) is said to
be an orientation of a graph G = (V2, E2) if V1 = V2 and, for every u, v ∈ V1 = V2, we
have {u, v} ∈ E2 if and only if (u, v) ∈ E1 or (v, u) ∈ E1. In this case, we say that G is
the underlying undirected graph of ~G. Furthermore, when ~G is an oriented graph, we
write G to denote the underlying undirected graph of ~G. To avoid confusion, we will always
denote a digraph by a capital letter with �. Finally, we call an orientation of a complete
graph a tournament.

Given graphs H and G, we write G→ H if every two-coloring of the edges of G contains
a monochromatic copy of H. If the graphs H and G are ordered graphs, we write G ord−→H
to denote that the monochromatic copy is ordered. The Ramsey number R(H) of a graph
H is defined as

R(H) := inf {n ∈ N : Kn → H} .

When the graphH is equipped with a total ordering, the ordered Ramsey number R<(H)
can be defined analogously.

Given an oriented graph ~H and a graph G, we write G → ~H if every orientation of G
has an oriented copy of ~H. The oriented Ramsey number ~R( ~H) is defined as

~R( ~H) := inf
{
n ∈ N : Kn → ~H

}
.
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4 THE ORIENTED RAMSEY PROBLEM 2.2

2.2 Bounds for specific graphs
In this section we derive bounds for the oriented Ramsey number of some specific classes

of graphs.
It is well-known, and not difficult to prove, that a tournament is acyclic if and only

if it is transitive, and that there is exactly one transitive tournament on n vertices up
to isomorphism (see e.g. Section 4.2 of [6]). Therefore, we can denote by ~Kk the acyclic
tournament on k verties. To our knowledge, the following is the first bound to appear of the
oriented Ramsey number of an oriented graph.

Theorem 2.1 (Erdős and Moser [11]). Let ~Kk be the acyclic orientation of Kk for some
positive integer k. We have

2(k−1)/2 6 ~R( ~Kk) 6 2k−1.

We remark that the lower bound above can be proved by a standard application of the
probabilistic method (see e.g.: Theorem 1 of [11] or Proposition 1.1.1 of [1]), and the upper
bound can be proved by induction on k, observing that every acyclic oriented graph has a
topological ordering.

Since clearly ~R( ~H) 6 ~R( ~Kh) for every acyclic oriented graph ~H on h vertices, we obtain
the following corollary.

Corollary 2.2. Let ~H be an acyclic oriented graph on h vertices. We have ~R( ~H) 6 2h−1.

In particular, the oriented Ramsey number ~R( ~H) is finite.

Definition 2.3. We denote by ~Pk the directed path of length k, which is the oriented
graph with vertex set V (~Pk) := [k + 1] and edge set E(~Pk) := {(i, i+ 1) : i ∈ [k]}.

The following theorem is a known result of Gallai and Roy (see, for example, Theorem
14.5 of Bondy and Murty [5]).

Theorem 2.4 (Gallai-Roy Theorem). If G is a graph such that χ(G) = k+1, then G→ ~Pk.

Proof sketch. Consider an arbitrary orientation ~G of G. Color each vertex v ∈ V (G) with
the number of vertices contained in the largest directed path in ~G which begins in v. Observe
that this is a proper coloring. Therefore, the largest directed path contained in ~G has at
least χ(G) = k vertices.

Since χ(Kk+1) = k+1, we have thus completely determined the oriented Ramsey number
of ~Pk.

Corollary 2.5. For every k ∈ N, we have ~R(~Pk) = k + 1.

We now give a bound for the oriented Ramsey number of ~H depending on the Ramsey
number of H. Our proof will be inspired in the proof of Theorem 2.1 of [4], but, in reality,
this idea already appeared in Cochand and Duchet [7] and in Rödl and Winkler [21]. First,
we need a bound for the Ramsey number of ordered graphs.

Theorem 2.6 (Conlon, Fox, Lee, and Sudakov [9]). There exists a constant c such that, for
every ordered graph H on n vertices, we have

R<(H) 6 R(H)c log
2 n.

More precise bounds for R<(H) for specific classes of ordered graphs can be found in
Conlon, Fox, Lee, and Sudakov [9] and Balko, Cibulka, Král and Kynčl [2].
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Theorem 2.7. There exists a constant c such that the following holds. Let ~H be an acyclic
oriented graph with h vertices and H its underlying undirected graph. There exists orderings
<0 and <1 of the vertices of H such that, for H0 = (H,<0) and H1 = (H,<1), we have

~R( ~H) 6 R<(H0) +R<(H1) 6 2R(H)c log
2(h).

Proof. Let ~F be the oriented graph formed by two disjoint copies of ~H, in which one has
reversed edges. More formally, let ~F be the oriented graph with vertex set

V (~F ) := V ( ~H)× {0, 1}

and edge set
E(~F ) :=

{
((u, 0), (v, 0)) , ((v, 1), (u, 1)) : (u, v) ∈ E( ~H)

}
.

Since ~H is acyclic, the oriented graph ~F is also acyclic. Therefore, there exists an ordering <
of the vertices of ~F such that u < v if (u, v) ∈ E(~F ). Let F be the (ordered) underlying
undirected graph of ~F equipped with the ordering <. Let <0 be an ordering of the vertices
of H such that, for x, y ∈ V (H), we have x <0 y if and only if (x, 0) < (y, 0). Define <1

analogously. Let H0 := (H,<0) and H1 := (H,<1). Clearly, we have

R<(F ) 6 R<(H0) +R<(H1).

Let ≺ be an arbitrary ordering of the vertices of KN . We thus consider KN to be an
ordered complete graph. By Theorem 2.6, there exists a number N such that

N = R<(F ) 6 R<(H0) +R<(H1) 6 2R(H)c log
2(h)

and KN
ord−→F .

Now it suffices to prove that KN → ~H. Let ~K be an arbitrary orientation of KN . Color
the edges of KN in the following way: an edge {u, v} ∈ E(KN) with u ≺ v is colored blue if
(u, v) ∈ E( ~K) and red otherwise. By the choice of N , there exists an ordered monochromatic
copy of F in KN . Let φ : V (F ) → V (KN) be the monotone embedding of this copy. If the
copy of F in KN is blue, then the set of vertices

{
φ((v, 0)) : v ∈ V ( ~H)

}
induces a directed

copy of ~H in ~K with the color blue. Otherwise, if the copy is red, then the set of vertices{
φ((v, 1)) : v ∈ V ( ~H)

}
induces a copy with the color red. In either case we have proved

KN → ~H, as desired.

Remark 2.8. The proof of Theorem 2.7 shows that the orderings <0 and <1 of V ( ~H) can
be taken to be the topological ordering of ~H and the reverse topological ordering of ~H,
respectively.

The following theorem gives an exact formula for the classical Ramsey number of a cycle
Ck on k vertices. One can find this result as Theorem 2 of a survey from Radziszowski [18].

Theorem 2.9 (Rosta [22], Faudree and Schelp [13]). We have

R(Ck) =


6, if k = 3 or k = 4

2k − 1, if k > 5 is odd
3k/2− 1 if k > 6 is even.
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Therefore, it clearly holds that R(Ck) 6 2k for every k > 3. We now get the following
corollary.

Corollary 2.10. There exists a constant c such that the following holds. Let k > 3 and let
~H be an acyclic orientation of the cycle on k vertices Ck. We have

~R( ~H) 6 2(2k)c log
2(k).



Chapter 3

An Oriented Ramsey Theorem for
Random Graphs

3.1 Introduction
For a graph H, oriented or not, we denote by m2(H) its 2-density, defined as

m2(H) := max
F⊆H,v(F )>3

e(F )− 1

v(F )− 2
.

The following is a famous result of Rödl and Ruciński [19], which determines, for an
undirected graph H, the threshold function for G(n, p) → (H)r. Here we state only the
1-statement.

Theorem 3.1 (Rödl and Ruciński [19]). Let r > 2 and H be a graph. There exists a
constant C = C(H, r) such that, if p > Cn−1/m2(H), then

lim
n→∞

P[G(n, p)→ (H)r] = 1.

In this chapter, we prove the following theorem, adapting the arguments of Nenadov
and Steger [17], who gave a short proof of Theorem 3.1 using the method of containers,
developed independently by Balogh, Morris and Samotij [3] and Saxton and Thomason [23].
The technique of using hypergraph containers in random graphs for Ramsey problems was
further developed by Hàn, Retter, Rödl and Schacht [14], Rödl, Ruciński and Schacht [20]
and Conlon, Dellamonica, La Fleur, Rödl and Schacht [8]. Our approach is also inspired by
theirs. Some resemblance to their arguments is to be expected.

Theorem 3.2. Let ~H be an acyclic oriented graph. There exists a constant C = C( ~H) such
that, if p > Cn−1/m2( ~H), then

lim
n→∞

P
[
G(n, p)→ ~H

]
= 1.

3.2 Saturation results for oriented graphs
First we need to prove a simple quantitative strengthening of Theorem 2.7.

Theorem 3.3. For every ε > 0 and every acyclic oriented graph ~H on h vertices, there
exists n0 = n0( ~H) and δ = δ( ~H, ε) such that, for every n > n0, the following holds. For

7



8 AN ORIENTED RAMSEY THEOREM FOR RANDOM GRAPHS 3.2

every F ⊆ E(Kn), if there exists an orientation ~F of F such that ~F has at most ε
(
n
h

)
copies

of ~H, then
|E(Kn) \ F | > δn2.

Proof. Set R := ~R( ~H) and let n0 := R. Fix n > n0. Let F ⊆ E(Kn) be such that there
exists an orientation ~F of F with at most ε

(
n
h

)
copies of ~H. Let ~K be an orientation of Kn

which agrees with the orientation ~F of F . Let

S :=

{
S ∈

(
V ( ~K)

R

)
: E( ~K[S]) ⊆ ~F

}
.

By definition of R, every R-element subset of the vertices of ~K contains at least one copy
of ~H. Moreover, every copy of ~H in ~K is contained in at most

(
n−h
R−h

)
R-element subsets.

Therefore, double-counting on the pairs (S, ~H ′) where S ∈ S and ~H ′ is a copy of ~H contained
in S yields

|S| 6 ε

(
n− h
R− h

)(
n

h

)
.

This implies that the set S defined as

S :=

(
V ( ~K)

R

)
\ S

satisfies ∣∣S∣∣ = (n
R

)
− |S|

>

(
n

R

)
− ε
(
n− h
R− h

)(
n

h

)
=

(
n

R

)(
1− ε

(
n−h
R−h

)(
n
R

) (n
h

))

=

(
n

R

)(
1− ε

(
R

h

))
.

Observe that, by definition of S, every set S ∈ S induces at least one edge e ∈ E( ~K) \ ~F .
Moreover, every edge e ∈ E( ~K) \ ~F is contained in at most

(
n−2
R−2

)
R-element subsets. Now,

double-counting on the pairs (S, e) where S ∈ S and e ∈ E( ~K[S]) we get∣∣∣E( ~K) \ ~F
∣∣∣ > ∣∣S∣∣(

n−2
R−2

) >

(
1− ε

(
R

h

)) (
n
R

)(
n−2
R−2

) > (1− ε(R
h

))
1

R2
n2 = δn2,

by setting δ :=
(
1− ε

(
R
h

))
1
R2 .

The desired result now follows by observing |E(Kn) \ F | =
∣∣∣E( ~K) \ ~F

∣∣∣.
Remark 3.4. The proof of Theorem 3.3 shows that δ can be taken as

δ :=

(
1− ε

(
R

h

))
1

R2
.
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Moreover, if ε 6 (1/2)
(
R
h

)−1
, then δ > 1/(2R2). Finally, n0 can be taken as n0 = R.

3.3 A container lemma for digraphs
Let H be a `-uniform hypergraph. For a set J ⊆ V (H), we define the degree of J by

d(J) := |e ∈ E(H) : J ⊆ e| .

For a vertex v ∈ V (H), we let d(v) := d({v}). For j ∈ [`], we also define the maximum
j-degree of a vertex v ∈ V (H) by

d(j)(v) := max

{
d(J) : v ∈ J ∈

(
V (H)
j

)}
.

We denote the average of d(j)(v) for all v ∈ V (H) by

dj :=
1

v(H)
∑

v∈V (H)

d(j)(v).

Note that d1 is the average degree of H. Finally, for τ > 0, we define δj as

δj :=
dj

d1τ j−1

and the co-degree function δ(H, τ) by

δ(H, τ) := 2(
`
2)−1

∑̀
j=2

2−(
j−1
2 )δj.

We now state a condensed version of the Container Lemma, as expressed in Saxton and
Thomason [23]. This version can be found as Theorem 2.1 in [14].

Theorem 3.5 ([23], Corollary 3.6). Let 0 < ε, τ < 1/2. Let H = (V,E) be a `-uniform
hypergraph. Suppose that τ satisfies δ(H, τ) 6 ε/12`!. Then for integers K = 800`(`! )3 and
s = bK log(1/ε)c the following holds.

For every independent set I ⊆ V in H there exists a s-tuple T = (T1, . . . , Ts) of subsets
of V and a subset C = C(T ) ⊆ V depending only on S such that

(a)
⋃
i∈[s] Ti ⊆ I ⊆ C,

(b) e(C) 6 ε · e(H), and

(c) for every i ∈ [s] we have |Ti| 6 Kτ |V |.

Here we prove a version of the container lemma for ~H-free orientations of graphs. First,
we need the following definitions.

Definition 3.6. Let ~H be an oriented graph and let n ∈ N. Denote by ~Dn the digraph with
vertex set [n] and edge set

E( ~Dn) := ([n]× [n]) \ {(v, v) : v ∈ [n]} .



10 AN ORIENTED RAMSEY THEOREM FOR RANDOM GRAPHS 3.3

Definition 3.7 ([16], Definition 3.5). Let ~H be an oriented graph with ` edges and let n ∈ N.
The hypergraph D(n, ~H) = (V , E) is a `-uniform hypergraph with vertex set V := E( ~Dn)
and edge set

E :=

{
B ∈

(
V
`

)
: the edges of B form a digraph isomorphic to ~H

}
.

Definition 3.8. Let ~H be an oriented graph with h vertices. In what follows, we denote by
emb ~H := e(D(h, ~H)) the number of copies of ~H in ~Dh.

Our container lemma for ~H-free orientations of graphs is as follows. We give a more
general statement than needed for this chapter only because we are going to need this result
also in Chapter 4.

Theorem 3.9 (Container lemma for ~H-free orientations). Let 0 < ε, τ < 1/2. Let ~H be an
acyclic oriented graph with ` edges. Let n be a number such that n > ~R( ~H) and suppose τ
satisfies δ(D(n, ~H), τ) 6 ε/(12`! ). There exists positive integers s and K and a real number
δ > 0 such that the following holds.

For every graphG on n vertices such thatG 6→ ~H there exists a s-tuple T = (T1, . . . , Ts) ⊆
E(G) and a set C = C(T ) ⊆ E(Kn) depending only on T such that

(a)
⋃
i∈[s] Ti ⊆ E(G) ⊆ C,

(b) |E(Kn) \ C| > δn2, and

(c)
∣∣∣⋃i∈[s] Ti

∣∣∣ 6 sKτn2.

Proof. Let ~H be an acyclic oriented graph with ` edges. Let n0 and δ be as given by Theo-
rem 3.3 for ε0 := ε · emb ~H and ~H. By Remark 3.4, we can take n0 = ~R( ~H). Fix n > n0 and
set H := D(n, ~H). Since δ(H, τ) 6 ε0/12`!, Theorem 3.5 gives us numbers s and K for H,
ε and τ . Let G be a graph on n vertices such that G 6→ ~H. There exists an orientation ~G
of G such that ~G contains no copy of ~H. Therefore, the set E(~G) is an independent set of
H. Let ~T = (~T1, . . . , ~Ts) be a s-tuple of oriented edges and ~C = ~C(~T ) such as Theorem 3.5
gives for E(~G). For i ∈ [s], let Ti be the underlying set of undirected edges of ~Ti. Define C
analogously for ~C. By item (a) of Theorem 3.5, we have⋃

i∈[s]

Ti ⊆ E(G) ⊆ C.

Observe now that emb ~H counts the number of copies of ~H in any subset of h vertices of ~Dn,
whence it follows that

e(H) =
(
n

h

)
emb ~H . (3.1)

Therefore, by item (b) of Theorem 3.5 we conclude that ~C has at most εe(H) = ε0
(
n
h

)
copies

of ~H. By the choice of δ = δ( ~H, ε0), Theorem 3.3 now gives

|E(Kn) \ C| > δn2.
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Finally, we get by item (c) ∣∣∣∣∣∣
⋃
i∈[s]

Ti

∣∣∣∣∣∣ 6 sKτv(H) 6 sKτn2.

Therefore, there exists a s-tuple T and a set C as promised. This finishes the proof.

Remark 3.10. In light of Remark 3.4, we see that in Theorem 3.9 the value of δ can be
taken as

δ :=

(
1− ε · emb ~H

(
R

h

))
1

R2
,

where R := ~R( ~H). Moreover, if ε 6
(
2 emb ~H

(
R
h

))−1
, then δ > 1/(2R2). Finally, the values

of s and K are just as in Theorem 3.5.

To apply Theorem 3.9, it is necessary to prove a bound on δ(D(n, ~H), τ) for a suitable
value of τ . This is done by the following lemma.

Lemma 3.11. Let ~H be an oriented graph with h vertices and ` > 2 edges. Let also Dτ > 1
and write τ := Dτn

−1/m2( ~H). We have

δ(D(n, ~H), τ) 6 2(
`
2)hh−2D−1τ .

Proof. For convenience, set H := D(n, ~H). Let J ⊆ V (H). Define

VJ :=
⋃

(a,b)∈J

{a, b} ⊆ [n].

Note that (VJ , J) is the subdigraph of ~Dn induced by the set of edges J . For a set S ⊆ [n]\VJ
such that |S| = h − |VJ |, let emb ~H(J, S) denote the number of copies ~F of ~H such that
V (~F ) = VJ ∪ S and J ⊆ E(~F ). Since emb ~H(J, S) is the same number for any choice of S as
above, we can write only emb ~H(J) to refer to this number.

Recall that d(J) is the number of copies of ~H in ~Dn which contain the set J . Observe
now that

d(J) =

(
n− |VJ |
h− |VJ |

)
emb ~H(J). (3.2)

For every j ∈ [`], let
f(j) := min

~H′⊆ ~H, e( ~H′)=j
v(H ′). (3.3)

It follows from (3.2) that

d(J) =

(
n− |VJ |
h− |VJ |

)
emb ~H(J) 6

(
n− f(j)
h− f(j)

)
emb ~H(J).

Note now that, for every e ∈ V (H), we have d(1)(e) = d(e) =
(
n−2
h−2

)
emb ~H({e}). Therefore,

the average d1 of all d(1)(e) satisfies d1 =
(
n−2
h−2

)
emb ~H({e}), for some fixed e ∈ V (H). It

follows that

d(J)

d1
6

(
n−f(j)
h−f(j)

)
emb ~H(J)(

n−2
h−2

)
emb ~H({e})

6

(
n−f(j)
h−f(j)

)(
n−2
h−2

) =
(h− 2)(h− 3) . . . (h− f(j) + 1)

(n− 2)(n− 3) . . . (n− f(j) + 1)
6

(
h

n

)f(j)−2
.
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Therefore, we have d(j)(v)/d1 6 hf(j)−2n2−f(j). Since f(j) 6 h, this gives us

dj
d1

=
1

v(H)
∑

v∈V (H)

d(j)(v)

d1
6

1

v(H)
∑

v∈V (H)

hf(j)−2n2−f(j) = hf(j)−2n2−f(j) 6 hh−2n2−f(j).

We furthermore obtain

δj =
dj

d1τ j−1
6 hh−2n2−f(j)τ 1−j 6 hh−2n2−f(j)+(j−1)/m2( ~H)D1−j

τ . (3.4)

Observe now that, by definition of m2( ~H), we have m2( ~H) > (j − 1)/(f(j)− 2). From this
we may derive 2− f(j) + (j − 1)/m2( ~H) 6 0. Therefore, we can conclude from (3.4) that

δj 6 hh−2D1−j
τ 6 hh−2D−1τ . (3.5)

Now we can finally bound the co-degree function δ(H, τ) by observing that

δ(H, τ) = 2(
`
2)−1

∑̀
j=2

2−(
j−1
2 )δj 6 2(

`
2)−1hh−2D−1τ

∑̀
j=2

2−(
j−1
2 ) 6 2(

`
2)hh−2D−1τ .

This finishes the proof.

3.4 Proof of Theorem 3.2
Now it remains to see how the methods developed in Section 3.3 can be used to prove

Theorem 3.2. First, we need to prove one more lemma. For convenience, given numbers n, s
and t, define

T (n, s, t) :=

(T1, . . . , Ts) :
⋃
i∈[s]

Ti ⊆ E(Kn) and

∣∣∣∣∣∣
⋃
i∈[s]

Ti

∣∣∣∣∣∣ 6 t

 .

Lemma 3.12. Let 0 < ε, τ < 1/2. Let ~H be an acyclic oriented graph with ` edges. Let n be
a number such that n > ~R( ~H) and suppose τ satisfies δ(D(n, ~H), τ) 6 ε/(12`! ). There exists
positive integers s and K and a real number δ > 0 such that, for any choice of p ∈ (0, 1), we
have

P[G(n, p) 6→ ~H] 6 exp(−δn2p)

(
1 +

t∑
k=1

(
e2s−1n2p

k

)k)
,

where t := sKτn2.

Proof. Let s,K and δ be as given by Theorem 3.9 for ε, τ and ~H. If a graph G satisfies
G 6→ ~H, by Theorem 3.9 there exists a s-tuple T = (T1, . . . , Ts) ∈ T (n, s, t) and a set
C(T ) ⊆ E(Kn) such that ⋃

i∈[s]

Ti ⊆ E(G) ⊆ C(T ) (3.6)

and
D(T ) := |E(Kn) \ C(T )| > δn2.
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Moreover, since E(G) ⊆ C(T ), we have

E(G) ∩D(T ) = ∅. (3.7)

Let G be the family of all graphs G on n vertices such that G 6→ ~H. For a s-tuple
T = (T1, . . . , Ts) ∈ T (n, s, t), let

G ′T := {G = Gn : Ti ⊆ E(G) ∀i ∈ [s]} ,

and let
G ′′T := {G = Gn : E(G) ∩D(T ) = ∅} .

Observations (3.6) and (3.7) show that

G ⊆
⋃

T∈T (n,s,t)

G ′T ∩ G
′′

T .

As the sets Ti and D(T ) have empty intersection for every i ∈ [s], it follows that the events
[G(n, p) ∈ G ′T ] and [G(n, p) ∈ G ′′T ] are independent. We conclude

P[G(n, p) ∈ G] 6
∑

T∈T (n,s,t)

P
[
G(n, p) ∈ G ′T

]
· P
[
G(n, p) ∈ G ′′T

]
.

Since D(T ) > δn2 for every T ∈ T (n, s, t), we have

P
[
G(n, p) ∈ G ′′T

]
6 (1− p)δn2

6 exp(−δn2p).

Moreover, we also have ∑
T∈T (n,s,t)

P
[
G(n, p) ∈ G ′T

]
6

∑
T∈T (n,s,t)

p|
⋃

i∈[s] Ti|.

It follows that
P[G(n, p) ∈ G] 6 exp(−δn2p) ·

∑
T∈T (n,s,t)

p|
⋃

i∈[s] Ti|. (3.8)

We now proceed to bound the sum in (3.8). For every integer k such that 0 6 k 6 t, define

S(k) :=

T ∈ T (n, s, t) :
∣∣∣∣∣∣
⋃
i∈[s]

Ti

∣∣∣∣∣∣ = k

 .

Observe that |S(k)| =
((n2)
k

)
(2s)k. Indeed, there are

((n2)
k

)
ways of choosing k edges from

E(Kn), and (2s)k ways of assigning these edges to the sets of the s-tuples, which gives the
desired equation. Therefore,

∑
T∈T (n,s,t)

p|
⋃

i∈[s] Ti| =
t∑

k=0

|S(k)| pk 6
t∑

k=0

((n
2

)
k

)
(2s)kpk 6 1 +

t∑
k=1

(
e2s−1n2p

k

)k
.

Because of (3.8), this finishes the proof.

Remark 3.13. The same quantitative remarks of Remark 3.10 hold for Lemma 3.12.
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We now have all the necessary elements to prove Theorem 3.2, which we now do.

Proof of Theorem 3.2. Let ε be sufficiently small. Suppose n > ~R( ~H). In Lemma 3.11, set

Dτ :=
12`! 2(

`
2)hh−2

ε
,

and let τ := Dτn
−1/m2( ~H). By Lemma 3.11, this yields δ(D(n, ~H), τ) 6 ε/(12`! ), where

` := e( ~H). We are, therefore, in the conditions of Lemma 3.12. Let s,K and δ be as in
Lemma 3.12 for ε, τ and ~H. Set c := sKDτ and p := Cn−1/m2( ~H), for some constant C
sufficiently large with respect to c. By Lemma 3.12, we have

P[G(n, p) 6→ ~H] 6 exp(−δn2p)

(
1 +

t∑
k=1

(
e2s−1n2p

k

)k)
,

where t := sKτn2 = cn2−1/m2( ~H) = cn2p/C.
Let f(k) be the function which maps k to (eb/k)k, where b = 2s−1n2p. Note that this is

the function in the final sum above. Since 2s−1n2p > cn2p/C for C sufficiently large with
respect to s and c, Fact A.2 yields

1 +

cn2p/C∑
k=1

(
e2s−1n2p

k

)k
6 1 +

cn2p

C

(
Ce2s−1n2p

cn2p

)cn2p/C

C sufficiently large

6 n2

(
Ce2s−1

c

)cn2p/C

C sufficiently large

= n2 exp

(
cn2p

C
(logC + 1 + (s− 1) log 2− log c)

)
= n2 exp

(
n2p

c(logC + 1 + (s− 1) log 2− log c)

C

)
6 n2 exp

(
n2p

δ

3

)
C sufficiently large

6 exp

(
δn2p

2

)
n sufficiently large.

We may now conclude

P[G(n, p) ∈ G] 6 exp(−δn2p) exp

(
δn2p

2

)
= exp

(
−δn

2p

2

)
= o(1),

as desired.



Chapter 4

The Isometric Oriented Ramsey Number

4.1 Introduction
For an undirected graph G, we denote by dG(u, v) the distance between two vertices

u, v ∈ V (G). Given two oriented graphs ~H and ~F , we say that a copy f : V ( ~H)→ V (~F ) of
~H in ~F is an isometric copy if dH(x, y) = dF (f(x), f(y)) for every x, y ∈ V ( ~H). Note that
the distance is taken with respect to the underlying undirected graphs.

Given an oriented graph ~H and a graph G, we write G iso−→ ~H if every orientation of G
has an isometric oriented copy of ~H. The isometric oriented Ramsey number ~Riso( ~H)
is defined as

~Riso( ~H) := inf
{
n ∈ N : ∃G = Gn such that G iso−→ ~H

}
.

The following result states that the isometric oriented Ramsey number of acyclic oriented
graphs is always finite.

Theorem 4.1 ([4], Theorem 2.1). For every acyclic oriented graph ~H, the isometric oriented
Ramsey number ~Riso( ~H) is finite.

The problem of estimating ~Riso( ~H) for acyclic oriented graphs ~H first appeared in Ba-
nakh, Idzik, Pikhurko, Protasov and Pszczoła [4]. In this chapter we give an upper bound
on ~Riso( ~H) when ~H is an acyclic orientation of the cycle on k vertices Ck. In particular, we
prove the following theorem.

Theorem 4.2. Let ~H be an acyclic orientation of Ck and set R := ~R( ~H). There exists a
positive constant c such that

~Riso( ~H) 6 ck12k
3

R8k2 . (4.1)

Remark 4.3. In light of Corollary 2.10 and Theorem 4.2, one readily sees that there exists
constants c1 and c2 such that, for any acyclic orientation ~H of the cycle Ck, we have

~Riso( ~H) 6 c1k
c2k3 .

The approach employed in this chapter to prove Theorem 4.2 is inspired by the proof
of Theorem 1.1 in Hàn, Retter, Rödl, and Schacht [14]. In what follows, we will use the
notation already developed in Chapter 3.

15
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4.2 Proof of Theorem 4.2
We begin by observing that, for every orientation ~H of the cycle Ck, we have

m2( ~H) = m2(Ck) =
k − 1

k − 2
. (4.2)

This will justify the choice of constants we will make in the rest of this section.
We now prove the following Lemma, which is a slightly improved version of Lemma 3.11

adjusted for orientations of cycles. Our proof makes uses of some arguments and results of
the proof of Lemma 3.11. The reader is recommended to read first that proof if some steps
in the following proof are unclear.

Lemma 4.4. Let ~H be an orientation of the cycle Ck. Let also Dτ > 1 and define τ as
τ := Dτn

−(k−2)/(k−1). For every n > D
(k−1)2
τ , we have

δ(D(n, ~H), τ) 6 2(
k
2)kk−2D−(k−1)τ .

Proof. Fix j ∈ [k]. Let f(j) be as defined in (3.3). Since ~H is an orientation of the cycle on
k vertices, we have f(j) = j + 1 for every j ∈ [k − 1] and f(k) = k. Furthermore, by (3.4)
we obtain

δj 6 kk−2n2−f(j)+(j−1)(k−2)/(k−1)D1−j
τ .

Therefore, for j ∈ [k − 1] we have

δj 6 kh−2n1−j+(j−1)(k−2)/(k−1)D1−j
τ

= kk−2n−(j−1)/(k−1)D1−j
τ

6 kk−2k−1/(k−1)D−1τ

6 kk−2n−1/(k−1). (4.3)

Moreover, we obtain from (3.5) that

δk 6 kk−2D−(k−1)τ . (4.4)

Since, by assumption, we have n > D
(k−1)2
τ , inequalities (4.3) and (4.4) now give us

max
j∈[k]

δj = δk.

We therefore conclude

δ(H, τ) = 2(
`
2)−1

∑̀
j=2

2−(
j−1
2 )δj 6 2(

`
2)−1kk−2D−(k−1)τ

∑̀
j=2

2−(
j−1
2 ) 6 2(

`
2)kk−2D−(k−1)τ ,

as promised.

We may now proceed to the proof of Theorem 4.2. The proof will be as follows. We will
consider the random graph G(n, p) and, imitating the proof of Theorem 3.2, we will prove
that, with positive probability, we have G(n, p) iso−→ ~H, for a number n that satisfies (4.1) and
a suitable choice of p. Our strategy will be to prove that the graph G(n, p) has girth at least
k and satisfies G(n, p)→ ~H for an acyclic orientation ~H of Ck, which implies G(n, p) iso−→ ~H.
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A difference with regards to the proof of Theorem 3.2 is that, instead of taking p =
Cn−(k−2)/(k−1) for a constant C, we will make C = C(n) depend on n, which will allow us
to get a not so large value for n.

Proof of Theorem 4.2. We begin by setting the following numbers we are going to use in the
proof:

ε =
1

2Rk
, (4.5)

Dτ =
4 · 2k/2 · k2

ε1/(k−1)
6 8R2kk+2, (4.6)

K = 800k(k! )3 6 800k3k+1, (4.7)
s = bK log(1/ε)c 6 1600k3k+2R, (4.8)
Dp = KDτs

210R2 log(5R2), (4.9)

n = Dk2

p , (4.10)

τ = Dτn
− k−2

k−1 , (4.11)

p = Dpn
− k−2

k−1 . (4.12)

Observe that, for some positive constant c > 0, we have

Dp 6 c · k10k+7R8 6 k12kR8,

which implies
n 6 ck12k

3

R8k2 .

Let us first prove the following claim. The proof goes just as in the proof of Claim 3.1
of [14].

Claim 4.5. We have P[girth(G(n, p)) > k] > exp(−kDk−1
p n).

Proof of Claim 4.5. Let C(n, k) be the set of all cycles C ⊆ E(Kn) of length at most k − 1.
Let

X := |{C ∈ C(n, k) : C ⊆ E(G(n, p))}|

be the random variable counting the number of cycles of length at most k − 1 in G(n, p).
For each cycle C ⊆ E(Kn) of length at most k − 1, let XC be the indicator function of the
event EC := {C ⊆ E(G(n, p))}. Clearly, X is the sum of all such C. Therefore,

E[X] =
∑

C∈C(n,k)

p|C| =
k−1∑
j=3

(j − 1)!

2

(
n

j

)
pj 6

k−1∑
j=3

(pn)j

2j
6
k

6
(pn)k−1 =

k

6
Dk−1
p n.

Moreover, the set of all graphs G on n vertices such that C 6⊆ E(G) is a monotone decreas-
ing property. Therefore, using the FKG inequality (Corollary A.4), and applying inequal-
ity (A.2), we get

P[girth(G(n, p)) > k] =
∏

C∈C(n,k)

(1− p|C|) >
∏

C∈C(n,k)

exp

(
− p|C|

1− p|C|

)
> exp

(
− E[X]

1− p3

)
.
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One may now easily check that

1− p3 = 1− n−(k−2)/(k−1)+1/k2 > 1/6,

since n > 11, and the claim follows.

We now prove the following claim. Our proof will be similar to that of Theorem 3.2, with
the difference that the calculations will be more involved.

Claim 4.6. We have
P[G(n, p)→ ~H] > 1− exp

(
− n

2p

4R2

)
.

Proof of Claim 4.6. We want to apply Theorem 3.9. We begin by observing that our choice
of Dτ implies

Dk−1
τ =

(
4 · 2k/2 · k2

ε1/(k−1)

)k−1
=

4k−1 · 2(
k
2) · k2(k−1)

ε
>

12 · 2(
k
2) · kk−2 · k!
ε

.

Hence, since clearly n > D
(k−1)2
τ , Lemma 4.4 now yields δ(D(n, ~H), τ) 6 ε/(12k! ). Observe,

moreover, that

ε =
1

2Rk
6

1

2k!
(
R
k

) 6
1

2 emb ~H
(
R
k

) .
Now Lemma 3.12, together with Remark 3.10 and Remark 3.13, gives us

P[G(n, p) 6→ ~H] 6 exp

(
− n

2p

2R2

)(
1 +

sKτn2∑
j=1

(
e2s−1n2p

j

)j)
. (4.13)

We now proceed to bound the sum in (4.13). Let f(k) be the function which maps j to
(eb/j)j, where b = 2s−1n2p. Note that this is the function in the final sum above. Observe
moreover that

2s−1n2p = 2s−1Dpn
− k−2

k−1n2 > sKDτn
− k−2

k−1n2 = sKτn2,

whence it follows by Fact A.2 that

1 +
sKτn2∑
k=1

(
e2s−1n2p

k

)k
6 1 + sKτn2

(
e2s−1n2p

sKτn2

)sKτn2

= 1 + sKτn2

(
e2s−1Dp

sKDτ

)sKτn2

.

Moreover, since

sKτ = sKDτn
−(k−2)/(k−1) = sKDτD

−k2(k−2)/(k−1)
p 6 sKDτD

−1
p < 1,
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we obtain

1 + sKτn2

(
e2s−1Dp

sKDτ

)sKτn2

6 n2

(
e2s−1Dp

sKDτ

)sKτn2

= n2 exp

(
sKτn2 · log e2

s−1Dp

sKDτ

)
= n2 exp

(
n2p · sKDτ

Dp

· log e2
s−1Dp

sKDτ

)
= n2 exp

(
n2p · sKDτ

Dp

(
log(e2s−1) + log

Dp

sKDτ

))
.

Observe now that

sKDτ

Dp

log(e2s−1) =
log(e2s−1)

s10R2 log(5R2)
6

1

10R2 log(5R2)
6

1

10R2
. (4.14)

Let now x := Dp/(sKDτ ) and set y := x/s. Since the function log(x)/x is decreasing
for x > e, we have log(x)/x 6 log(y)/y. Note also that y = 10R2 log(5R2) 6 (5R2)2 by
inequality (A.3). Therefore, applying (A.3) once again, we obtain log y 6 log(5R2). These
observations allow us to conclude that

log(Dp/(sKDτ ))

Dp/(sKDτ )
=

log x

x
6

log y

y
6

log(5R2)

10R2 log(5R2)
=

1

10R2
. (4.15)

Hence, by inequalities (4.14) and (4.15) we obtain

n2 exp

(
n2p · sKDτ

Dp

(
log(e2s−1) + log

Dp

sKDτ

))
6 n2 exp

(
n2p

5R2

)
.

Observe now that

n2p

log n
=
D2k2

p DpD
−k2(k−2)/(k−1)
p

k2 log(Dp)
>
D2k2

p DpD
−k2
p

k2Dp

=
Dk2

p

k2
>
Dp

k2
>

10R2Dτ

k2
> 40R2.

From this we obtain
2 log n 6

n2p

20R2
=
n2p

4R2
− n2p

5R2
,

which implies

n2 exp

(
n2p

5R2

)
6 exp

(
n2p

4R2

)
.

All our work so far therefore implies

1 +
sKτn2∑
j=1

(
e2s−1n2p

j

)j
6 exp

(
n2p

4R2

)
,

which, in view of (4.13), yields

P[G(n, p) 6→ ~H] 6 exp

(
− n

2p

4R2

)
.
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This finishes the proof of the claim.

Now, in view of Claim 4.5 and Claim 4.6, we can deduce

P[girthG(n, p) > k and G(n, p)→ ~H] > P[girth(G(n, p)) > k] + P[G(n, p)→ ~H]− 1

> exp(−kDk−1
p n)− exp

(
− n

2p

4R2

)
.

(4.16)
Since we also have

n2p

4R2
= n · D

k2+1−k2(1−1/(k−1))
p

4R2
> n ·

Dk+1
p

4R2
> kDk−1

p n,

we may now conclude from (4.16) that

P[girthG(n, p) > k ∩G(n, p)→ ~H] > 0,

which finishes the proof.



Chapter 5

Conclusions

In this work, we have seen some bounds for the oriented Ramsey number of acyclic ori-
ented graphs (Chapter 2), and have shown how to apply the hypergraph container method
to study the oriented Ramsey problem in random graphs (Chapter 3). Moreover, we intro-
duced the concept of isometric oriented Ramsey number, and we showed how the container
method applied to random graphs can be used to prove actual bounds on the isometric
oriented Ramsey number of concrete graphs (Chapter 4).

We think our work leaves some interesting problems open for further research. Firstly, it
would be interesting if better bounds were found for the oriented Ramsey number of concrete
graphs. It is not clear how far from optimal are the bounds given by using ordered Ramsey
numbers.

Secondly, one could also consider not only orientations of graphs, but also orientations
and colorings of edges, and require the oriented copy to be monochromatic. We believe our
techniques can easily handle this case, and we are already working on this.

Moreover, one could also try to apply the techniques of Chapter 4 to derive bounds for
the isometric Ramsey number of other graphs, like paths and Moore graphs. Finally, in light
of Theorem 2.4, one may ask whether the techniques of Chapter 4 can be used to find graphs
with high girth and high chromatic number. We are also working on both of these directions.
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Appendix A

Inequalities and Probability

In this appendix we describe some results involving inequalities and probability theory.

Fact A.1. The following inequalities hold.

1 + x 6 ex ∀x ∈ R, (A.1)

1− x > exp

(
−x
1− x

)
∀x ∈ [0, 1), (A.2)

log x 6
x

2
∀x > 0. (A.3)

One can easily check the following fact by taking derivatives.

Fact A.2. Let c > 0 be a constant and define the function f(x) := (ec/x)x for x > 0.
The function f(x) achieves its maximum value at x = c, and is monotonically increasing for
x 6 c and monotonically decreasing for x > c.

Let V be a finite set. A property of graphs with respect to V is a subset of the set of
all graphs with vertex set V , closed under isomorphism. A property P with respect to V is
said to be monotone increasing if, for every two graphs H ∈ P and G with vertex set V
and such that H is a subgraph of G, we have G ∈ P . Moreover, such a property P is said
to be monotone decreasing if, for every two graphs H and G ∈ P with vertex set V and
such that H is a subgraph of G, we have H ∈ P .

The following theorem is a simplified version of what is known as FKG inequality. The
interested reader is pointed to Chapter 6 of [1] or Section 2.2 of [15] to learn more.

Theorem A.3 (FKG Inequality, Theorem 6.3.3 [1]). Let P1, P2, Q1 and Q2 be graph prop-
erties, where P1 and P2 are monotone increasing and Q1 and Q2 are monotone decreasing.
We have

P[G(n, p) ∈ P1 ∩ P2] > P[G(n, p) ∈ P1] · P[G(n, p) ∈ P2],

P[G(n, p) ∈ Q1 ∩Q2] > P[G(n, p) ∈ Q1] · P[G(n, p) ∈ Q2].

By induction, one easily gets the following corollary.

Corollary A.4. Let P1, P2, . . . , Pn and Q1, Q2, . . . , Qn be graph properties, where P1,

23
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P2, . . . , Pn are monotone increasing and Q1, Q2, . . . , Qn are monotone decreasing. We have

P

[
G(n, p) ∈

n⋂
i=1

Pi

]
>

n∏
i=1

P[G(n, p) ∈ Pi]

P

[
G(n, p) ∈

n⋂
i=1

Qi

]
>

n∏
i=1

P[G(n, p) ∈ Qi]
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