MAT 112 - VETORES E GEOMETRIA 1º SEMESTRE 2015

PROVA 1 - IME

Nome:	Nº USP:	

- 1. (2,5) Fixe uma base ortonormal positiva e sejam $\vec{u} = (3, -1, 1)$ e $\vec{v} = (2, 1, 0)$.
 - (a) Determine todos os vetores \vec{x} de comprimento $\sqrt{10}$, ortogonais a \vec{u} e \vec{v} .
 - (b) Determine todos os vetores \vec{w} de comprimento $\frac{10}{7}$, ortogonais a \vec{u} e tais que $\{\vec{u}, \vec{v}, \vec{w}\}$ seja l.d. Qual deles forma ângulo agudo com \vec{v} ? Justifique sua resposta.

2. (2,5) Considere um triângulo ABC e suponha que X, Y e Z são tais que

$$\vec{AZ} = \lambda \vec{AB}, \quad \vec{YC} = \lambda \vec{AC} \quad e \quad \vec{BX} = \lambda \vec{BC},$$

para algum $0 < \lambda < 1$.

- (a) Escreva \vec{XY} e \vec{XZ} como combinação linear de \vec{AB} e \vec{AC} , em função de λ .
- (b) Calcule $\vec{XY} \cdot \vec{XZ}$ em função de λ , sabendo que $||\vec{AB}|| = 2$, $||\vec{AC}|| = 1$ e a medida do ângulo entre \vec{AB} e \vec{AC} é de $\frac{\pi}{3}$.
- (c) Determine λ de forma que \vec{XY} e \vec{XZ} sejam ortogonais.

- 3. (3,0) Seja $E = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ uma base ortonormal positiva.
 - (a) Construa **uma** base ortonormal positiva $F = (\vec{f_1}, \vec{f_2}, \vec{f_3})$ de forma que $\{\vec{e_1} + \vec{e_2} + \vec{e_3}, \vec{f_3}\}$ seja l.d. e $\{\vec{e_1} + \vec{e_2}, \vec{f_1}, \vec{f_3}\}$ seja l.d.
 - (b) Determine as coordenadas do vetor $(2, 1, 1)_E$ na base F.
 - (c) Determine as coordenadas do vetor $(2, 1, 1)_F$ na base E.

- 4. (2,0) Fixe uma orientação de V^3 e sejam $\vec{u}, \vec{v} \in V^3$. Decida se as seguintes afirmações são verdadeiras ou falsas e justifique sua resposta.
 - (i) Se $||\vec{u}|| = ||\vec{v}|| = 1$ e $\{\vec{u}, \vec{v}\}$ é l.i., então $(\vec{u} \cdot \vec{v})^2 + ||\vec{u} \wedge \vec{v}||^2 = 1$.
 - (ii) $(\vec{u} + \vec{v}, \vec{u} \vec{v}, \vec{u} \wedge \vec{v})$ é uma base de V^3 se, e somente se, $\{\vec{u}, \vec{v}\}$ é l.i.