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1. Preliminaries

Free abelian topological group

Let X be a completely regular topological space. The (Markov)
free abelian topological group on X is an abelian topological group
A(X ) which is algebraically generated by X and such that every
continuous mapping f from X to an abelian topological group G
lifts to a unique continuous homomorphism f̄ : A(X )→ G .
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1. Preliminaries

Free locally convex space

Let X be a completely regular topological space. The free locally
convex space on X is a locally convex space L(X ) for which X
forms a Hamel basis and such that every continuous mapping f
from X to a locally convex space E lifts to a unique continuous
linear operator f̄ : L(X )→ E .
The free locally convex space L(X ) always exists and is essentially
unique.
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A(X ) ↪→ L(X )

The group A(X ) is naturally embedded in L(X ) as a subgroup.
Moreover, it is a topological subgroup in L(X ). Tkachenko
announced this result in 1983; he observed that, taking any
continuous pseudometric on X , extending it (by the Graev
method) to a continuous seminorm on L(X ), and considering the
restriction of this seminorm to A(X ), we obtain precisely the Graev
extension of the pseudometric to the seminorm on A(X ). This
assertion is true, but it needs be proved: it is not obvious that, if
all coefficients are integer, then the minimum in the formula
defining the norm is attained at an integer matrix. A complete
proof of this fact was given by Uspenskĭı(1990).

Tkachenko, Uspenskĭı

The canonical homomorphism i : A(X ) ↪→ L(X ) is an embedding
of A(X ) into the additive topological group of the LCS L(X ) as a
closed additive topological subgroup.
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Duality between Lp(X ) and Cp(X )

Denote by Lp(X ) the free locally convex space L(X ) endowed
with the weak topology. The canonical mapping X ↪→ Lp(X )
is a topological embedding, and every continuous mapping f
from X to a locally convex space E with the weak topology
extends uniquely to a continuous linear operator
f̄ : Lp(X )→ E .

Denote by Cp(X ) the space of all continuous real-valued
functions on X with the topology of pointwise (simple)
convergence. Locally convex spaces Lp(X ) and Cp(X ) are in
duality.
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Consequently, for every linear continuous surjection
T : Cp(X ) −→ Cp(Y ) the dual mapping
T ∗ : Lp(Y ) −→ Lp(X ) is an embedding of the locally convex
spaces and vice versa, each embedding of the free locally
convex spaces induces a linear continuous surjection of the
spaces Cp(X ).

For every linear open continuous surjection
T : Cp(X ) −→ Cp(Y ) the dual mapping
T ∗ : Lp(Y ) −→ Lp(X ) embeds Lp(Y ) into Lp(X ) as a closed
linear subspace of the locally convex spaces and vice versa,
each closed embedding of the free locally convex spaces
induces a linear open continuous surjection of the spaces
Cp(X ).
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Topological definitions

A completely regular topological space X is called a k-space if
F ⊂ X is closed if and only if F ∩ K is closed in K for all
compact subspaces K ⊂ X .

A completely regular topological space X is called a kω-space
if there exists what is called a kω-decomposition X = ∪n∈NXn,
where all Xn are compact, Xn ⊂ Xn+1 for n ∈ N, and a subset
F ⊂ X is closed if and only if all intersections F ∩ Xn, n ∈ N,
are closed.

The Lebesgue covering dimension dimX of a topological
space X is defined to be the minimum value of n, such that
every finite open cover α of X admits a finite open cover β of
X which refines α and so that no point belongs to more than
n + 1 elements. If no such minimal n exists, the space is said
to be of infinite covering dimension.
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L., Morris, Pestov, 1997

Let X and Y be kω-spaces. Let h : Lp(X )→ Lp(Y ) be an
embedding of locally convex spaces. Then h also is an embedding
of the locally convex space L(X ) into L(Y ).
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dimX = dimY

1 Theorem 1.1 (Graev, 1950) Let X and Y be two metrizable
compacta such that the free abelian topological groups A(X )
and A(Y ) are isomorphic. Then X and Y have the same
Lebesgue covering dimension: dimX = dimY .

2 Theorem 1.2 (Pavlovskĭı, 1980) Let X and Y be two
metrizable compacta such that function spaces Cp(X ) and
Cp(Y ) are linearly isomorphic (or equivalently, locally convex
spaces Lp(X ) and Lp(Y ) are linearly isomorphic). Then X
and Y have the same Lebesgue covering dimension:
dimX = dimY .
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One should compare this result with the famous Milutin’s theorem:
for any uncountable metrizable compact space X the Banach
space C (X ) is linearly isomorphic to the Banach space C [0, 1].

Theorem 1.2 about dimX = dimY was subsequently extended by
Pestov to arbitrary completely regular spaces X and Y . A further
very impressive strengthening was obtained by Gul’ko in 1993: the
same conclusion remains true for uniform homeomorphisms of
function spaces.
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Arkhangel’skĭı’s questions, 1990

1 Assume that Cp(X ) can be mapped by a linear continuous
mapping onto Cp(Y ) for compact spaces X and Y . Is it true
that dimY ≤ dimX?

2 Assume that Cp(X ) can be mapped by a linear continuous
open mapping onto Cp(Y ) for compact spaces X and Y . Is it
true that dimY ≤ dimX?
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Equivalent formulation

1 Assume that L(Y ) ↪→ L(X ) for compact spaces X and Y . Is
it true that dimY ≤ dimX?

2 Assume that L(Y ) ↪→ L(X ) as a closed subspace for compact
spaces X and Y . Is it true that dimY ≤ dimX?

3 In fact, similar questions have been asked earlier for the
groups: Assume that A(Y ) ↪→ A(X ) for compact spaces X
and Y . Is it true that dimY ≤ dimX?
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Negative answers

Theorem 2.1 (L., Morris, Pestov, 1997) For every
finite-dimensional compactum Y the free locally convex space
L(Y ) embeds as a linear topological subspace into the free
locally convex space L([0, 1]).

Theorem 2.2 (L., Levin, Pestov, 1997) For every
finite-dimensional compactum Y there exists a 2-dimensional
compactum X such that L(Y ) embeds as a closed linear
topological subspace into L(X ).
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Let us mention that in general, linear continuous surjections of
Cp(X ) spaces fail to be open. Define a mapping
T : Cp[0, 1] −→ Cp[0, 1] as follows:

Tf (x) = 2f (x)− f (
x + 1

2
)

Then T is a linear, continuous and nonopen mapping onto. It
could be shown that the inverse mapping T−1 is defined by
T−1g(x) =

∑∞
n=o

1
2n+1 g

(
x+2n−1

2n

)
.

Denote M = {f (x) ∈ C [0, 1] : f (0) = 0}

L = {g(x) ∈ C [0, 1] :
∞∑
n=o

1

2n
g

(
2n − 1

2n

)
= 0}

Then M is a closed linear subspace of Cp[0, 1], L is a dense linear
subspace of Cp[0, 1] and T (M) = L, T (Cp[0, 1] \M) = Cp[0, 1] \ L,
which means that T maps an open set onto a codense set.
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Characterization for groups

Theorem 2.3 (L., Morris, Pestov, 1997) For a completely regular
space X the free abelian topological group A(X ) embeds into
A([0, 1])) as a topological subgroup iff X is a kω-space such that
every compact subspace of X is metrizable and finite-dimensional.

Necessary condition for LCS

Theorem 2.4 (L., Morris, Pestov, 1997) Let X be a completely
regular space such that the free locally convex space L(X ) embeds
into L([0, 1]) as a locally convex subspace. Then X is a metrizable
compactum which can be represented as a countable union of
finite-dimensional compact subspaces .
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Surprising as it may seem, the free locally convex space L(R) does
not embed into L([0, 1]), in spite of the existence of canonical
embeddings A(R) ↪→ L(R) and A([0, 1]) ↪→ L([0, 1]) and a
(non-canonical one) A(R) ↪→ A([0, 1]). It is yet another illustration
of the well-known fact that not every continuous homomorphism
to the additive group of reals from a closed additive subgroup of
an (even normable) LCS extends to a continuous linear functional
on the whole space.
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Last published result

Levin, 2011

Theorem 2.5 For every finite-dimensional compactum Y there
exists a linear open continuous surjection L : Cp[0, 1] −→ Cp(Y ),
or equivalently, for every finite-dimensional compactum Y the free
locally convex space L(Y ) embeds as a closed linear topological
subspace into the free locally convex space L([0, 1]).
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Last unpublished result

Leiderman , Levin, 2009

There is a constant C such that for each natural n, there exists a
continuous linear surjection Tn : Cp[0, 1] −→ Cp([0, 1]n) with
||Tn|| ≤ 1 and for every f ∈ Cp([0, 1]n) there is g ∈ Cp[0, 1] such
that Tn(g) = f and ||g || ≤ C ||f ||
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Last unpublished and unconfirmed result

P. Gartside, 2009

Let X be a metrizable compactum which can be represented as a
countable union of finite-dimensional compact subspaces. Then
there is a continuous linear surjection of Cp[0, 1] onto Cp(X ).
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Hilbert’s 13th problem and its solution

The 13th Problem of Hilbert asked to prove that solution of the
general equation of degree 7: f 7 + xf 3 + yf 2 + zf + 1 = 0 cannot
be represented as a superposition of continuous functions of two
variables.
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Hilbert’s 13th problem and its solution

The first Kolmogorov’s result on Hilbert’s Problem 13 stated that
every continuous function of several variables can be represented as
a superposition of continuous functions of three variables (1956).
Vladimir Arnold, a 19 year old third-year student, in 1957 improved
Kolmogorov’s construction and showed that any continuous
function of three variables can be represented as a superposition of
continuous functions of two variables, thus proving that Hilbert’s
conjecture was incorrect. Shortly thereafter, following the rule of
improving every result to its sharpest form, Kolmogorov found a
new construction and proved a remarkable result: every continuous
real valued function of n-variables from a segment can be expressed
as a superposition of functions of just one variable, and addition.
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Kolmogorov’s Superposition Theorem

Every continuous function f defined on the n-dimensional cube can
be represented by a superposition of the form
f (x1, x2, ..., xn) =

∑2n+1
i=1 fi (

∑n
j=1 φi ,j(xj)), where all the functions

fi and φi ,j are defined and continuous on R and all the functions
φi ,j are independent of f .
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Kolmogorov’s Superposition Theorem suggests many other
problems. It is quite natural to separate them into analytic and
topological problems. The most natural question in the analytical
direction is how smooth can the functions φi ,j be chosen? An
answer is the following: φi ,j ’s can be selected to be increasing,
and then can be taken in the class of Lipschitz-1 functions
(Fridman). This property cannot be improved. Vitushkin and
Henkin proved theorems from which it follows that a Kolmogorov
type theorem must fail if the functions φi ,j are assumed to be
continuously differentiable. Thus, Hilbert’s conjecture does hold if
”continuous” is replaced by ”continuously differentiable”.
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Basic families

Let X be a compact metrizable space and let φi : X −→ [0, 1] be
continuous functions. Family {φi : i = 1, ..., k} is said to be a
basic family if each function f (x) ∈ C (X ) is representable in the
form: f (x) =

∑k
i=1 gi (φi (x)), gi (t) ∈ C [0, 1]

The following theorem is a generalization of the Kolmogorov’s
Superposition Theorem.

Ostrand’s theorem

Let X an n-dimensional compact metrizable space. Then there
exists a basic family {φi : i = 1, ..., 2n + 1} of continuous functions
on X .
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Basic embeddings

Let Xi , i = 1, 2, ..., n be compacta. A closed subset Y ⊂
∏n

i=1 Xi

is said to be basic if for every g ∈ C (Y ) there exist fi ∈ C (Xi )
such that
g(y) = f1(x1) + f2(x2) + ...+ fn(xn) for every
y = (x1, x2, ..., xn) ∈ Y .
Let Y ⊂

∏n
i=1 Xi , and let X = ⊕n

i=1Xi . Clearly,
C (X ) ∼=

∏n
i=1 C (Xi ), and we can define L : C (X ) −→ C (Y ) by

L(f )(y) = f1(x1) + f2(x2) + ...+ fn(xn)

where f = (f1, f2, ..., fn) ∈ C (X ) and y = (x1, x2, ..., xn) ∈ Y . It is
easy to see that L is a linear and continuous operator for both
sup-norm and Cp-topologies on function spaces and that L is
surjective whenever Y is basically embedded into

∏n
i=1 Xi . We call

L the canonical linear surjection.
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Using the Ostrand’s theorem

According to Ostrand theorem (1965) every n-dimensional
compactum Y can be basically embedded into [0, 1]2n+1.
Denote by I the unit closed interval [0, 1].
It is rather obvious that the space Cp(I ⊕ ...⊕ I ) is linearly
isomorphic to Cp(I ). Therefore, due to Ostrand’s theorem, for any
compactum Y we get a linear continuous surjection from Cp[0, 1]
onto Cp(Y ), equivalently, an embedding L(Y ) ↪→ L([0, 1]). This
finishes the proof of Theorem 2.1. Observe that the free abelian
topological groups on Y and on [0, 1] sit inside the corresponding
free locally convex spaces in a right way, so we obtain a topological
group embedding A(Y ) ↪→ A([0, 1]).
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Proof of Theorem 2.2

In order to achieve a closed linear embedding of L(Y ) into L(X )
we have to investigate more carefully the properties of the
canonical linear surjection. The following result about the basic
embedding into the product of two spaces plays a key role.

L.,Levin, Pestov, 1997

Let X1 and X2 be compacta and let Y ⊂ X1 × X2 be a compact
basic subset. Then the canonical linear surjection

L : Cp(X1 ⊕ X2) −→ Cp(Y )

is open.

We use also the following theorem.

Sternfeld, 1993

Every n-dimensional compactum, n ≥ 2, can be basically
embedded into the product of n + 1 1-dimensional compacta.
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Assume that Y is an n-dimensional compactum, n > 2. By
Sternfeld’s theorem there exists a basic embedding Y ⊂

∏n+1
i=1 Zi

with 1-dimensional compacta Zi . Set X1 = Z1 × Z2 and
Y1 =

∏n+1
i=3 Zi . It is known that for every compacta Z1,Z2 with

dimZ1 = n and dimZ2 = 1 we have dim(Z1 × Z2) = n + 1.
Clearly, it implies that dimX1 = 2 and dimY1 = n − 1. It is
equally easy to check that the induced embedding Y ⊂ X1 × Y1 is
basic. Therefore, the canonical linear surjection
L : Cp(X1 ⊕ Y1) −→ Cp(Y ) is open. Replacing Y by Y1 in the
above construction and proceeding by induction on n, we construct
2-dimensional compacta X1,X2, ...,Xn−2 such that Cp(⊕n−2

i=1 Xi )
admits an open continuous linear surjection onto Cp(Y ), and
Theorem 2.2 follows. (The last compactum Xn−2 may happen to
be 1-dimensional).
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Main open problem

Problem 1

Is the canonical linear surjection open for every basic embedding?

Levin was able to answer this question affirmatively in 2 important
cases: for some Sternfeld-type basic emdeddings, and for some
Kolmogorov-type basic embeddings.
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Levin’s theorems, 2011

1 let Y ⊂ X1 × X2 × ...× Xn+1 be a Sternfeld-type basic
embedding of an n-dimensional compactum Y into the
product of 1-dimensional compacta X1,X2, ...,Xn+1. Then the
canonical linear surjection

L : Cp(X1 ⊕ X2 ⊕ ...⊕ Xn+1) −→ Cp(Y )

is open.

2 let Y ⊂ [0, 1]3 be a Kolmogorov-type basic embedding of
1-dimensional compactum Y into the cube. Then the
canonical linear surjection is open.

3 (Theorem 2.5) For every finite-dimensional compactum Y
there exists a linear open continuous surjection
L : Cp[0, 1] −→ Cp(Y ), or equivalently, L(Y ) embeds as a
closed linear topological subspace into L([0, 1]).
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Proof of Theorem 2.5

Let Y be an n-dimensional compactum. By the first result there is
a 1-dimensional compactum Z = X1 ⊕ X2 ⊕ ...⊕ Xn+1 for which
Cp(Z ) admits an open continuous linear surjection onto Cp(Y ).
Let W = the disjoint union of 3 copies of [0, 1]. By the second
result there is an open continuous linear surjection from Cp(W )
onto Cp(Z ). It remains to note that the spaces Cp(W ) and
Cp[0, 1] are linearly homeomorphic.
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More open problems

Problem 2

Characterize compacta X admitting a linear open continuous
surjection from Cp[0, 1] onto Cp(X ).

Problem 3

Is it true that every infinite compactum X admits a linear
continuous surjection from Cp(X ) onto Cp(X 2), or equivalently,
the free locally convex space L(X 2) embeds as a linear topological
subspace into the free locally convex space L(X )?
For example, what happens if X be a pseudoarc?

Problem 4

The same question for the free abelian groups.
Is it true that every infinite compactum X the free abelian group
A(X 2) embeds as a subgroup into the free abelian group A(X )?
For example, what happens if X be a pseudoarc?
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Old open problem

Find a characterization of dimX in terms of the linear topological
properies of Cp(X ) (equivalently, L(X )).
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Thank you!
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