MAT-331: Elementos de Teoria dos Conjuntos

Lista 2

1 Os axiomas

Exercício 1. Dados x e y conjuntos, mostre que existe um conjunto formado por todos os elementos de x que não são elementos de y.

Exercício 2. (a) Prove que o "conjunto de todos os conjuntos" não existe.

 $Sugest\~ao$: Suponha, por absurdo, que exista um conjunto V contendo todos os conjuntos. Considere $a=\{x\in V\mid x\notin x\}$ — note que a é um conjunto — . Agora, a partir de a, derive um absurdo.

(b) Prove que para qualquer conjunto a, existe $x \notin a$.

Exercício 3. Sejam a e b conjuntos. Mostre que existe um único conjunto c tal que $x \in c$ se, e somente se, ou $x \in a$ e $x \notin b$ ou $x \in b$ e $x \notin a$.

Exercício 4. Mostre que, dados a, b e c conjuntos, existe um único conjunto x tal que $y \in x$ se, e somente se, x = a ou x = b ou x = c.

Exercício 5. Mostre que $\wp(x) \nsubseteq x$ para qualquer conjunto x. Note que, em particular, $\wp(x) \neq x$.

Sugestão: Considere $y = \{u \in x \mid u \notin u\}$ e mostre que $y \in \wp(x)$, mas $y \notin x$.

2 Operações elementares entre conjuntos

Exercício 6. Sejam $x, y \in z$ conjuntos quaisquer. Prove as seguintes propriedades:

Comutatividade: $x \cap y = y \cap x \text{ e } x \cup y = y \cup x.$

Associatividade: $(x \cap y) \cap z = x \cap (y \cap z)$ e $(x \cup y) \cup z = x \cup (y \cup z)$.

DISTRIBUTIVIDADE: $x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$ e $x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$.

Leis de Morgan: $z \setminus (x \cap y) = (z \setminus x) \cup (z \setminus y)$ e $z \setminus (x \cup y) = (z \setminus x) \cap (z \setminus y)$.

Exercício 7. Sejam a e b conjuntos. Mostre que:

- (a) se $a \in b$, então $a \subseteq \bigcup b$;
- (b) se $u \subseteq a$, para todo $u \in b$, então $\bigcup b \subseteq a$.

Exercício 8. Dado um conjunto não-vazio x, prove que $\bigcap x$ existe.

Exercício 9. Para um conjunto não-vazio a, mostre que

- (a) se $x \in a$ então $\bigcap a \subseteq x$;
- (b) se $x \subseteq u$, para todo $u \in a$, então $x \subseteq \bigcap a$.

Exercício 10. Mostre que:

- (a) $a \subseteq b$ se, e somente se, $a \cap b = a$ se, e somente se, $a \cup b = b$ se, e somente se, $a \setminus b = \emptyset$.
- (b) $a \cap (b \setminus c) = (a \cap b) \setminus c$.
- (c) $a \subseteq b \cap c$ se, e somente se, $a \subseteq b$ e $a \subseteq c$.
- (d) $b \cup c \subseteq a$ se, e somente se, $b \subseteq a$ e $c \subseteq a$.
- (e) $a \setminus b = (a \cup b) \setminus b = a \setminus (a \cap b)$.
- (f) $a \cap b = a \setminus (a \setminus b).$
- $(g) \ a \setminus (b \setminus c) = (a \setminus b) \cup (a \cap c).$
- (h) $a \cap b = a$ e $a \cup b = a$ se, e somente se, a = b.

Exercício 11. $a \subseteq b \cup c$ implica $a \subseteq b$ ou $a \subseteq c$?

Exercício 12. Para $a, b \subseteq x$, prove que:

(a) $a \subseteq b$ se, e somente se, $x \setminus a \supseteq x \setminus b$; (b) a = b se, e somente se, $x \setminus a = x \setminus b$.

Exercício 13. Determine $\bigcup \{A_i \mid i \in I\}$ e $\bigcap \{A_i \mid i \in I\}$ para:

- (a) $A_i = \{0, 1, i, i+1\} \in I = \mathbb{N};$
- (b) $A_i = \{n \in \mathbb{N} \mid n \ge i\}$ e $I = \mathbb{N}$, $I = \{\text{n\'umeros \'umpares}\}$ e $I = \{i \in \mathbb{N} \mid i \ge 3\}$.

Exercício 14. Sejam a, b e x conjuntos tais que $a, b \in x$ e $a \neq b$. Considere o conjunto

$$\mathscr{C} = \{ u \subseteq x \mid a \in u \} \cup \{ v \subseteq x \mid b \in v \}.$$

Mostre que se \mathscr{D} é uma coleção não-vazia de elementos de \mathscr{C} , então $\bigcup \mathscr{D} \in \mathscr{C}$. O mesmo vale para a intersecção?

Exercício 15. Mostre que para quaisquer conjuntos x e y:

(a)
$$\bigcup \{x\} = x$$
;

$$(d) \bigcup \wp(x) = x;$$

(b)
$$\bigcup \{x, y\} = x \cup y;$$

(e)
$$\bigcap \wp(x) = \emptyset$$
;

(c)
$$\bigcap \{x, y\} = x \cap y$$
;

$$(f)$$
 $x \cap \{y\} \neq \emptyset$ se, e somente se, $y \in x$.

Exercício 16 (Leis de De Morgan). Seja $\mathscr C$ uma família de subconjuntos de x. Mostre que:

(a)
$$x \setminus \bigcup \mathscr{C} = \bigcap \{x \setminus a : a \in \mathscr{C}\};$$

(b)
$$x \setminus \bigcap \mathscr{C} = \bigcup \{x \setminus a : a \in \mathscr{C}\}.$$

Exercício 17 (Distributividade). Sejam & uma família não-vazia de subconjuntos de um conjunto $x \in b \subseteq x$. Mostre que:

$$(a) \ b \cap (\bigcup \mathscr{C}) = \bigcup \{b \cap a : a \in \mathscr{C}\}; \qquad (b) \ b \cup (\bigcap \mathscr{C}) = \bigcap \{b \cup a : a \in \mathscr{C}\}.$$

$$(b) \ b \cup (\bigcap \mathscr{C}) = \bigcap \{b \cup a : a \in \mathscr{C}\}.$$

Exercício 18. Sejam $\mathscr{C} \subseteq \wp(x)$ não-vazio e $b \subseteq x$. Mostre que:

$$(a) \ b \cup (\bigcup \mathscr{C}) = \bigcup \{b \cup a : a \in \mathscr{C}\};$$

$$(a) \ b \cup (\bigcup \mathscr{C}) = \bigcup \{b \cup a : a \in \mathscr{C}\}; \qquad \qquad (b) \ b \cap (\bigcap \mathscr{C}) = \bigcap \{b \cap a : a \in \mathscr{C}\}.$$