1. Funções recursivas

A Teoria da Recursão é uma formalização da noção intuitiva de "computável" (e de "algoritmo"). Faremos uma breve introdução ao assunto, ressaltando apenas o necessário para os assuntos tratados neste texto.

Uma função $f: \mathbb{N}^n \to \mathbb{N}$ é uma **função primitiva recursiva** se existir uma seqüência finita de funções $f_i: \mathbb{N}^{n_i} \to \mathbb{N}, \ 1 \le i \le m$, tal que f_m é f e cada f_i satisfaz uma das condições abaixo:

- funções básicas: f_i é Z(x) = 0 (constante igual a zero) ou uma projeção $P_j^n(x_1, \ldots, x_n) = x_j$, ou o sucessor S(x) = x + 1, ou
- composição: existem $j_1, \ldots, j_{k+1} < i$ tais que f_i é a composição $f_{j_{k+1}}(f_{j_1}, \ldots, f_{j_k})$, ou
- recursão primitiva: existem j, k < i e $f_i(x_1, \ldots, x_{n_i})$ é definida por recursão primitiva por $f_i(0, x_2, \ldots, x_{n_i}) = f_j(x_2, \ldots, x_{n_i})$ e para cada $r \ge 0$, $f_i(r+1, x_2, \ldots, x_{n_i}) = f_k(r, f_i(r+1, x_2, \ldots, x_{n_i}), x_2, \ldots, x_{n_i})$.

Uma função $f: A \subseteq \mathbb{N}^n \to \mathbb{N}$ é uma **função recursiva** se existir uma seqüência de funções f_i como acima, satisfazendo também a cláusula

• minimização: existem j, k < i tais que

$$f_i(x_1, \ldots, x_{n_i}) = \mu_z[f_j(z, x_1, \ldots, x_{n_i}) = f_k(z, x_1, \ldots, x_{n_i})],$$

sendo que o lado direito da igualdade significa que o valor de $f_i(x_1, \ldots, x_{n_i})$ é o menor número $z \in \mathbb{N}$ tal que vale a igualdade $f_j(z, x_1, \ldots, x_{n_i}) = f_k(z, x_1, \ldots, x_{n_i})$ e que existem os valores de $f_j(w, x_1, \ldots, x_{n_i})$ e $f_k(w, x_1, \ldots, x_{n_i})$ para todo $w \leq z$.

Uma relação $R \subseteq \mathbb{N}^n$ é respectivamente primitiva recursiva, ou recursiva, se sua função característica $\chi_R(\bar{x}) = 1$ se $\bar{x} \in R$ e $\chi_R(\bar{x}) = 0$ se $\bar{x} \notin R$ for respectivamente primitiva recursiva ou recursiva. Uma relação recursiva também é chamada de **decidível**.

Exemplos importantes de funções primitivas recursivas (preencha os detalhes e justifique as afirmações não óbvias):

1.1.
$$f(a,b) = a + b$$
: $f(a,0) = a$, $f(a,b+1) = S(f(a,b))$;

1.2.
$$f(a,b) = a \cdot b$$
: $f(a,0) = 0$, $f(a,b+1) = f(a,b) + a$;

1.3.
$$f(a,b) = a^b$$
: $f(a,0) = 1$, $f(a,b+1) = a \cdot f(a,b)$;

1.4.
$$f(a) = a!$$
 (fatorial): $f(0) = 1$, $f(a+1) = (a+1) \cdot f(a)$;

- **1.5.** $f(a) = a 1 = \max\{a 1, 0\}$: f(0) = 0, f(a + 1) = a;
- **1.6.** $f(a,b) = a b = \max\{a-b,0\}$: f(a,0) = a, f(a,b+1) = f(a,b) 1;
- **1.7.** f(a,b) = |a-b| (valor absoluto): $f(a,b) = (a\dot{-}b) + (b\dot{-}a)$;
- **1.8.** $f(a,b) = \max\{a,b\}$: f(a,b) = (a-b) + b;
- **1.9.** $f(a,b) = \min\{a,b\}$: $f(a,b) = (a+b) \max\{a,b\}$;
- **1.10.** $f(a) = \operatorname{sg}(a) = \chi_{>0}(a)$ (a função característica dos números estritamente positivos): f(0) = 0, f(a+1) = 1 = S(0);
- **1.11.** $f(a,b) = \chi_{<}(a,b)$: $f(a,b) = \operatorname{sg}(b a)$;
- **1.12.** $f(a,b) = \chi_{<}(a,b)$: $f(a,b) = \chi_{<}(a,S(b))$;
- **1.13.** Seja $g(i, \bar{b})$ primitiva recursiva, $\bar{b} = b_1, \ldots, b_n$; então as funções $f(a, \bar{b}) = \sum_{i=0}^{a} g(i, \bar{b})$ e $h(a, \bar{b}) = \prod_{i=0}^{n} g(i, \bar{b})$ são primitivas recursivas: $f(0, \bar{b}) = h(0, \bar{b}) = g(0, \bar{b})$; $f(a+1, \bar{b}) = f(a, \bar{b}) + g(a, \bar{b})$ e $h(a+1, \bar{b}) = h(a, \bar{b}) \cdot g(a+1, \bar{b})$;

No caso em que a soma ou o produto são contados a partir de i = 1, definimos os casos iniciais como $f(0, \bar{b}) = 0$ e $h(0, \bar{b}) = 1$.

1.14. $f(a,b) = a \div b$:

$$f(a,b) = \operatorname{sg}(b) \cdot \sum_{k=0}^{a} \operatorname{sg}\left(\prod_{j=0}^{k} ((a+1)\dot{-}(j+1)\cdot b)\right).$$

- **1.15.** $f(a,b) = a \mod b$ (resto da divisão de a por b): $f(a,b) = a \dot{-} (a \div b) \cdot b$;
- **1.16.** $f(a,b) = \binom{a}{b}$ (números de combinações de a, b a b, sem repetições): $\binom{a}{b} = \chi_{\leq}(b,a) \cdot \left((a!) \div (b! \cdot (a-b)!)\right)$.
- **1.17.** div $(a, b) = 1 \operatorname{sg}(a \mod b)$ é a função característica da relação b divide a;
- **1.18.** $D(a) = \sum_{i=1}^{a} \operatorname{div}(a, i)$ conta o número de divisores de a;
- **1.19.** $\chi_{\text{primos}}(a) = 1 \text{sg}(|D(a) 2|)$ é a função característica do conjunto dor números primos;
- **1.20.** $\pi(a) = \sum_{i=2}^{a} \chi_{\text{primos}}(i)$ diz o número de primos até a;
- **1.21.** $f(n) = p_n$ (o *n*-ésimo número primo em ordem crescente): para verificar que esta função é primitiva recursiva, precisamos da desigualdade $p_n < F_n = 2^{2^n} + 1$; F_n é chamado do *n*-ésimo número de Fermat; observe que se m divide F_n e F_{n+k} , k > 0, como F_n divide $F_{n+k} 2$

(verifique), m divide 2; portanto m = 1, pois F_n é impar; portanto F_0, \ldots, F_n são primos entre si; portanto existem pelo menos n primos impares (que dividem of F_j) até F_n ; finalmente,

$$f(n) = p_n = \sum_{k=0}^{F_n} \operatorname{sg}\left(\prod_{j=0}^k |n+1-\pi(j)|\right);$$

- **1.22.** f(a,n)=b, sendo que b é o maior expoente do primo p_n tal que p_n^b divide a, se $a\neq 0$, e f(0,n)=0: $f(a,n)=\operatorname{sg}(a)\cdot\sum_{i=1}^a\operatorname{div}(a,p_n^i)$;
- **1.23.** $f(a) = [\sqrt{a}]$ (a parte inteira da raiz quadrada de a): temos $f(a) = \sum_{i=1}^{a} \chi_{\leq}(i^2, a)$;
- 1.24. a função (evidentemente primitiva recursiva)

$$f(m,n) = \frac{(m+n)(m+n+1)}{2} + n;$$

define uma bijeção de \mathbb{N}^2 sobre \mathbb{N} (verifique); sejam $\pi_1(a) = m$ e $\pi_2(a) = n$ as funções tais que $\pi_1(f(m,n)) = m$ e $\pi_2(f(m,n)) = n$; então π_1 e π_2 são primitivas recursivas; por exemplo, $\pi_1(0) = 0$ e

$$\pi_1(a+1) = (\pi_1(a)\dot{-}1) \cdot \mathsf{sg}(\pi_1(a)) + (a+1) \cdot (1 - \mathsf{sg}(\pi_1(a)));$$
 para $\pi_2, \, \pi_2(0) = 0 \, e \, \pi_2(a+1) = (\pi_2(a)+1) \cdot \mathsf{sg}(\pi_1(a)).$

As funções a seguir são primitivas recursivas. Como exercício, verifique e detalhe:

- **1.25.** a função característica da ordem lexicográfica de \mathbb{N}^n (isto é, $(a_1, \ldots, a_n) < (b_1, \ldots, b_n)$ se existir k < n tal que $a_k < b_k$ e $a_i = b_i$, para todo i < k) é primitiva recursiva;
- **1.26.** defina uma relação primitiva recursiva \prec em \mathbb{N}^2 , que represente a ordem lexicográfica em todas as seqüências finitas de números (por exemplo, usando expoentes de primos em fatorações de números);
- **1.27.** $f(m) = m \oplus 1$, o menor elemento n, tal que $m \prec n$ (e $m \neq n$) é primitiva recursiva;

Teorema 1.1. Todas as funções primitivas recursivas de uma variável podem ser obtidas a partir de Z(x) = 0, S(x) = x + 1, Q(x) = x - 1, $\pi_1(x)$ e $\pi_2(x)$ (que calculam a primeira e a segunda coordenadas de uma dupla ordenada codificada por um número x), aplicando as regras f(x) = g(x) + h(x), $f(x) = g(x) \cdot h(x)$, f(x) = g(h(x)) e $f(x) = g^x(0)$, sendo que g(x) e h(x) já tenham sido definidas e $g^x(0)$ é definida por $g^0(0) = 0$, $g^{x+1}(0) = g(g^x(0))$.

Demonstração: Mostraremos como reduzir uma seqüência de funcões primitivas recursivas $f_i: \mathbb{N}^{n_i} \to \mathbb{N}, \ 1 \leq i \leq m$, tal que $n_m = 1$, que constroi a função $f_m(x)$ numa outra que também constroi f(x), mas apenas com funções de uma variável. Isto é feito codificando-se n-uplas de variáveis numa única variável. As funções $\operatorname{sg}(x) = \overline{\operatorname{sg}}(x) = 1 - \operatorname{sg}(x)$ são definidas pela regra de recursão do enunciado, usando-se a função constante 1 e a função x - 1.

Observe que a partir das funções π_1 e π_2 , podemos definir, para cada $n \geq 2$ e $1 \leq p \leq n$, funções $\Pi_p^n(x)$ por $\Pi_1^2 = \pi_1$, $\Pi_2^2 = \pi_2$, e, supondo definidas Π_p^n , para todo p, $1 \leq p \leq n$, e $n \geq 2$, definimos Π_q^{n+1} , $1 \leq q \leq n+1$, como $\Pi_1^{n+1} = \pi_1$ e $\Pi_{q+1}^{n+1} = \Pi_q^n \circ \pi_2$, $1 \leq q \leq n$. Ou seja, olhamos um número x como codificando um par ordenado, cuja segunda coordenada codifica uma n-1 upla. Observe que as funções $\Pi_p^n(x)$ são obtidas de π_1 e π_2 usando apenas composições. Para definir cada $\Pi_p^n(x)$, precisamos de uma seqüência de n composições.

Usando composições, somas e produtos, para cada par de funções u(x) e v(x), podemos construir a função

$$w(x) = W(u(x), v(x)) = \frac{(u(x) + v(x)) \cdot (u(x) + v(x) + 1)}{2} + v(x)$$

Sem perda de generalidade, assumiremos que isto define uma regra básica de construção deste teorema. e denotaremos $W(u, v) = \langle u, v \rangle$, e (indutivamente) denotamos $\langle u_1, \ldots, u_n \rangle = \langle u_1, \langle u_2, \ldots, u_n \rangle \rangle$, e observamos que sua construção pode ser feita em n-1 passos, a partir das funções u_i e a regra W.

Sejam f_1, \ldots, f_n funções primitivas recursivas, tais que descrevem a construção de uma função f_n unária. Vamos construir uma seqüência de funções unárias g_1, \ldots, g_m , respeitando as regras do enunciado do teorema e tal que $g_m = f_n$.

Suponha que já tenhamos tratado de f_i , $i < j \le n$, e tenhamos obtido a seqüência g_k , k < l.

Se f_j for Z(x) ou S(x), definimos $g_l = f_j$, chamamos $g_l = f_j^*$, e passamos a tratar o caso j + 1.

Se f_j for $P_p^n(x_1, \ldots, x_n) = x_p$, com $n \ge 2$ e $1 \le p \le n$, sejam g_l , \ldots , g_{l+n-1} a seqüência de composições definindo $g_{l+n-1} = \prod_p^n = f_j^*$, e passamos a tratar o caso j+1.

Se existem a, b < j, tal que f_j é a composição $f_a(f_b)$, então $g_l = f_a^*(f_b^*)$, e passamos a tratar o caso j + 1.

Se existem $j_1, ..., j_{a+1} < j$, $a \ge 1$, tais que f_j é a composição $f_{j_{a+1}}(f_{j_1}, ..., f_{j_a})$, sejam $g_l = \langle f_{j_a-1}^*, f_{j_a}^* \rangle$, $g_{l+1} = \langle f_{j_a-2}^*, g_l \rangle$, ..., $g_{l+a-1} = \langle f_{j_1}, g_{l+a-2} \rangle$, e $g_{l+a} = f_j^*(g_{l+a-1})$, e passamos a tratar o caso j+1.

Se existem a,b < j e $f_j(x_1, \ldots, x_n)$ é definida por recursão primitiva por $f_j(0,x_2, \ldots, x_n) = f_a(x_2, \ldots, x_n)$ e para cada $r \ge 0$, $f_j(r+1,x_2,\ldots,x_n) = f_b(r,f_j(r,x_2,\ldots,x_n),x_2,\ldots,x_n)$, então sejam $G_0(x) = \overline{\operatorname{sg}}(\Pi_1^{n+1}(x)) \cdot f_a^*(\langle \Pi_3^{n+1}(x),\ldots,\Pi_{n+1}^{n+1}(x) \rangle) + \operatorname{sg}(x) \cdot f_b^*(\langle \Pi_1^{n+1}(x) \dot{-}1,\Pi_2^{n+1}(x),\ldots,\Pi_{n+1}^{n+1}(x) \rangle)$, $\beta(x) = \langle \Pi_1^{n+1}(x+1), G_0(x), \Pi_3^{n+1}(x),\ldots,\Pi_{n+1}^{n+1}(x) \rangle$, e $\varphi(x)$ definida por $\varphi(0) = 0$ e $\varphi(n+1) = \beta^n(0)$, e, por fim, $f_j^*(x) = \Pi_2^{n+1}(\varphi(x\dot{-}1))$.

Exemplos de funções recursivas que não são primitivas recursivas.

1.28. (A função de Ackermann) f(0,y)=y+1, f(x+1,0)=f(x,1), f(x+1,y+1)=f(x,f(x+1,y)). Para mostrarmos que é recursiva, sejam

$$f_0(x, y, z, v) = \operatorname{div}(v, p_{2^x \cdot 3^y \cdot 5^z}),$$

$$f_1(x, y, z, v) = (1 - \operatorname{sg}(x)) \cdot (1 - \operatorname{sg}(|y + 1 - z|) \cdot f_0(0, y, z, v) +$$

$$+ \operatorname{sg}(x) \cdot (1 - \operatorname{sg}(y)) \cdot f_0(x - 1, y, z, v) \cdot f_0(x, y, z, v) +$$

$$+ \operatorname{sg}(x) \cdot \operatorname{sg}(y) \cdot \operatorname{sg}\left(\sum_{u=0}^z f_0(x, y - 1, u, v) \cdot f_0(x - 1, u, z, v)\right),$$

$$f_2(x, y, v) = \operatorname{sg}\left(\sum_{z=0}^v f_1(x, y, z, v)\right)$$

(que vale 1 se existir $z \leq v$, tal que $f_1(x, y, z, v) = 1$, e 0, caso contrário),

$$f_3(x,y) = \mu_v(f_2(x,y,v) = 1)$$

e, finalmente,

$$f(x,y) = \mu_z(f_1(x,y,z,f_3(x,y)) = 1).$$

Agora veremos que f(x,y) não é primitiva recursiva. Observe que f(x,y) > y, f(x,y+1) > f(x,y), f(x+1,y) > f(x,y) e $f(x+1,y+1) \ge f(x,y+2)$, para todo x e y (verifique).

Teorema 1.2. A função de Ackermann não é primitiva recursiva.

Demonstração: Se f(x, y) é a função de Ackermann, mostraremos que para toda função primitiva recursiva g(x) de uma variável, existe y tal que g(x) < f(y, x), para todo x. Com isto, se f(y, x) fosse primitiva

recursiva, h(x) = f(x, x) também o seria, donde existiria y, tal que h(x) < f(y, x); em particular, f(y, y) = h(y) < f(y, y), absurdo.

Observe que f(0,n) = n+1, f(1,n) = n+3, f(2,n) = 3n+3, $f(3,n) = 6 \cdot 3^n + 3$. Então y = 3 garante que se g(x) á uma das funções básicas Z(x), S(x), Q(x), $\pi_1(x)$, $\pi_2(x)$ é majorada por f(3,x).

As regras de soma e produto de funções são facilmente majoradas. Por exemplo, se g(x) < f(y,x) e h(x) < f(z,x), como f é crescente nas duas variáveis, tomando o máximo entre y e z, podemos supor que y = z. Daí, $g(x) \cdot h(x) < f(y,x)^2 < f(3,f(y,x)) < f(y+3,x)$.

Se g(x) é definida por $g(0)=0,\ g(x+1)=\beta^x(0)$ e $\beta(x)< f(y,x),$ então $g(x+1)=\beta(g(x))< f(y,g(x));$ vamos mostrar que g(x)< f(y+1,x), por indução em x; para x=0, temos que para todo z,g(0)=0< f(z,0); portanto g(0)< f(y+1,0). suponha que g(x)< f(y+1,x). Então g(x+1)< f(y,g(x))< f(y,f(y+1,x))=f(y+1,x+1). Com isto, provamos o teorema.

Exercício 1.1. Mostre que a função de Ackermann também majoriza as funções primitivas recursivas de várias variáveis. Ou seja, mostre que se $g(x_1, \ldots, x_n)$ é primitiva recursiva, então existe y, tal que

$$g(x_1, \ldots, x_n) < f(y, \max(x_1, \ldots, x_n)).$$

1.29. Uma enumeração recursiva das funções primitivas recursivas. Vamos definir uma função recursiva F(m,n) que enumera todas as funções primitivas recursivas de uma variável (com infinitas repetições), ou seja, $F(m,n)=f_m(n)$ é primitiva recursiva, e se g(n) for primitiva recursiva, existe pelo menos um número $m \in \mathbb{N}$, tal que F(m,n)=g(n). Para mostrar que F não pode ser primitiva recursiva, suponha que seja. Então F(n,n)+1=g(n) é primitiva recursiva e, portanto, existe m, tal que F(m,n)=g(n). Calculando em m, temos F(m,m)+1=g(m)=F(m,m), o que é absurdo. (Este método de listar os valores $F(m,m)=f_m(m)$ e alterar o valor para obter nova função g(m)=F(m,m)+1 é chamado de **diagonalização**, e está no centro dos argumentos de incompletude e de indecidibilidade.

Eis a função:

$$F(m,n) = \begin{cases} 0 & \text{se} \quad m = 9a, \ a \in \mathbb{N} \\ S(n) & \text{se} \quad m = 9a+1, \ a \in \mathbb{N} \\ n-1 & \text{se} \quad m = 9a+2, \ a \in \mathbb{N} \\ \pi_1(n) & \text{se} \quad m = 9a+3, \ a \in \mathbb{N} \\ \pi_2(n) & \text{se} \quad m = 9a+4, \ a \in \mathbb{N} \\ F(\pi_1(a,n)) + F(\pi_2(a)) & \text{se} \quad m = 9a+5, \ a \in \mathbb{N} \\ F(\pi_1(a), F(\pi_2(a))) & \text{se} \quad m = 9a+6, \ a \in \mathbb{N} \\ F(\pi_1(a), F(\pi_2(a), n)) & \text{se} \quad m = 9a+7, \ a \in \mathbb{N} \\ g^n(0) & \text{se} \quad m = 9a+8, \ a \in \mathbb{N}, \ e \ g(x) = F(a,x) \end{cases}$$
 Exercício 1.2. Mostre que $F(m,n)$ é recursiva. (Imite a prova para a função de Ackermann.)

Exercício 1.2. Mostre que F(m,n) é recursiva. (Imite a prova para a função de Ackermann.)

Lema 1.1. A função F(m,n) enumera todas as funções primitivas recursivas de uma variável.

Demonstração: Vimos que as funções primitivas recursivas de uma variável são obtidas a partir das funções Z(x), S(x), Q(x) = x-1, $\pi_1(x), \pi_2(x)$, usando as regras $f(x)+g(x), f(x)\cdot g(x), f(g(x))$ e f(x)= $\beta^x(0)$.

Obviamente, as funções Z(x), S(x), $Q(x) = \dot{x-1}$, $\pi_1(x)$, $\pi_2(x)$ são enumeradas. Suponha, por indução, que $f(n) = f_m(n)$ e $g(n) = f_p(n)$. Então $f(n)+g(n)=F(9\cdot\langle m,p\rangle+5,n), f(n)\cdot g(n)=F(9\cdot\langle m,p\rangle+6,n),$ $f(q(n)) = F(9 \cdot \langle m, p \rangle + 7, n), e h(n) = f^{n}(0) = F(9 \cdot m + 8, n).$

Exercício 1.3. Mostre que se G(m,n) é recursiva e $g_m(n) = G(m,n)$ é uma sequência de funções "enumeradas" por G, então existe uma função recursiva h(n) que não é enumerada por G. (Use o método de diagonalização.) Conclua que não existe enumeração recursiva de todas as funções recursivas $f: \mathbb{N} \to \mathbb{N}$.

Para perceber o que está dito no exercício acima, estendemos a noção de função recursiva para $f:A\to\mathbb{N}$ é recursiva parcial, $A\subseteq\mathbb{N}^k$, se é obtida pelas funções iniciais e regras de recursão primitiva e de minimização, $f(x,y) = \mu_z[g(x,y,z) = h(x,y,z)]$, só que agora sem restringirmos a minimização à existência de solução em z de g(x, y, z) =h(x,y,z), para todo x e y. Com isto, podem existir x e y, tais que $g(x,y,z) \neq h(x,y,z)$ sempre. Neste caso, $A = \{(x,y) : \text{existe } z, \text{ tal } \}$ que g(x, y, z) = h(x, y, z) é o domínio de f.

Exercício 1.4. Mostre que existe uma função recursiva H(m,n), definida para todo $m \in \mathbb{N}$, mas nem todos $n \in \mathbb{N}$, tal que enumera todas as funções recursivas parciais de uma variável.

Exercício 1.5. O problema da parada. Este problema pergunta se podemos decidir se, dado $m \in \mathbb{N}$, a função $f_m(n) = H(m,n)$ está definida para todo $n \in \mathbb{N}$. Isto é mais sensível na regra de minimização, em que, dados $x, y \in \mathbb{N}$, precisaríamos decidir se existe $z \in \mathbb{N}$, tal que f(x, y, z) = g(x, y, z), para f e g recursivas. Essencialmente, parguntamos se a busca por tal z, partindo de $z_0 = 0$ e testando para cada $z_{n+1} = S(z_n)$ até que encontremos o número z que resolva a equação, pára. Usando a função H acima, mostre que o conjunto $R = \{m \in \mathbb{N}: \text{para todo } n \in \mathbb{N}, H(m,n) \text{ está definida} \}$ não é recursivo.

Um conjunto $A \subseteq \mathbb{N}$ é **recursivamente enumerável** se existe uma função recursiva $f: \mathbb{N} \to \mathbb{N}$, tal que A é a imagem de f. Um conjunto $A \subseteq \mathbb{N}^k$ é recursivamente enumerável se existem funções recursivas $f_i: \mathbb{N} \to \mathbb{N}, i = 1, ..., k$, tal que $A = \{(a_1, ..., a_k) \in \mathbb{N}^k : a_1 = f_1(n), ..., a_k = f_k(n), \text{ para algum } n \in \mathbb{N}\}.$

Exercício 1.6. Mostre que se A é recursivo, então é recursivamente enumerável

Exercício 1.7. Seja $A \subset \mathbb{N}^2$ o gráfico de uma função recursiva $f: \mathbb{N} \to \mathbb{N}$. Mostre que A é um conjunto primitivo recursivo. (Faça isto por indução na construção de f.

Exercício 1.8. Mostre que um conjunto $R \subseteq \mathbb{N}^k$ é recursivamente enumerável se, e só se, for o domínio de uma função recursiva (total ou parcial).

2. Aritmetização da linguagem

Seja \mathbb{N} o conjunto dos números inteiros não negativos. Definimos as funções $v, c : \mathbb{N} \to \mathbb{N}$, $r, f : \mathbb{N}^2 \to \mathbb{N}$, denotando $v(n) = v_n$, $c(n) = c_n$, $r(m, n) = r_{n,m}$ e $f(m, n) = f_{n,m}$, por

$$v_n = 8n + 25, \ c_n = 8n + 3, \ r_{n,m} = 8\left(\frac{(n+m)(n+m+1)}{2} + m\right) + 5,$$

$$f_{n,m} = 8\left(\frac{(n+m)(n+m+1)}{2} + m\right) + 7.$$

Exercício 2.1. Mostre que estas funções são primitivas recursivas e que suas imagens são disjuntas.

A intenção desta definição é enumerar "códigos" para variáveis, símbolos de constantes, símbolos de relações e de funções n-árias, respectivamente. Mais precisamente, dada uma linguagem (cuja assinatura seja finita ou infinita enumerável) L, uma aritmetização de L é uma tripla de funções injetoras (Φ_C , Φ_R , Φ_F), tal que Φ_C (respectivamente, Φ_R e Φ_F) associa a cada símbolo de constante (respectivamente, relação, função n+1-ária) um número da forma c_n (respectivamente, $r_{n,m}$, $f_{n,m}$).

Seja p_n , $n \in \mathbb{N}$ a enumeração (primitiva recursiva) de todos os números primos em ordem crescente, com $p_0 = 2$.

Definimos as funções $\neg: a \in \mathbb{N} \mapsto \neg a = 2^1 \cdot 3^a \in \mathbb{N}, \rightarrow: (a,b) \in \mathbb{N}^2 \mapsto a \to b = 2^9 \cdot 3^a \cdot 5^b \in \mathbb{N}, e \; \forall : (a,b) \in \mathbb{N}^2 \mapsto \forall a \, b = 2^{17} \cdot 3^a \cdot 5^b.$ Dados $a,b_0,\ldots,b_n \in \mathbb{N}, \, a[b_0,\ldots,b_n]$ denota o número $p_0^a \cdot p_1^{b_0} \cdot \cdots \cdot p_{n+1}^{b_n}$.

Seja $K \subseteq \mathbb{N}$ um conjunto finito, contendo $r_{1,0}$ e apenas números da forma c_n , $r_{n,m}$, ou $f_{n,m}$. Tal K representa a assinatura de alguma linguagem L.

Definimos o conjunto Tr_K (dos termos de L) por: se $c_n \in K$, $c_n \in Tr$; $v_n \in Tr$, $n \in \mathbb{N}$; se $b_0, ..., b_n \in Tr$ e $f_{n,m} \in K$, $f_{n,m}[b_0, ..., b_n] \in Tr$.

Definimos o conjunto At_K (das fórmulas atômicas) como o conjunto dos números da forma $r_{n,m}[t_0, \ldots, t_n]$ e para todo $r_{n,m} \in K$ e $t_0, \ldots, t_n \in Tr_K$.

Definimos o conjunto Fla_K (das fórmulas) como o menor conjunto contendo At_K e fechado por $a \to b, \neg a$ e $\forall a \, b$.

Exercício 2.2. Mostre que os conjuntos Tr_K , At_K e Fla_K são primitivos recursivos. Exiba uma enumeração recursiva de cada um destes conjuntos.

Uma **teoria** numa liguagem L (ou L-teoria) é um conjunto consistente T de sentenças de L. A teoria T é uma **teoria completa** se para cada sentença ϕ , ou $T \vdash \phi$ ou $T \vdash \neg \phi$ (mas não ambas, devido à consistência).

2.1. Dada uma estrutura M, a teoria $T(M) = \{\phi : M \models \phi\}$ é uma teoria completa.

Uma teoria T é (recursivamente) axiomatizável se existir um conjunto de sentenças Σ finito ou recursivo (os axiomas de T), tal que $\Sigma \vdash \phi$ se, e só se, $T \vdash \phi$.

Agora vamos fixar uma linguagem $L = \{0, +, \cdot, S(\cdot), \leq\}$ e a L-estrutura $\mathbb N$ dos números naturais com a interpretação usual dos símbolos de L e as teorias Q e PA descritas a seguir. Usando a aritmetização acima, "0" é $c_0 = 3$, "+" é $f_{1,0} = 15$, · é $f_{1,1} = 39$, S é $f_{0,0} = 7$, "=" é $r_{1,0} = 13$ e " \leq " é $r_{1,1} = 29$.

- **2.2.** A Teoria Q de R. M. Robinson. É axiomatizada pelo conjunto das oito sentenças:
 - (Q1) $S(x) \neq 0$

$$(Q2) S(x) = S(y) \to x = y$$

(Q3)
$$x \neq 0 \rightarrow \exists y (x = S(y))$$

(Q4)
$$x + 0 = x$$

$$(Q5) x + S(y) = S(x+y)$$

(Q6)
$$x \cdot 0 = 0$$

$$(Q7) x \cdot S(y) = (x \cdot y) + x$$

(Q8)
$$x < y \iff \exists z(z + x = y)$$

2.3. A Aritmética de Peano. PA é a teoria contendo as sentenças (Q1) a (Q8) da aritmética de Robinson e o esquema de axiomas de indução para fórmulas φ com variáveis livres x_0, \ldots, x_n

$$(\operatorname{Ind}(\varphi)) \, \forall x_1 \dots \forall x_n \, [\varphi(0) \to (\forall x_0 (\varphi(x_0) \to \varphi(S(x_0))) \to \forall x_0 \, \varphi(x_0))].$$

Uma fórmula φ é dita limitada se todas as quantificações que aparecem nela são da forma $\forall x(x \leq t \to \theta)$ ou $\exists x(x \leq t \land \theta)$, sendo que t é um termo em que a variável x não ocorre. O conjunto das fórmulas limitadas é denotado por Δ_0 (e, às vezes por Π_0 ou Σ_0). Definimos os conjuntos de fórmulas Σ_n , Π_n e Δ_n , por $\phi \in \Sigma_{n+1}$ (respectivamente, Π_{n+1}) se existir uma fórmula $\psi \in \Pi_n$ (respectivamente, Σ_n), tal que ϕ é lógicamente equivalente a $\exists x_1 \ldots \exists x_n \psi$ ((respectivamente, $\forall x_1 \ldots \forall x_n \psi$). Definimos $\Delta_n = \Sigma_n \cap \Pi_n$.

- **2.4. Fragmentos da Aritmética de Peano.** Restringindo o esquema de indução a certos conjuntos de fórmulas, obtemos fragmentos importantes de PA:
 - (IO) Indução aberta: φ em (Ind (φ)) não tem quantificadores.
- $(I\Delta_0)$ Indução limitada (também chamado de Aritmética Primitiva Recursiva): $\varphi \in \Delta_0$ em $(Ind(\varphi))$

```
(\mathrm{I}\Sigma_n) \ \varphi \in \Sigma_n \ \mathrm{em} \ (\mathrm{Ind}(\varphi)).
```

$$(\Pi_n) \varphi \in \Pi_n \text{ em } (\operatorname{Ind}(\varphi)).$$

Exercício 2.3. Seja Γ um destes conjuntos de axiomas para fragmentos da aritmética, já codificados como conjunto de números. Mostre que Γ é primitivo recursivo.

Dada uma teoria $T \subseteq T(\mathbb{N})$, e uma função $f: A \subseteq \mathbb{N}^n \to \mathbb{N}$, dizemos que f é **representável** em T se existe uma fórmula $\phi_f(x_1, \ldots, x_n, y)$, tal que as variáveis x_1, \ldots, x_n e y ocorrem livres em ϕ_f , e para cada $\bar{a} \in \mathbb{N}^n$ e $b \in \mathbb{N}$, $f(\bar{a}) = b$ se, e só se, $T \vdash \phi_f(\tilde{a}, \tilde{b})$ (sendo \tilde{n} o termo $(1 + (1 + \cdots + 1) \ldots))$ em que 1 aparece n vezes, para cada $n \in \mathbb{N}$), e $T \vdash \exists ! y \phi_f(\bar{a}, y)$. Uma relação $P \subseteq \mathbb{N}^n$ é **expressível** em T se existir uma fórmula $\phi_P(\bar{x})$ tal que para todo $\bar{a} \in \mathbb{N}^n$, se $\bar{a} \in P$, $T \vdash \phi_P(\tilde{a})$ e se $\bar{a} \notin P$, $T \vdash \phi_P(\tilde{a})$. Uma relação $P \subseteq \mathbb{N}^n$ é **fracamente expressível** em T se existir uma fórmula $\phi_P(\bar{x})$ tal que para todo $\bar{a} \in \mathbb{N}^n$, se $\bar{a} \in P$, $T \vdash \phi_P(\tilde{a})$ e se $\bar{a} \notin P$, $T \not\vdash \phi_P(\tilde{a})$. Uma relação $P \subseteq \mathbb{N}^n$ é **definível** em \mathbb{N} se existir uma fórmula $\phi_P(\bar{x})$ tal que para todo $\bar{a} \in \mathbb{N}^n$, $\bar{a} \in P$ se, e só se, $\mathbb{N} \models \phi_P(\bar{a})$.

Para cada $n \in \mathbb{N}$, definimos o termo \bar{n} como $\bar{0} = 0$, $\overline{n+1} = S(\bar{n})$.

Lema 2.1. A teoria Q prova as seguintes fórmulas:

```
(1) x + y = \bar{0} \rightarrow (x = \bar{0} \land y = \bar{0})
(2) x \cdot y = \bar{0} \rightarrow (x = \bar{0} \lor y = \bar{0})
(3) x + \bar{1} = S(x)
(4) \bar{0} \le x
(5) S(x) \le \overline{n+1} \rightarrow \underline{x} \le \bar{n}
(6) S(x) + \bar{n} = x + \overline{n+1}
(7) \bar{n} \le x \rightarrow (x = \bar{n} \lor \overline{n+1} \le x)
(8) \bar{m} + \bar{n} = \overline{m+n}
(9) \bar{m} \cdot \bar{n} = \overline{m} \cdot \bar{n}
(10) \bar{m} \ne \bar{n}, \text{ se } m \ne n, m, n \in \mathbb{N}
(11) x \le \bar{n} \iff (x = \bar{0} \lor x = \bar{1} \lor \cdots \lor x = \bar{n})
(12) x \le \bar{n} \lor \bar{n} \le x
```

Demonstração: Vamos mostrar os itens (1), (5) a (8), (10) e (11), deixando os outros como exercício.

(1) Se
$$y \neq \bar{0}$$
, por (Q3), $Y = S(z)$, para algum z; por (Q4) e (Q1), $x + y = x + S(z) = S(x + z) \neq \bar{0}$.

- (5) Usando (3), (Q8) e (Q5), temos $z+S(x)=\overline{n+1}$, então $S(z+x)=S(\bar{n})$, donde, por (Q2), $x+z=\bar{n}$.
- (6) Vamos provar por indução em n. Para n=0, por Q4 <u>e (3)</u>, $S(x)+\bar{0}=S(x)=x+\bar{1}$. Supnha que Q prova $S(x)+\bar{n}=x+\bar{n}+1$. Então $S(x)+\bar{n}+1=S(x)+S(\bar{n})=S((S(x)+\bar{n})=S(x+\bar{n}+1)=x+S(\bar{n}+1)=x+\bar{n}+2$.
- (7) Suponha que $\bar{n} \leq x$, mas que $x \neq \bar{n}$. Seja z, tal que $z + \bar{n} = x$. Então $z \neq \bar{0}$, pois $\bar{0} + \bar{n} = \bar{n}$ (verifique). Portanto z = S(y), donde, por (6), $z + \bar{n} = y + \overline{n+1} = x$, donde segue que $\overline{n+1} \leq x$.
- (8) Vamos provar por indução em n. Para n=0, por (Q3), $\bar{m}+\bar{0}=\bar{m}$. Suponha que Q prove que $\bar{m}+\bar{n}=\overline{m+n}$. Então, por (Q5), $\bar{m}+\bar{n}+1=\bar{m}+S(\bar{n})=S(\bar{m}+\bar{n})=S(\overline{m+n})=\overline{m+n+1}$.
- (10) Suponha que n < m. Se n = 0 e m = 1, por (Q1), $\bar{1} = s(\bar{0}) \neq \bar{0}$. Suponha que Q prove que $\bar{n} \neq \bar{m}$, para todo n < m. Então seja n < m+1. Se n = 0, novamente (Q1) resolve. Se $n = n_0+1$, por hipótese de indução, Q prova $\bar{n}_0 \neq \bar{m}$, logo, por (Q2), $S(\bar{n}_0) = \bar{n} \neq S(\bar{m}) = \bar{m} + \bar{1}$.
- (11) Se $x=\bar{k}$, para algum $k=0,\ldots,n$, então $\overline{n-k}+x=\bar{n}$, donde segue por (Q8) que $x\leq\bar{n}$. A recíproca demonstramos por indução em n. Se n=0, se $z+x\leq\bar{0}$, por (1), segue que $x=\bar{0}$. Suponha que Q prove $x\leq\bar{n}\iff (x=\bar{0}\vee x=\bar{1}\vee\cdots\vee x=\bar{n})$. Se $x\leq \overline{n+1}$, se $x=\bar{0}$, então vale a conclusão $(x=\bar{0}\vee x=\bar{1}\vee\cdots\vee x=\bar{n}+1)$. Se $x\neq\bar{0}$, por (Q3), existe y, tal que x=S(y). Então a hipótese $x\leq \overline{n+1}$ pode ser escrita como $S(y)\leq S(\bar{n})$, ou seja, existe z, tal que $z+S(y)=S(z+y)=S(\bar{n})$, donde segue que $y\leq\bar{n}$. Por hipótese de indução, temos $(y=\bar{0}\vee y=\bar{1}\vee\cdots\vee y=\bar{n})$. Daí, substituindo x=S(y), temos o desejado.
- Exercício 2.4. A função beta de Gödel. Seja $\beta(x, y, z) = \operatorname{rm}(x, 1 + z(y+1))$, o resto da divisão de x por 1 + zy. Mostre que esta função é primitiva recursiva e que é representável em Q (e, portanto em PA), por uma fórmula Δ_1 .
- Exercício 2.5. O algoritmo de Euclides. Sejam $a, b \in \mathbb{N}$ não nulos. Para calcularmos o máximo divisor comum (mdc) de a e b, usamos o algoritmo de Euclides (que é demonstrado no livro VII dos Elementos.) Podemos supor que 0 < a < b. Divida b por a, obtendo quociente q_0 e resto r_0 , $0 \le r < a$. Se o resto não é zero, divida q_0 por r_0 , obtendo quociente q_1 e reste r_1 . Continue o processo, obtendo quocientes $q_{k+n} = r_k$ e resto r_{k+1} , até que $r_n = 0$, para algum n. Se $r_{n-1} \ne 0$ e $r_n = 0$,

então $r+_{n-1}$ é o máximo divisor comum de a e b. (Prove isto.) Conclua também que existem $c, d \in \mathbb{Z}$, tais que $c \cdot a + d \cdot b$ é o mdc de a e b.

Teorema 2.1. (Teorema Chinês dos Restos) Sejam $k_1, \ldots, k_n \in \mathbb{N}$ números dois a dois primos entre si, $m_1, \ldots, m_n \in \mathbb{N}$, tais que, para cada $i = 1, \ldots, n$, m_i e k_i são primos entre si, e $a_1, \ldots, a_n \in \mathbb{N}$ quaisquer. Então existe $a \in \mathbb{N}$, tal que, para todo $i = 1, \ldots, n$, $m_i \cdot a \equiv a_i \mod k_i$.

Demonstração: Provaremos por indução em n. Para evitar trivialidades, podemos supor que $k_i > 1$, $i = 1, \ldots, n$.

Para n=1, temos que resolver a congruência $m_1 \cdot x \equiv a_1 \mod k_1$. Como m_1 e k_1 são primos entre si, existem $c,d \in \mathbb{Z}$, tais que $c \cdot m_1 + d \cdot k_1 = 1$. Somando-se um múltiplo positivo de k_1 a c, se c < 0, podemos supor que c > 0, donde segue que $c \cdot m_1 \equiv 1 \mod k_1$. Daí, se $x = c \cdot a_1$, temos que $m_1 \cdot c \cdot a_1 \equiv a_1 \mod k_1$. E mais, todas as soluções da congruência são da forma $x = c \cdot a_1 + t \cdot k_1$, $t \in \mathbb{N}$.

Suponha que todo sistema de n-1 congruência s tenha solução e consideremos o sistema $m_i \cdot x \equiv a_i \mod k_i, i=1,\ldots,n$, satisfazendo as hipóteses. Seja $x=c\cdot a_1+tk_1$ uma solução da primeira congruência, com o número t a ser determinado. Substituindo nas outras congruência s, temos $(m_i \cdot k_1)t \equiv a_i' \mod k_i, i=2,\ldots,n$, sendo que $a_i' \equiv -c \cdot a_1 \mod k_1$ é um número positivo (explique como obtê-lo). Pelas hipóteses sobre os coeficientes m_i e k_i , $i=1,\ldots,n$, o mdc entre k_i e $(m_i \cdot k_1)$ é 1, portanto, por hipótese de indução existe solução a' para este novo sistema (na variável t), o que nos dá uma solução a para o sistema original.

Teorema 2.2. Seja $\beta(x, y, z) = \operatorname{rm}(x, 1 + z(y + 1))$ a função beta de Gödel. Então, dados $n \geq 0$ e $a_0, \ldots, a_{n-1} \in \mathbb{N}$, existem $b, c \in \mathbb{N}$, tais que $\beta(b, 0, c) = n$ e $\beta(b, j + 1, c) = a_j$, $0 \leq j < n$.

Demonstração: Seja $N = \max\{n+1, a_0, \ldots, a_{n-1}\}$, e c = N!. Então, se $0 \le j < i \le n$, $1+j\cdot c$ e $1+i\cdot c$ são primos entre si, pois se r>0 divide ambos, então divide a diferença de ambos, $(i-j)\cdot N!$. Pela escolha de N, (i-j) < N, donde segue que r divide N!. Portanto r divide $(1+j\cdot N!)-j\cdot N!=1$. Pelo teorema chinês dos restos, seja b

uma solução do sistema

$$\begin{cases} x \equiv n & \mod 1 + N! \\ x \equiv a_0 & \mod 1 + 2 \cdot N! \\ \vdots & \vdots & \vdots & \vdots \\ x \equiv a_{n-1} & \mod 1 + n \cdot N! \end{cases}$$

Com isto, provamos o teorema.

Nos exemplos e exercícios a seguir, $T \subseteq T(\mathbb{N})$ é uma teoria recursivamente axiomatizável e contendo Q, numa linguagem contendo uma quantidade finita de símbolos não lógicos. (Lembre-se que os símbolos, termos e fórmular da linguagem são números inteiros.)

2.5. Lembre-se de que uma dedução de ϕ a partir de T é uma seqüência de fórmulas ϕ_0, \ldots, ϕ_n , tais que, ϕ_n é ϕ , e para cada $i \leq n$, ou $\phi_i \in T$, ou ϕ_i é um axioma lógico, ou existem j, k < i, tais que ϕ_k é a fórmulas $\phi_j \to \phi_i$ (regra do destacamento, ou $Modus\ Ponens$), ou existe j < i e variável x, tais que ϕ_i é a fórmula $\forall x \phi_j$ (regra da generalização). Descreva uma função primitiva recursiva $\Delta(x)$, tal que $\Delta(x) = 1$ se $x = \langle n, \phi_0, \ldots, \phi_n \rangle$, sendo que ϕ_0, \ldots, ϕ_n é uma dedução a partir de T, $\langle a_0, \ldots, a_k \rangle$ é definido por $\langle a_0, a_1 \rangle = (a_0 + a_1) \cdot (a_0 + a_1 + 1)/2 + a_1$ (a função primitiva recursiva que define uma bijeção de \mathbb{N}^2 sobre \mathbb{N}), $\langle a_0, \ldots, a_k \rangle = \langle a_0, \langle a_1, \ldots, a_k \rangle \rangle$, se k > 1, e $\Delta(x) = 0$, caso contrário.

Lema 2.2. Se f é uma função recursiva, então ela é representável em T por uma fórmula Δ_1 .

Demonstração: Para vermos isto, se f(x) = 0, $\phi_f(x, y)$ é $x = x \land y = 0$; se f(x) = S(x), $\phi_f(x, y)$ é y = S(x), que são fórmulas Δ_1 .

Se $g(x_1,\ldots,x_n)$ é representável por ϕ_g e $h_j(x_1,\ldots,x_k)$ são representáveis por (fórmulas Δ_1) $\phi_{h_j},\ j=1,\ldots,n$, então $f(x_1,\ldots,x_k)=g(h_1(x_1,\ldots,x_k),\ldots,h_n(x_1,\ldots,x_k))$ é representável por $\exists z_1,\ldots,\exists z_n[\phi_f(z_1,\ldots,z_n,y)\land \bigwedge_{j=1}^n\phi_{h_j}(x_1,\ldots,x_k,z_j)]$, que é uma fórmula Σ_1 , e também por $\forall z_1,\ldots,\forall z_n[\bigwedge_{j=1}^n\phi_{h_j}(x_1,\ldots,x_k,z_j)\rightarrow \phi_f(z_1,\ldots,z_n,y)]$, que é uma órmula Π_1 .

Se $f(x_0, \bar{x}), \bar{x} = (x_1, \dots, x_n)$, é definida por $f(0, \bar{x}) = g_0(\bar{x})$, e $f(m+1, \bar{x}) = g_1(m, \bar{x}, f(n, \bar{x}))$, g_i é representada por (fórmulas Δ_1) ϕ_{g_i} , i = 0, 1, e a função $\beta(x_1, x_2, x_3)$ de Gödel é representada por (uma fórmula Δ_1) $\phi_{\beta}(x_1, x_2, x_3, y)$, então f é representada por $\exists z_1, \dots, \exists z_5 [\phi_{\beta}(z_1, x_2, x_3) \land \phi_{g_0}(\bar{x}, z_3) \land \forall z_6 < x_0(\phi_{\beta}(z_1, z_6, z_2, z_4) \land \phi_{\beta}(z_1, S(z_6), z_2, z_5) \land \phi_{g_1}(z_6, \bar{x}, z_4, z_5)) \land \phi_{\beta}(z_1, x_0, z_2, y)]$, e também por $\forall z_1, \dots, \forall z_5, [\phi_{\beta}(z_1, 0, z_2, z_3) \land \phi_{g_0}(\bar{x}, z_3) \land \forall z_6 < x_0\phi_{\beta}(z_1, z_6, z_2, z_4) \land \phi_{\beta}(z_1, S(z_6), z_2, z_5) \land \phi_{g_1}(z_6, \bar{x}, z_4, z_5)) \rightarrow \phi_{\beta}(z_1, x_0, z_2, y)]$.

Finalmente, para o caso da minimização, o tratamento é análogo ao da recursão primitiva, e fica como exercício para as(os) leitoras(es).

Exercício 2.6. Mostre que f é representável em T se, e só se, f é recursiva. (Use a função beta para codificar a recursão primitiva e a função Δ para buscar demonstrações a partir de T.)

Conclua que uma relação P é (fracamente) expressível em T se, e só se, P é recursiva (respectivamente, recursivamente enumerável).

Teorema 2.3. Seja ϕ uma sentença Σ_1 na linguagem da teoria Q, tal que $\mathbb{N} \models \phi$. Então $Q \vdash \phi$.

Demonstração: Basta mostrar que se $\phi(x_1,\ldots,x_n)$ é Δ_0 e existem $k_1,\ldots,k_n\in\mathbb{N}$, tais que $\mathbb{N}\models\phi(\bar{k}_1,\ldots,\bar{k}_n)$, então $Q\vdash\phi(\bar{k}_1,\ldots,\bar{k}_n)$. Seja $F(x_1,\ldots,x_n)$ a função característica do conjunto $\{(k_1,\ldots,k_n)\in\mathbb{N}^n:\mathbb{N}\models\phi(\bar{k}_1,\ldots,\bar{k}_n)\}$. Então F é primitiva recursiva, portanto representável em Q.

Seja $\lceil \cdot \rceil : \mathbb{N} \to \mathbb{N}$ a função definida por $\lceil 0 \rceil = 3$, $\lceil n + 1 \rceil = 2^7 \cdot 3^{\lceil n \rceil}$. (Lembre-se de que 3 é o número associado ao símbolo de constante 0, 7 é o número associado ao símbolo da função S, sucessor, e de como definimos termos em Tr_K .) Esta função calcula o número do termo $S^n(0)$ (verifique).

Exercício 2.7. Seja v (o número de) uma variável e $t \in Tr_K$. Definimos a função $Sb_v^t: \mathbb{N} \to \mathbb{N}$, por $Sb_v^t(n) = 0$ se $n \notin Tr_K$; $Sb_v^t(v) = t$, $Sb_v^t(c_j) = c_j$, $Sb_v^t(f_{k,l}(t_0, \ldots, t_{k-1})) = f_{k,l}(Sb_v^t(t_0), \ldots, Sb_v^t(t_{k-1}))$. Mostre que esta função é primitiva recursiva.

Exercício 2.8. Seja v (o número de) uma variável e $t \in Tr_K$. Definimos a função $S_v^t: \mathbb{N} \to \mathbb{N}$, por $S_v^t(n) = 0$ se $n \notin Fla_K$; se $n = r_{k,l}[t_0, \ldots, t_{k-1}] \in At_K$, $S_v^t(n) = r_{k,l}[Sb_v^t(t_0), \ldots, Sb_v^t(t_{k-1})]$; se $n = \neg a \in Fla_K$, $S_v^t(n) = \neg (S_v^t(a))$; se $n = a \to b \in Fla_K$, $S_v^t(n) = (S_v^t(a)) \to (S_v^t(b))$; se $n = \forall a b \in Fla_K$, e $a \neq v$, então $S_v^t(n) = \forall a S_v^t(b)$; se $n = \forall a b \in Fla_K$, e a = v, então $S_v^t(n) = n$. Mostre que a função S_v^t é primitiva recursiva. Ela calcula a fórmula obtida de ϕ , substituindo as ocorrência s livres de v pelo termo t.

Denotamos $\phi(v)$ (o número de) uma fórmula em que a variável v pode ser livre e por $\phi(t) = S_v^t(\phi)$.

3. Teoremas de incompletude

Exercício 3.1. Mostre que a relação $\operatorname{Ded}_T = \{\langle s, \lceil \phi \rceil \rangle : T \vdash \phi, \text{ e } s \text{ é o código } \langle n, \phi_1, \ldots, \phi_n \rangle, \text{ de uma dedução de } \phi \text{ a partir de } T \} \text{ é representável em } T \text{ (por uma fórmula limitada } \operatorname{Ded}(x, y)). Portanto <math display="block">\operatorname{Prov}_T = \{\lceil \phi \rceil : T \vdash \phi \} \text{ é fracamente expressível em } T, \text{ pela fórmula } \operatorname{Prov}_T(y) \text{ dada por } \exists x \operatorname{Ded}_T(x, y).$

Lema 3.1. Seja B(x) a fórmula $Prov_T(x)$. Então vale cada uma das asserções a seguir.

- (1) Se $Q \subseteq T$ e $T \vdash \phi$ então $T \vdash B(\lceil \phi \rceil)$.
- (2) Se $I\Sigma_1 \subseteq T$ e $T \vdash B(\lceil \phi \to \psi \rceil) \to (B(\lceil \phi \rceil) \to B(\lceil \psi \rceil))$.
- (3) Se $I\Sigma_1 \subseteq T$ e Se ϕ é fórmula, então $T \vdash B(\lceil \phi \rceil) \to B(\lceil B(\lceil \phi \rceil) \rceil)$.

Demonstração: Provaremos os itens 1 e 2, deixando o item 3 como exercício (que decorre de um argumento parecido com o de 2).

- 1. Seja ϕ_1, \ldots, ϕ_n uma dedução de ϕ . Então $T \vdash \text{Ded}(s, \lceil \phi \rceil)$, sendo $s = \langle n, \phi_1, \ldots, \phi_n \rangle$. Portanto $T \vdash \exists x \text{Ded}(x, \lceil \phi \rceil)$, ou seja $T \vdash B(\lceil \phi \rceil)$.
- 2. Se x é o código de uma demonstração de $\phi \to \psi$ e z é o código de uma demonstração de ϕ , então $\langle \pi_1(x) + \pi_1(z) + 1, C(x, y, \lceil \psi \rceil) \rangle$ é o código de uma demonstração de ψ , sendo que C(x, y, z) é a função primitiva recursiva que calcula o código $\langle \Pi_2^{\pi_1(x)}(x), \dots, \Pi_{\pi_1(x)}^{\pi_1(x)}(x), \Pi_2^{\pi_1(y)}(y), \dots \rangle$

 $\dots, \Pi_{\pi_1(y)}^{\pi_1(y)}(y), z\rangle$. Precisamos de $I\Sigma_1$ aqui para podermos provar que

$$T \vdash \forall x \forall z [\exists w \left((\mathrm{Ded}(x, \lceil \phi \to \psi \rceil) \wedge \mathrm{Ded}(z, \lceil \phi \rceil) \right) \to (\mathrm{Ded}(w, \lceil \psi \rceil) \wedge w = C(x, y, \lceil \psi \rceil)]$$

(observe que a fórmula entre colchetes é Σ_1).

Lema 3.2. (Lema da diagonalização) Seja $\phi(x, \bar{y})$ uma fórmula cujas variáveis livres são $x \in \bar{y} = y_1, \ldots, y_n$, e T uma teoria recursivamente axiomatizável, contendo a teoria Q. Então existe uma fórmula $\psi(\bar{y})$, cujas variáveis livres são \bar{y} , tal que

$$T \vdash \psi(\bar{y}) \iff \phi(\lceil \psi(x, \bar{y}) \rceil, \bar{y}).$$

Demonstração: Seja $\phi(x, \bar{y})$ dada, e seja F(n) a função definida por $F(n) = \delta(\lceil \delta \rceil, \bar{y})$, se $n = \delta(x, \bar{y})$ e x, \bar{y} ocorrem livres na fórmula δ , e F(n) = 0, se n não é desta forma. Então F é primitiva recursiva (verifique), e representável por uma fórmula Δ_1 , $\alpha(x, v)$. Seja $\chi(x, \bar{y})$ a fórmula $\exists v(\alpha(x, v) \land \phi(v, \bar{y}))$ e $\psi = F(\chi) = \chi(\lceil \chi(x, \bar{y}) \rceil, \bar{y})$.

Temos que Q (contida em T) prova as equivalência s $\psi \iff \exists v \, (\alpha(\lceil \chi(x,\bar{y}) \rceil, v) \land \phi(v,\bar{y})) \iff \exists v \, (v = F(\lceil \chi(x,\bar{y}) \rceil \land \phi(v,\bar{y})) \iff \exists v \, (v = \lceil \psi \rceil \land \psi(x,\bar{y})) \iff \phi(\lceil \psi \rceil,\bar{y}).$

Exercício 3.2. Versão do lema da diagonalização para \mathbb{N} . Seja $\phi(x, \bar{y})$ uma fórmula cujas variáveis livres são $x \in \bar{y} = y_1, \dots, y_n$, e seja F(n) a função definida por $F(n) = \delta(\lceil \delta \rceil, \bar{y})$, se $n = \delta(x, \bar{y})$ e x, \bar{y} ocorrem livres na fórmula δ , e F(n) = 0, se n não é desta forma. Seja $\alpha(x, v)$ uma fórmula Δ_1 definindo o gráfico de F. Seja $\chi(x, \bar{y})$ a fórmula $\exists v(\alpha(x, v) \land \phi(v, \bar{y}))$ e $\psi = F(\chi) = \chi(\lceil \chi(x, \bar{y}) \rceil, \bar{y})$. Mostre que

$$\mathbb{N} \models \forall \bar{y} \left[\psi(\bar{y}) \iff \phi(\lceil \psi(x, \bar{y}) \rceil, \bar{y}) \right].$$

Teorema 3.1. (Primeiro Teorema de Incompletude de Gödel) Se $T \supseteq Q$ é uma teoria consistente e recursivamente axiomatizável, tal que T não prova nenhuma sentença Σ_1 falsa em \mathbb{N} , então existe ψ tal que $T \not\vdash \psi$ e $T \not\vdash \neg \psi$.

Demonstração: Seja ψ uma sentença dada por diagonalização da fórmula $\neg Prov_T(x)$, ou seja, $T \vdash \psi \iff \neg Prov_T(\ulcorner \psi \urcorner)$.

Se $T \vdash \psi$, como a fórmula $\operatorname{Prov}_T(\lceil \psi \rceil)$ é Σ_1 , codificando a prova de ψ , obtemos $\mathbb{N} \models \operatorname{Prov}_T(\lceil \psi \rceil)$, donde segue que $T \vdash \operatorname{Prov}_T(\lceil \psi \rceil)$. Por outro lado, de $T \vdash \psi \iff \neg \operatorname{Prov}_T(\lceil \psi \rceil)$, obtemos que $T \vdash \neg \operatorname{Prov}_T(\lceil \psi \rceil)$, ou seja, T é inconsistente.

Se $T \vdash \neg \psi$, de $T \vdash \psi \iff \neg \operatorname{Prov}_T(\lceil \psi \rceil)$, $T \vdash \operatorname{Prov}_T(\lceil \psi \rceil)$, que é uma sentença Σ_1 . Da hipótese de T não prova sentenças Σ_1 falsas em \mathbb{N} , temos que $\mathbb{N} \models \operatorname{Prov}_T(\lceil \psi \rceil)$. Portanto existe um número $a \in \mathbb{N}$ que codifica uma prova de ψ a partir de T, donde segue que $T \vdash \neg \psi$, ou seja T é inconsistente.

Portanto, sendo T consistente, $T \not\vdash \psi$ e $T \not\vdash \neg \psi$.

A hipótese de que T não prova nenhuma sentença Σ_1 falsa em \mathbb{N} é muito forte, e pode ser eliminada, como veremos a seguir.

Teorema 3.2. (Primeiro Teorema de Incompletude de Gödel e Rosser) Se $T \supseteq Q$ é uma teoria consistente e recursivamente axiomatizável, então existe ψ tal que $T \not\vdash \psi$ e $T \not\vdash \neg \psi$.

Demonstração: Seja Rf(x,y) a fórmula Δ_1 definindo a relação recursiva "x é o código de uma prova da negação da fórmula y". Seja $\delta(y)$ a fórmula $\exists x \operatorname{Rf}_T(x,y) \land \forall z < x \neg \operatorname{Ded}_T(z,y)$, que é uma fórmula Σ_1 . Seja ψ obtida por diagonalização de $\delta(y)$.

Suponha que $T \vdash \psi$. Então $T \vdash \mathrm{Ded}_T(\bar{a}, \lceil \psi \rceil)$, para algum $a \in \mathbb{N}$. Sendo T consistente, $T \not\vdash \neg \psi$, donde segue que, para todo $b \in \mathbb{N}$, $\mathbb{N} \models \neg \mathrm{Rf}_T(\bar{b}, \lceil \psi \rceil)$ e, como a fórmula é Σ_1 , $T \vdash \neg \mathrm{Rf}_T(\bar{b}, \lceil \psi \rceil)$, para todo $b \in \mathbb{N}$. Por outro lado, da diagonalização, segue que $T \vdash \delta(\lceil \psi \rceil)$, ou seja, $T \vdash \exists x \, \mathrm{Rf}_T(x, \lceil \psi \rceil) \land \forall z < x \neg \mathrm{Ded}_T(z, \lceil \psi \rceil)$. Seja $b \in \mathbb{N}$, tal que b > a. Então $T \vdash \forall x \, \mathrm{Rf}_T(x, \lceil \psi \rceil) \to (\bar{b} < x)$, donde segue que $T \vdash \forall z < \bar{b} \neg \mathrm{Ded}_T(z, \lceil \psi \rceil)$, ou seja, $T \vdash \neg \mathrm{Ded}_T(\bar{a}, \lceil \psi \rceil)$, o que implica que T é inconsistente.

Agora suponha que $T \vdash \neg \psi$ e seja $a \in \mathbb{N}$, tal que $\mathbb{N} \models \mathrm{Rf}_t(a, \lceil \psi \rceil)$. Da diagonalização, $T \vdash \forall x (\mathrm{Rf}_T(x, \lceil \psi \rceil) \to \exists z < x \, \mathrm{Ded}_T(z, \lceil \psi \rceil))$, donde segue que $T \vdash (\mathrm{Rf}_T(\bar{a}, \lceil \psi \rceil) \to \exists z < \bar{a} \, \mathrm{Ded}_T(z, \lceil \psi \rceil))$. Como $Q \subset T$, temos que existe $b \in \mathbb{N}$, b < a, tal que $T \vdash \mathrm{Ded}_T(\bar{b}, \lceil \psi \rceil)$. Daí, segue que b é o código de uma demonstração de ψ a partir de T, isto é, $T \vdash \psi$, o que implica que T é inconsistente.

Portanto
$$T \not\vdash \psi \in T \not\vdash \neg \psi$$
.

Exercício 3.3. Seja T recursivamente axiomatizável e contendo Q.

(1) Mostre que os conjuntos $P = \{\sigma : T \vdash \sigma\}$ e $B = \{\sigma : T \vdash \neg\sigma\}$ são recursivamente enumeráveis, mas não são recursivos.

Seja
$$C \subset Fla_K$$
, tal que $A \subseteq C$ e $C \cap B = \emptyset$. Seja $C' = \{ \neg \dots \neg \sigma : \sigma \text{ não \'e da forma } \neg \theta, j \text{ \'e impar e, ou } \neg \sigma \in C, \text{ ou } \sigma \not\in C \} \cup \{ \neg \dots \neg \sigma : \sigma \text{ não \'e da forma } \neg \theta, k \text{ \'e par e, ou } \sigma \in C, \text{ ou } \neg \sigma \not\in C \}.$

- (2) Mostre que se C fosse recursivo, C' também seria recursivo.
- (3) Mostre que se $D \subseteq Fla_K$ é recursivo, $A \subset D$ e, para toda $\sigma \in Fla_K$, se $\sigma \in D$ então $\neg \sigma \notin D$, então existe $\sigma \in Fla_K$, tal que $\sigma, \neg \sigma \notin D$.
- (4) Mostre que, para todo $\sigma \in Fla_K$, se $\sigma \in C'$ então $\neg \sigma \notin C'$ e, ou $\sigma \in C'$, ou $\neg \sigma \notin C'$. Conclua que C não pode ser recursivo.

Dois conjuntos A e B como no exercício são ditos recursivamente inseparáveis.

Teorema 3.3. O Teorema de Löb. Sejam T teoria recursivamente axiomatizável, contendo $I\Sigma_1$, e B(x) a fórmula $Prov_T(x)$. Se $T \vdash B(\lceil \phi \rceil) \to \phi$ então $T \vdash \phi$

Demonstração: Seja ψ uma sentença, tal que $T \vdash \psi \iff (B(\lceil \psi \rceil) \rightarrow \phi)$, dada pelo lema da diagonalização para a fórmula $B(x) \rightarrow \phi$.

Como $T \vdash \psi \to (B(\ulcorner \psi \urcorner) \to \phi)$, então $T \vdash B(\ulcorner \psi \to (B(\ulcorner \psi \urcorner) \to \phi)\urcorner)$, donde segue que $T \vdash B(\ulcorner \psi \urcorner) \to B(\ulcorner (B(\ulcorner \psi \urcorner) \to \phi)\urcorner)$, e portanto $T \vdash B(\ulcorner \psi \urcorner) \to (B(\ulcorner B(\ulcorner \psi \urcorner)\urcorner) \to B(\ulcorner \phi \urcorner))$. Como $T \vdash B(\ulcorner \psi \urcorner) \to B(\ulcorner B(\ulcorner \psi \urcorner)\urcorner)$, temos que $T \vdash B(\ulcorner \psi \urcorner) \to B(\ulcorner \phi \urcorner)$. Por hipótese, $T \vdash B(\ulcorner \phi \urcorner) \to \phi$, donde segue que $T \vdash B(\ulcorner \psi \urcorner) \to \phi$. Como $T \vdash \psi \iff (B(\ulcorner \psi \urcorner) \to \phi)$, temos que $T \vdash \psi$. Portanto $T \vdash B(\ulcorner \psi \urcorner)$, donde segue que $T \vdash \phi$.

Um modo de expressar a consistência de T (axiomatizável) é a sentença Cons_T dada por $\neg B(\lceil 0 = S(0) \rceil)$.

Teorema 3.4. (Segundo Teorema de Incompletude de Gödel) Se $T \supseteq I\Sigma_1$ é uma teoria consistente e recursivamente axiomatizável então $T \not\vdash \operatorname{Cons}_T$.

Demonstração: Se $T \vdash \operatorname{Cons}_T$, ou seja, $T \vdash \neg B(\lceil 0 = S(0) \rceil)$, então $T \vdash B(\lceil 0 = S(0) \rceil) \to 0 = S(0)$. Portanto, pelo Teorema de Löb, $T \vdash 0 = S(0)$. Como $T \vdash 0 \neq S(0)$, $T \in \operatorname{Inconsistente}$.

Dizemos que uma teoria T_0 , numa linguagem contendo símbolos em $K_0 \subset \mathbb{N}$, interpreta uma teoria T_1 , numa linguagem contendo símbolos em $K_1 \subset \mathbb{N}$, se existe uma K_0 fórmula $\chi(x)$ e uma correspondência $\phi \mapsto \Phi_p hi$, de fórmulas da linguagem de T_1 para fórmulas na linguagem de T_0 , tal que ϕ e Φ_{ϕ} tenham as mesmas variáveis livres, $\Phi_{\neg \phi}$ é $\neg \Phi_{\phi}$, $\Phi_{\phi \to \psi}$ é $\phi_{\phi} \to \Phi_{\psi}$ e $\Phi_{\exists x \phi}$ é $\exists x \chi(x) \land \Phi_{\phi}$, tal que se $T_1 \vdash \phi$, então $T_0 \vdash \Phi_{\phi}$.

Exercício 3.4. Redemonstre os dois teoremas de incompletude, com a hipótese de que T seja recursivamente axiomatizável e que T apenas interpreta Q ou $I\Sigma_1$.

Teorema 3.5. (Teorema da Indefinibilidade da Verdade de Tarski) O conjunto $V(\mathbb{N}) = \{ \lceil \phi \rceil : \mathbb{N} \models \phi \}$ não é definível na linguagem de T, ou seja, não existe nehuma fórmula $\Theta(x)$ tal que $V(\mathbb{N}) = \{n : \mathbb{N} \models \Theta(n)\}$.

Demonstração: Suponha que exista tal $\Theta(x)$ e seja ψ a sentença dada pelo lema da diagonalização (para \mathbb{N}) para a fórmula $\neg \Theta(x)$, ou seja, $\mathbb{N} \models \psi \iff \neg \Theta(\lceil \psi \rceil)$.

Se $\mathbb{N}\models\psi,$ então $N\models\neg\Theta(\lceil\psi\rceil),$ donde segue que $\mathbb{N}\not\models\psi,$ contradição.

Se $\mathbb{N} \models \neg \psi$, então $N \models \Theta(\lceil \psi \rceil)$, donde segue que $\mathbb{N} \models \psi$, outra contradição.

Portanto, não pode existir tal fórmula.