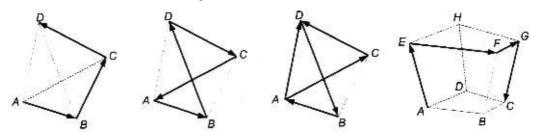
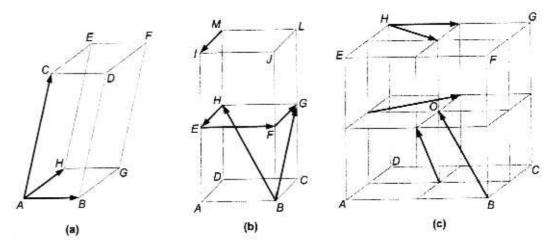
MAT 105 - GEOMETRIA ANALÍTICA - IGC 1º SEMESTRE 2010

LISTA 1

1. Ache a soma dos vetores indicados na figura, nos casos:

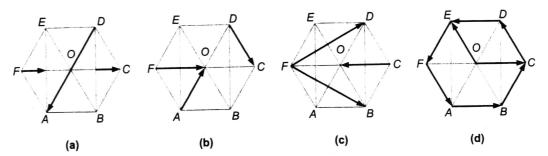


- 2. Ache a soma dos vetores indicados em cada caso, sabendo-se que
 - (a) ABCDEFGH é um paralelepípedo.
 - (b) ABCDEFGH e EFGHIJLM são cubos de arestas congruentes.
 - (c) *ABCDEFGH* é um cubo de centro *O* e está dividido em oito cubos congruentes por planos paralelos às faces.

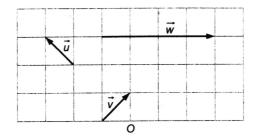


- 3. Utilize o paralelepípedo da Figura (a) acima para determinar o vetor \vec{x} em cada caso:
 - (a) $\overrightarrow{x} = \overrightarrow{GH} \overrightarrow{HE} \overrightarrow{FE} + \overrightarrow{AE} + \overrightarrow{AB}$
 - (b) $\overrightarrow{x} = \overrightarrow{HD} \overrightarrow{CF} + \overrightarrow{DG} + \overrightarrow{BC} + \overrightarrow{AF} \overrightarrow{BE}$
 - (c) $\overrightarrow{x} = \overrightarrow{AB} + \overrightarrow{HG} + \overrightarrow{AC} + \overrightarrow{DF} + \overrightarrow{CE} + \overrightarrow{BD}$

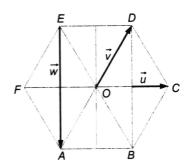
² 4. Na figura abaixo, os hexágonos são regulares. Em cada caso, determine a soma dos vetores indicados.



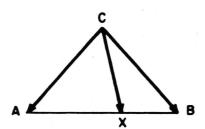
- 5. Quais são a origem e a extremidade de um representante do vetor $\overrightarrow{BC} + \overrightarrow{GH} \overrightarrow{FA} \overrightarrow{GC} + \overrightarrow{FB}$?
- 6. Sendo \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} representados na figura abaixo, represente $\overrightarrow{x} = 2\overrightarrow{u} \overrightarrow{v} + \frac{5}{4}\overrightarrow{w}$ por uma flecha de origem O.



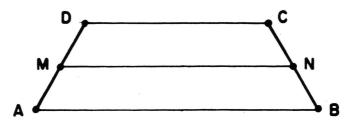
7. Na figura abaixo, ABCDEF é um hexágono regular. Determine X, sabendo que $\overrightarrow{CX} = -3\overrightarrow{u} + 2\overrightarrow{v} + \frac{3}{2}\overrightarrow{w}$.



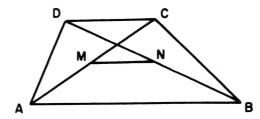
8. Dados quatro pontos A, B, C e X tais que $\overrightarrow{AX} = m\overrightarrow{XB}$, exprima \overrightarrow{CX} em função de \overrightarrow{CA} , \overrightarrow{CB} e m. (Sugestão: na relação $\overrightarrow{AX} = m\overrightarrow{XB}$, faça aparecer C em ambos os membros.)



- 9. É dado um triângulo \overrightarrow{ABC} e os pontos X, Y, Z, tais que $\overrightarrow{AX} = m\overrightarrow{XB}$, $\overrightarrow{BY} = n\overrightarrow{YC}$ e $\overrightarrow{CZ} = p\overrightarrow{ZA}$. Exprima \overrightarrow{CX} , \overrightarrow{AY} e \overrightarrow{BZ} em função de \overrightarrow{CA} , \overrightarrow{CB} , m, n e p.
- 10. Num triângulo ABC é dado X sobre o lado AB tal que $||\overrightarrow{AB}|| = 2||\overrightarrow{XB}||$ e é dado Y sobre o lado BC tal que $||\overrightarrow{BY}|| = 3||\overrightarrow{YC}||$. Mostre que as retas CX e AY se cortam. (Sugestão: use o exercício anterior, achando qual dever ser M e qual deve ser M. Suponha $\overrightarrow{CX} = \lambda \overrightarrow{AY}$ e chegue a um absurdo.)
- 11. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo às bases e sua medida é a semi-soma das medidas das bases. (Atenção: não é suficiente provar que $\overrightarrow{MN} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{DC})$, mas isso ajuda bastante.)



12. Demonstre que o segmento que une os pontos médios das diagonais de um trapézio é paralelo às bases e sua medida é a semi-diferença das medidas das bases. (Atenção: não é suficiente provar que $\overrightarrow{MN} = \frac{1}{2}(\overrightarrow{AB} - \overrightarrow{DC})$, mas isso ajuda bastante.)



13. Num triângulo ABC, sejam M, N e P os pontos médios dos lados AB, BC e AC, respectivamente. Mostre que

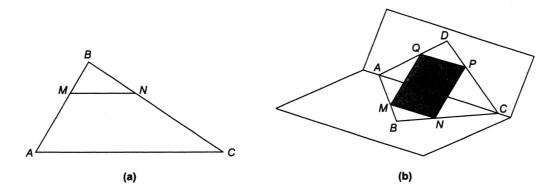
$$\overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \overrightarrow{0}$$
.

- 14. Dado um triângulo qualquer, mostre que existe outro com lados paralelos e congruentes às medianas do primeiro.
- 15. Sendo ABCDEF um hexágono regular de centro O, prove que

$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 6\overrightarrow{AO}$$
.

- 16. Seja \overrightarrow{OABC} um tetraedro e seja X o ponto da reta \overrightarrow{BC} definido por $\overrightarrow{BX} = \overrightarrow{mBC}$. Exprima \overrightarrow{OX} e \overrightarrow{AX} em função de \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} .
- 17. Seja \overrightarrow{OABC} um tetraedro, X o ponto de encontro das medianas do triângulo \overrightarrow{ABC} (baricentro). Exprima \overrightarrow{OX} en termos de \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} .
- 18. Sejam A, B, C e D pontos quaisquer, M o ponto médio de AC e N o de BD. Exprima \overrightarrow{x} em função de \overrightarrow{MN} , sendo $\overrightarrow{x} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$.

- 4 19. (a) No triângulo ABC da figura (a), M divide o segmento AB e N divide o segmento CB na mesma razão r. Prove que MN // AC e calcule ||MN||/||AC||.
 (b) No quadrilátero ABCD (eventualmente reverso, como na figura (b)), M divide o segmento AB, N divide BC,
 - (b) No quadrilátero ABCD (eventualmente reverso, como na figura (b)), M divide o segmento AB, N divide BC, P divide CD e Q divide AD, todos na mesma razão r. Prove que o quadrilátero MNPQ é um paralelogramo.
 - (c) Suponha que o quadrilátero ABCD do item anterior seja um paralelogramo. Mostre que as quatro diagonais (as duas de ABCD e as duas de MNPQ) têm um ponto em comum.



- 20. Sejam A, B e C pontos quaisquer, $A \neq B$. Prove que:
 - (a) X pertence à reta AB se e somente se existem escalares α e β tais que $\overrightarrow{CX} = \alpha \overrightarrow{CA} + \beta \overrightarrow{CB}$ e $\alpha + \beta = 1$.
 - (b) *X* pertence ao segmento *AB* se e somente se existem escalares α e β tais que $\overrightarrow{CX} = \alpha \overrightarrow{CA} + \beta \overrightarrow{CB}$, $\alpha \ge 0$, $\beta \ge 0$ e $\alpha + \beta = 1$.
 - (c) X é **interior ao segmento** AB (isto é, existe um escalar λ tal que $0 < \lambda < 1$ e $\overrightarrow{AX} = \lambda \overrightarrow{AB}$) se e somente se \overrightarrow{XA} e \overrightarrow{XB} são de sentido contrário.