MAT-331: Elementos de Teoria dos Conjuntos

Lista 5

Exercício 1. Mostre que não existe z tal que $x \subseteq z \subseteq S(x)$.

Exercício 2. Seja $n \in \mathbb{N}$. Prove que não existe $k \in \mathbb{N}$ tal que n < k < n + 1.

Exercício 3. Use o exercício 2 para provar que, dados $m, n \in \mathbb{N}$, se m < n, então $m+1 \le n$. Conclua que a função $f : \mathbb{N} \to \mathbb{N}$ dada por f(n) = S(n), para todo $n \in \mathbb{N}$, é injetora.

Exercício 4. Prove que, para todo $n \in \mathbb{N}$, com $n \neq 0$, existe um único $k \in \mathbb{N}$ tal que n = k + 1.

Exercício 5. Prove que cada número natural n é o conjunto de todos os números naturais menores que n, isto é,

$$n = \{ m \in \mathbb{N} \mid m < n \}.$$

Dica: Use indução para provar que todos os elementos de um número natural são números naturais.

Exercício 6. Mostre que, para todos $m, n \in \mathbb{N}$,

$$m < n$$
 se, e somente se, $m \subsetneq n$.

Exercício 7. Prove que não existe uma função $f: \mathbb{N} \to \mathbb{N}$ tal que f(n) > f(n+1) para todo $n \in \mathbb{N}$.

Exercício 8 (Princípio da Indução Finita). Seja $\mathbf{P}(x)$ uma propriedade. Seja $k \in \mathbb{N}$ e suponha que

- (a) $\mathbf{P}(0)$ vale.
- (b) Para cada n < k, $\mathbf{P}(n)$ implica $\mathbf{P}(n+1)$.

Então, para todo $n \leq k$, $\mathbf{P}(n)$ vale.

Exercício 9. Prove a lei associativa da adição, isto é,

$$(k+m)+n=k+(m+n)$$
 para todos $k,m,n\in\mathbb{N}$.

Exercício 10. Dados $m, n, k \in \mathbb{N}$, mostre que m < n se, e somente se, m + k < n + k.

Exercício 11. Dados $m, n, k \in \mathbb{N}$, mostre que $m \leq n$ se, e somente se, existe um único $k \in \mathbb{N}$ tal que n = m + k.

Exercício 12. Prove que existe uma única função \cdot (multiplicação) de $\mathbb{N} \times \mathbb{N}$ em \mathbb{N} satisfazendo:

- (i) $m \cdot 0 = 0$ para todo $m \in \mathbb{N}$;
- (ii) $m \cdot (n+1) = m \cdot n + m$ para todos $m, n \in \mathbb{N}$.

Exercício 13. Prove que a multiplicação é:

Comutativa: $m \cdot n = n \cdot m$ para todos $m, n \in \mathbb{N}$;

Associativa: $(k \cdot m) \cdot n = k \cdot (m \cdot n)$ para todos $k, m, n \in \mathbb{N}$;

Distributiva sobre a adição: $k \cdot (m+n) = k \cdot m + k \cdot n$ para todos $k, m, n \in \mathbb{N}$.

Exercício 14. Dados $m, n, k \in \mathbb{N}$, com k > 0, mostre que m < n se, e somente se, $m \cdot k < n \cdot k$.