MAT-331: Elementos de Teoria dos Conjuntos

Lista 1

1 Lógica

Exercício 1. Identifique a hipótese e a tese em cada uma das seguintes afirmações:

- (a) Se n é inteiro, então 2n é um número par.
- (b) Você pode trabalhar aqui somente se tiver um diploma universitário.
- (c) Um carro não anda, sempre que está sem combustível.
- (d) Eu receberei a bandeirada, se cruzar a linha de chegada primeiro.
- (e) Continuidade é uma condição necessária para diferenciabilidade.
- (f) Normalidade é condição suficiente para regularidade.
- (q) Eu tenho sono na aula das 14h, sempre que almoço no bandejão.
- (h) f(x) = 5 dado que x > 3.

Exercício 2. Sejam $p \in q$ as sentenças "2 < 3" e "0 + 1 = 1", respectivamente. Construa as sentenças:

(a) $p \wedge q$; (c) $\neg (p \vee q)$; (e) $(p \wedge \neg q) \vee (\neg p \wedge q)$.

(b) $p \vee q$; (d) $\neg (p \wedge q)$;

Exercício 3. Sejam p e q sentenças quaisquer. Escreva as sentenças abaixo usando apenas \wedge e \neg :

(a) $p \lor q$; (b) $p \to q$; (c) $p \leftrightarrow q$.

Exercício 4. Sejam p e q sentenças. Quando escrevemos $p \lor q$ podemos ter p e q ao mesmo tempo. Escreva uma fórmula (usando os conectivos \lor, \land e \neg) que diga que temos p ou q mas que não podemos ter p e q ao mesmo tempo.

Exercício 5. Escreva a negação de cada uma das seguintes afirmações:

- (a) Para todo número x maior ou igual a zero, |x| = x.
- (b) f é contínua em todos os pontos.
- (c) Existe um ponto onde f é contínua.
- (d) Existe um elemento neutro com relação a adição.

2 MAT-331: Lista 1

- (e) Por quaisquer dois pontos passa uma reta.
- (f) Por quaisquer dois pontos passa uma única reta.
- (g) Todas as cadeiras têm quatro pernas.
- (h) Todo jogador de futebol é inteligente.
- (i) $\exists x > 1 \ (f(x) = 3).$
- (j) $\forall x > 1 \ (0 < f(x) < 4).$
- $(k) \exists x \in A (f(x) > x).$
- (l) $\exists y \leq 2 \ (f(y) < 2 \ \text{ou} \ g(y) \geq 7).$
- $(m) \ \forall x \in A \ \exists y \in B \ (x < y < 1).$
- (n) $\exists x \exists y \ (x+y=8).$
- (o) $\forall x \exists y \ (x < y \lor y < x)$.
- $(p) \exists x \forall y \ (y < x).$
- $(q) \ \forall x \exists y \ (x < y).$
- $(r) \ \forall x \exists y \forall z \ (x + y + z \le xyz).$

Exercício 6. Para cada afirmação abaixo, (i) reescreva a condição da definição usando somente simbologia lógica $(\forall, \exists, \Rightarrow, \text{ etc})$; (ii) escreva a negação da parte (i) usando da mesma simbologia. Não é necessário entender precisamente o que cada termo diz.

- (a) Uma função f é par se, e somente se, para todo x, f(-x) = f(x).
- (b) Uma função f é periódica se, e somente se, existe um k > 0, tal que, para todo x, f(x+k) = f(x).
- (c) Uma função f é crescente se, e somente se, para todo x e para todo y, se $x \leq y$, então $f(x) \leq f(y)$.
- (d) Uma função f é estritamente decrescente se, e somente se, para todo x e para todo y, se x < y, então f(x) > f(y).
- (e) Uma função $f: A \to B$ é injetora se, e somente se, para todos x e y em A, se f(x) = f(y), então x = y.
- (f) Uma função $f: A \to B$ é sobrejetora se, e somente se, para todo y em B, existe x em A, tal que, f(x) = y.

MAT-331: Lista 1

(g) Uma função $f: D \to \mathbb{R}$ é contínua em $c \in D$ se, e somente se, para todo $\epsilon > 0$, existe $\delta > 0$, tal que, $|f(x) - f(c)| < \epsilon$, sempre que $|x - c| < \delta$ e $x \in D$.

- (h) Uma função f é uniformemente contínua num conjunto S se, e somente se, para todo $\epsilon > 0$, existe $\delta > 0$, tal que, $|f(x) f(y)| < \epsilon$, sempre que x e y estão em S e $|x y| < \delta$.
- (i) O número real L é limite da função $f: D \to \mathbb{R}$ no ponto c se, e somente se, para cada $\epsilon > 0$, existe $\delta > 0$, tal que, $|f(x) L| < \epsilon$, sempre que $x \in D$ e $0 < |x c| < \delta$.

2 Pertinência, inclusão e potência

Exercício 7. Diga precisamente o que significa dois conjuntos serem diferentes, $x \not\subseteq y$ e $x \subsetneq y$.

Exercício 8. Mostre que o conjunto vazio é único.

Exercício 9. Mostre que para todo conjunto A vale:

- $(a) \emptyset \subseteq A;$
- (b) $A \subseteq A$;
- (c) $A \subseteq \{a\}$ se, e somente se, $A = \{a\}$ ou $A = \emptyset$.

Exercício 10. Diga se cada uma das afirmações abaixo é verdadeira ou falsa e justifique.

 $(a) \{a,b\} \subseteq \{\{a\},\{b\}\};$

 $(e) \emptyset \in \emptyset;$

(b) $\{a\} \subseteq \{\{a\}, a\};$

 $(f) \emptyset \subset \emptyset;$

 $(c) \ a \in \{\{a\}\};$

- $(g) \{\{\emptyset\}\}\subseteq \{\emptyset\}.$
- (d) $a \in \{b\}$ se, e somente se, a = b;

Exercício 11. Escreva explicitamente os seguintes conjuntos:

- (a) $\{2n+1 \mid n \in \mathbb{N}, 1 \le n < 9\};$
- (d) $\{\frac{m}{n} \mid n, m \in \mathbb{N}, n \neq 0\};$

(b) $\{2r \mid r \in \mathbb{R}\}$;

(e) $\{i \mid i \in \{j\}\}$.

(c) $\{rq \mid r \in \mathbb{R} \text{ e } q \in \mathbb{Q}\};$

Exercício 12. Ache $\wp(\{1\})$, $\wp(\{1,2\})$ e $\wp(\{1,2,3\})$. Quantos elementos você acha que tem o conjunto $\wp(\{1,2,3,4\})$? E o conjunto $\wp(\{1,2,\dots,n\})$, onde n é um inteiro positivo?

MAT-331: Lista 1

Exercício 13. Para E um conjunto qualquer, julgue em verdadeira ou falsa as seguintes sentenças:

(a) $E \in \wp(E)$;

(b) $E \subseteq \wp(E)$; (c) $\{E\} \subseteq \wp(E)$; (d) $\{E\} \in \wp(E)$.

Exercício 14. Diga se cada uma das afirmações abaixo é verdadeira ou falsa e justifique.

(a) $x \in X$ se, e somente se, $\{x\} \in \wp(X)$;

(b) $\{x\} \in \wp(X)$ se, e somente se, $\{x\} \subseteq X$;

(c) $\{x\} \subseteq \wp(X)$ se, e somente se, $x \subseteq X$;

 $(d) \emptyset \in \wp(X).$

Exercício 15. Mostre que para quaisquer conjuntos A, B e C, temos:

(a) se $A \subseteq \emptyset$, então $A = \emptyset$;

(b) se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$;

(c) se $A \subseteq B$, então $\wp(A) \subseteq \wp(B)$.

Exercício 16. Prove ou dê um contra-exemplo.

(a) $A \neq B \in B \neq C \Rightarrow A \neq C$:

(c) $x \in B \in B \in C \Rightarrow x \in C$:

(b) $A \subseteq B \in B \not\subseteq C \Rightarrow A \not\subseteq C$;

(d) $A \in B \in B \not\subset C \Rightarrow A \notin C$.

Exercício 17. Os conjuntos A, B e C são tais que $A \subseteq B$ e $B \subseteq C$; além disso, $a \in A$, $b \in B, c \in C, d \notin A, e \notin B$ e $f \notin C$. Dizer quais das seguintes sentenças são sempre verdadeiras:

 $(a) \ a \in C$;

(b) $b \in A$; (c) $c \notin A$; (d) $d \in B$; (e) $e \notin A$; (f) $f \notin A$.

 Exercício 18. Sejam $A,\ B$ e C conjuntos quaisquer. Mostre que se $A\subseteq B,\ B\subseteq C$ e $C \subseteq A$, então A = B, B = C e C = A.

Exercício 19. Escreva explicitamente o conjunto $\wp(X)$, onde:

(a) $X = \emptyset$;

(c) $X = \{3, \{1, 4\}\};$ (e) $X = \wp(\{a\});$

(b) $X = \{\emptyset, \{\emptyset\}\};$ (d) $X = \{a, \{a\}, \{a, \{a\}\}\};$ (f) $X = \wp(\{a, b\}).$

MAT-331: Lista 1 5

Exercício 20. Prove ou dê um contra-exemplo.

(a)
$$\{x\} \in \wp(X) \Leftrightarrow x \subseteq X;$$

$$(f) \{\{a,b\}\}\subseteq \wp(\{a,b\});$$

(b)
$$\{\{a\},\{a,b\}\}\in\wp(\{a,b\});$$

(g)
$$\{\{a,b\}\}\in\wp(\{a,b\});$$

(c)
$$\{\{a\}, \{a, b\}\} \subseteq \wp(\{a, b\});$$

(h)
$$\{2, 3, 4, 5\} \in \wp(\{n \in \mathbb{N} \mid n \text{ \'e par}\}).$$

(d)
$$\{a,b\} \subseteq \wp(\{a,b\});$$

(e)
$$\{a,b\} \in \wp(\{a,b\});$$

Exercício 21. Escreva explicitamente os conjuntos:

(a)
$$\{X \in \wp(\mathbb{N}) \mid X \in \wp(\{1, 2, 3\}) \in X \in \wp(\{2, 5\})\};$$

$$(b) \ \{X \in \wp(\mathbb{N}) \mid X \in \wp(\{1,3,8\}) \ \mathrm{e} \ 8 \in X\}.$$