MAT-331: Elementos de Teoria dos Conjuntos

Lista 3

2º Semestre de 2015

- 1. Dados x e y conjuntos, mostre que existe um conjunto formado por todos os elementos de x que não são elementos de y.
- 2. Prove que para qualquer conjunto a, existe $x \notin a$.
- 3. Sejam a e b conjuntos. Mostre que existe um único conjunto c tal que $x \in c$ se, e somente se, ou $x \in a$ e $x \notin b$ ou $x \in b$ e $x \notin a$.
- 4. Mostre que, dados a, b e c conjuntos, existe um único conjunto x tal que $y \in x$ se, e somente se, x = a ou x = b ou x = c.
- 5. Mostre que $\wp(x) \not\subseteq x$ para qualquer conjunto x. Note que, em particular, $\wp(x) \neq x$. Sugestão: Considere $y = \{u \in x \mid u \notin u\}$ e mostre que $y \in \wp(x)$, mas $y \notin x$.
- 6. Sejam $x, y \in z$ conjuntos quaisquer. Prove as seguintes propriedades:

Comutatividade: $x \cap y = y \cap x$ e $x \cup y = y \cup x$.

Associatividade: $(x \cap y) \cap z = x \cap (y \cap z)$ e $(x \cup y) \cup z = x \cup (y \cup z)$.

DISTRIBUTIVIDADE: $x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$ e $x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$.

Leis de Morgan: $z \setminus (x \cap y) = (z \setminus x) \cup (z \setminus y)$ e $z \setminus (x \cup y) = (z \setminus x) \cap (z \setminus y)$.

- 7. Sejam a e b conjuntos. Mostre que:
 - (a) se $a \in b$, então $a \subseteq \bigcup b$;
 - (b) se $u \subseteq a$, para todo $u \in b$, então [J $b \subseteq a$.
- 8. Para um conjunto não-vazio a, mostre que
 - (a) se $x \in a$ então $\bigcap a \subseteq x$;
 - (b) se $x \subseteq u$, para todo $u \in a$, então $x \subseteq \bigcap a$.
- 9. Mostre que são equivalentes:
 - (a) $a \subseteq b$;

- (b) $a \cap b = a;$ (c) $a \cup b = b;$ (d) $a \setminus b = \emptyset.$
- 10. Mostre que:
 - (a) $a \subseteq b$ se, e somente se, $a \cap b = a$ se, e somente se, $a \cup b = b$ se, e somente se, $a \setminus b = \emptyset$.
 - (b) $a \cap (b \setminus c) = (a \cap b) \setminus c$.
 - (c) $a \subseteq b \cap c$ se, e somente se, $a \subseteq b$ e $a \subseteq c$.

- (d) $b \cup c \subseteq a$ se, e somente se, $b \subseteq a$ e $c \subseteq a$.
- (e) $a \setminus b = (a \cup b) \setminus b = a \setminus (a \cap b)$.
- (f) $a \cap b = a \setminus (a \setminus b)$.
- (g) $a \setminus (b \setminus c) = (a \setminus b) \cup (a \cap c)$.
- (h) $a \cap b = a$ e $a \cup b = a$ se, e somente se, a = b.
- 11. Para $a, b \subseteq x$, prove que:

 - (a) $a \subseteq b$ se, e somente se, $x \setminus a \supseteq x \setminus b$; (b) a = b se, e somente se, $x \setminus a = x \setminus b$.
- 12. Determine $\bigcup \{A_i \mid i \in I\}$ e $\bigcap \{A_i \mid i \in I\}$ para:
 - (a) $A_i = \{0, 1, i, i+1\} \in I = \mathbb{N};$
 - (b) $A_i = \{n \in \mathbb{N} \mid n \ge i\} \text{ e } I = \mathbb{N}, I = \{\text{números impares}\} \text{ e } I = \{i \in \mathbb{N} \mid i \ge 3\}.$
- 13. Sejam a, b e x conjuntos tais que $a, b \in x$ e $a \neq b$. Considere o conjunto

$$U = \{u \subseteq x \mid a \in u\} \cup \{v \subseteq x \mid b \in v\}.$$

Mostre que se V é uma coleção não-vazia de elementos de U, então $\bigcup V \in U$. O mesmo vale para a intersecção?

- 14. Mostre que para quaisquer conjuntos $x \in y$:
 - (a) $\bigcup \{x\} = x$;

(d) $\bigcup \wp(x) = x$;

(b) $\bigcup \{x, y\} = x \cup y;$

(e) $\bigcap \wp(x) = \emptyset$;

(c) $\bigcap \{x, y\} = x \cap y;$

- (f) $x \cap \{y\} \neq \emptyset$ se, e somente se, $y \in x$.
- 15. Seja A uma família de subconjuntos de x. Mostre que:
 - (a) $x \setminus \bigcup A = \bigcap \{x \setminus a : a \in A\};$
- (b) $x \setminus \bigcap A = \bigcup \{x \setminus a : a \in A\}.$
- 16. Sejam A uma família não-vazia de subconjuntos de um conjunto x e $b \subseteq x$. Mostre que:
 - (a) $b \cap (\bigcup A) = \bigcup \{b \cap a : a \in A\};$
- $(b) \ b \cup (\bigcap A) = \bigcap \{b \cup a : a \in A\}.$
- 17. Sejam $A \subseteq \wp(x)$ não-vazio e $b \subseteq x$. Mostre que:
 - (a) $b \cup (\bigcup A) = \bigcup \{b \cup a : a \in A\};$
- $(b) \ b \cap (\bigcap A) = \bigcap \{b \cap a : a \in A\}.$