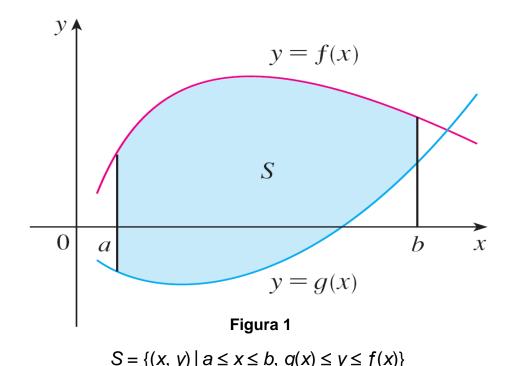
6

Aplicações de Integração

Considere a região S que se encontra entre duas curvas y = f(x) e y = g(x) e entre as retas verticais x = a e x = b, onde f e g são funções contínuas e $f(x) \ge g(x)$ para todo x em [a, b]. (Veja a Figura 1.)



Dividimos S em n faixas de largura iguais e então aproximamos a i-ésima faixa por um retângulo com base Δx e altura $f(x_i^*) - g(x_i^*)$. (Veja a Figura 2. Se quiséssemos, poderíamos tomar todos os pontos amostrais, como as extremidades direitas. De modo que $x_i^* = x_i$.)

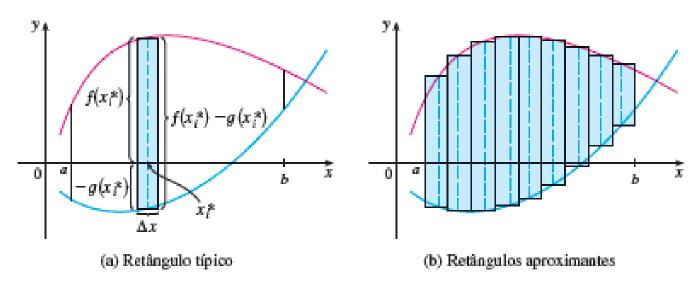


Figura 2

A soma de Riemann

$$\sum_{i=1}^{n} \left[f(x_i^*) - g(x_i^*) \right] \Delta x$$

é, portanto, uma aproximação do que intuitivamente pensamos como a área de S.

Esta aproximação parece tornar-se cada vez melhor quando $n \to \infty$. Portanto, definimos a **área** *A* da região *S* como o valor-limite da soma das áreas desses retângulos de aproximação.

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \left[f(x_i^*) - g(x_i^*) \right] \Delta x$$

Reconhecemos o limite em \blacksquare assim como a integral definida de f-g. Portanto, temos a seguinte fórmula para a área.

2 A área A da região limitada pelas curvas
$$y = f(x)$$
, $y = g(x)$ e pelas retas $x = a$, $x = b$, onde $f \in g$ são contínuas e $f(x) \ge g(x)$ para todo $x \in [a, b]$, é

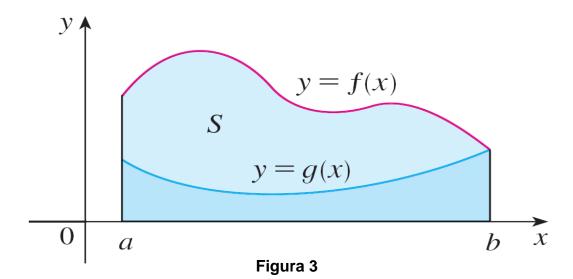
$$A = \int_a^b [f(x) - g(x)] dx.$$

Observe que no caso especial onde g(x) = 0, S é a região sob o gráfico de f e a nossa definição geral de área \square se reduz à nossa definição anterior.

No caso em que f e g forem ambas positivas, você pode ver na Figura 3 por que 2 é verdadeira:

$$A = [$$
área sob $y = f(x)] - [$ área sob $y = g(x)]$

$$= \int_a^b f(x) \, dx - \int_a^b g(x) \, dx = \int_a^b [f(x) - g(x)] \, dx$$

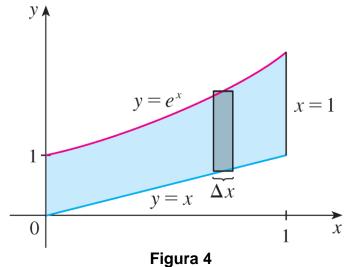


$$A = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx$$

Exemplo 1

Encontre a área da região limitada acima por $y = e^x$, limitada abaixo por y = x, e limitada nos lados por x = 0 e x = 1.

Solução: A região é mostrada na Figura 4. A curva limitante superior é $y = e^x$ e a curva limitante inferior é y = x.



Exemplo 1 – Solução

Então, usamos a fórmula da área 2 com $f(x) = e^x$, g(x) = x, a = 0 e b = 1:

$$A = \int_0^1 (e^x - x) dx = e^x - \frac{1}{2}x^2 \Big]_0^1$$
$$= e - \frac{1}{2} - 1 = e - 1,5$$

Na Figura 4 desenhamos um retângulo aproximante típico com largura Δx que nos lembra o procedimento pelo qual a área é definida em \mathbb{I} . Em geral, quando determinamos uma integral para uma área, é útil esboçar a região para identificar a curva superior y_T , a curva inferior y_B , e um retângulo aproximante típico, como na Figura 5.

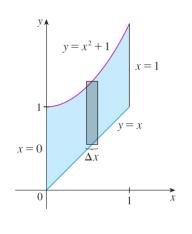
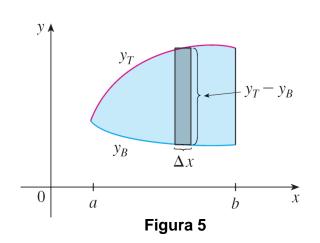


Figura 4

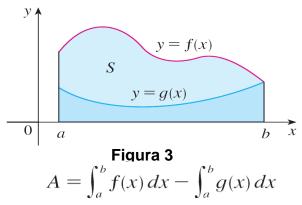


Então, a área de um retângulo típico é $(y_T - y_B) \Delta x$ e a equação

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} (y_{i} - y_{i}) \Delta x = \int_{a}^{b} (y_{i} - y_{i}) dx$$

resumem o procedimento de adição (no sentido de limite) das áreas de todos os retângulos típicos.

Observe que na Figura 5 o limite esquerdo se reduz a um ponto, enquanto na Figura 3 o limite direito é que se reduz a um ponto.



Para encontrarmos a área entre as curvas y = f(x) e y = g(x) onde $f(x) \ge g(x)$ para alguns valores x, mas $g(x) \ge f(x)$ para outros valores de x, então dividimos determinada

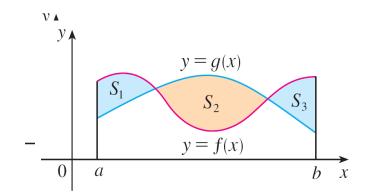


Figura 11

região S em várias regiões S_1 , S_2 , ... com áreas A_1 , A_2 , ... como mostrado na Figura 11. Em seguida, definimos a área da região S como a soma das áreas das regiões menores S_1 , S_2 , ..., ou seja, $A = A_1 + A_2 + \ldots$ Uma vez que

$$|f(x) - g(x)| = \begin{cases} f(x) - g(x) & \text{onde } f(x) \ge g(x) \\ g(x) - f(x) & \text{onde } g(x) \ge f(x) \end{cases}$$

temos a seguinte expressão para A.

A área entre as curvas y = f(x) e y = g(x) e entre x = a e x = b é

$$A = \int_a^b |f(x) - g(x)| dx.$$

Quando calculamos a integral em 3, contudono entanto, ainda temos que dividi-la em integrais correspondentes a A_1, A_2, \ldots

Exemplo 6

Encontre a área da região delimitada pelas curvas y = senx, $y = \cos x$, x = 0 e $x = \pi/2$.

Solução: Os pontos de intersecção ocorrem quando sen $x = \cos x$, isto é, quando $x = \pi/4$ (considerando que $0 \le x \le \pi/2$). A região é esboçada na Figura 12. Observe que $\cos x \ge \sin x$ quando $0 \le x \le \pi/4$, mas sen $x \ge \cos x$ quando $\pi/4 \le x \le \pi/2$.

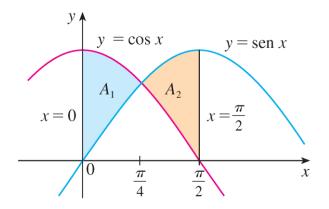


Figura 12

Exemplo 5 – Solução

Portanto, a área requerida é

$$A = \int_0^{\pi/2} |\cos x - \sin x| \, dx = A_1 + A_2$$

$$= \int_0^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) \, dx$$

$$= [\sin x + \cos x]_0^{\pi/4} + [-\cos x - \sin x]_{\pi/4}^{\pi/2}$$

$$= \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 0 - 1\right) + \left(-0 - 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)$$

$$= 2\sqrt{2} - 2$$

Exemplo 5 – Solução

Neste exemplo particular, poderíamos ter economizado algum trabalho por perceber que a região é simétrica em torno de $x = \pi/4$ e, assim,

$$A = 2A_1 = 2\int_0^{\pi/4} (\cos x - \sin x) \, dx$$

Algumas regiões são mais bem tratadas considerando x como uma função de y. Se uma região é delimitada por curvas com equações x = f(y), x = g(y), y = c e y = d, em que f e g são contínuas e $f(y) \ge g(y)$ para $c \le y \le d$ (veja a Figura 13), então sua área é

$$A = \int_{c}^{d} [f(y) - g(y)] dy$$

$$x = g(y)$$

$$y = d$$

$$x = f(y)$$

$$y = c$$
Figure 13

Se escrevermos x_R para o limite à direita e x_L para o limite à esquerda, então, como ilustrada a Figura 14 ilustra, teremos

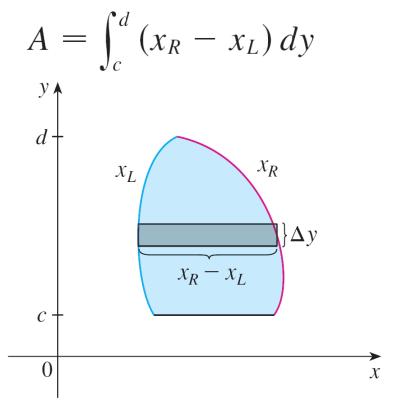


Figura 14