Closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$.

András Zsák
Peterhouse, Cambridge
(Joint work with Thomas Schlumprecht.)

August 2014, Maresias, Brazil

Some old results

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}\left(\ell_{2}\right) \subsetneq \mathcal{L}\left(\ell_{2}\right)$.

Some old results

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}\left(\ell_{2}\right) \subsetneq \mathcal{L}\left(\ell_{2}\right)$.

Gohberg, Markus, Feldman [1960]: Same holds for $\ell_{p}, 1 \leq p<\infty$, and c_{0}.

Some old results

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}\left(\ell_{2}\right) \subsetneq \mathcal{L}\left(\ell_{2}\right)$.

Gohberg, Markus, Feldman [1960]: Same holds for $\ell_{p}, 1 \leq p<\infty$, and c_{0}.

If $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{p}\right)$, then $\mathrm{Id}_{\ell_{p}}=A T B$ for some $A, B \in \mathcal{L}\left(\ell_{p}\right)$.

Some old results

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}\left(\ell_{2}\right) \subsetneq \mathcal{L}\left(\ell_{2}\right)$.

Gohberg, Markus, Feldman [1960]: Same holds for $\ell_{p}, 1 \leq p<\infty$, and c_{0}.

If $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{p}\right)$, then $\mathrm{Id}_{\ell_{p}}=A T B$ for some $A, B \in \mathcal{L}\left(\ell_{p}\right)$.

It is natural to consider $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$. Early results by Pietsch and Milman in 70 s .

Some old results

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}\left(\ell_{2}\right) \subsetneq \mathcal{L}\left(\ell_{2}\right)$.

Gohberg, Markus, Feldman [1960]: Same holds for $\ell_{p}, 1 \leq p<\infty$, and co.

If $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{p}\right)$, then Id $_{\ell_{p}}=A T B$ for some $A, B \in \mathcal{L}\left(\ell_{p}\right)$.

It is natural to consider $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$. Early results by Pietsch and Milman in 70 s.

Pietsch [Operator Ideals, 1977]: $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ has exactly two maximal ideals, and all other proper, closed ideals are in one-to-one correspondence with closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$.

Some old results

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}\left(\ell_{2}\right) \subsetneq \mathcal{L}\left(\ell_{2}\right)$.

Gohberg, Markus, Feldman [1960]: Same holds for $\ell_{p}, 1 \leq p<\infty$, and co.

If $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{p}\right)$, then Id $_{\ell_{p}}=A T B$ for some $A, B \in \mathcal{L}\left(\ell_{p}\right)$.

It is natural to consider $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$. Early results by Pietsch and Milman in 70 s.

Pietsch [Operator Ideals, 1977]: $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ has exactly two maximal ideals, and all other proper, closed ideals are in one-to-one correspondence with closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$.

Question (Pietsch): Are there infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$?

Some old results

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}\left(\ell_{2}\right) \subsetneq \mathcal{L}\left(\ell_{2}\right)$.

Gohberg, Markus, Feldman [1960]: Same holds for $\ell_{p}, 1 \leq p<\infty$, and co.

If $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{p}\right)$, then Id $_{\ell_{p}}=A T B$ for some $A, B \in \mathcal{L}\left(\ell_{p}\right)$.

It is natural to consider $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$. Early results by Pietsch and Milman in 70 s.

Pietsch [Operator Ideals, 1977]: $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ has exactly two maximal ideals, and all other proper, closed ideals are in one-to-one correspondence with closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$.

Question (Pietsch): Are there infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$?

Answer (Schlumprecht, Z): Yes for $1<p<q<\infty$.

Some definitions

Some definitions

An ideal in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $A T B \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y), B \in \mathcal{L}(X)$.

Some definitions

An ideal in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $A T B \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y), B \in \mathcal{L}(X)$.
$T: X \rightarrow Y$ is strictly singular if for all $Z \subset X$ with $\operatorname{dim} Z=\infty$ and for all $\varepsilon>0$, there exists $x \in Z$ such that $\|T x\|<\varepsilon\|x\|$.

Some definitions

An ideal in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $A T B \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y), B \in \mathcal{L}(X)$.
$T: X \rightarrow Y$ is strictly singular if for all $Z \subset X$ with $\operatorname{dim} Z=\infty$ and for all $\varepsilon>0$, there exists $x \in Z$ such that $\|T x\|<\varepsilon\|x\|$.
T is finitely strictly singular if for all $\varepsilon>0$ there exists $n \in \mathbb{N}$ such that for all $E \subset X$ with $\operatorname{dim} E \geq n$, there exists $x \in E$ such that $\|T x\|<\varepsilon\|x\|$.

Some definitions

An ideal in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $A T B \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y), B \in \mathcal{L}(X)$.
$T: X \rightarrow Y$ is strictly singular if for all $Z \subset X$ with $\operatorname{dim} Z=\infty$ and for all $\varepsilon>0$, there exists $x \in Z$ such that $\|T x\|<\varepsilon\|x\|$.
T is finitely strictly singular if for all $\varepsilon>0$ there exists $n \in \mathbb{N}$ such that for all $E \subset X$ with $\operatorname{dim} E \geq n$, there exists $x \in E$ such that $\|T x\|<\varepsilon\|x\|$.

$$
\{0\} \subsetneq \mathcal{K}(X, Y) \subset \mathcal{F} \mathcal{S}(X, Y) \subset \mathcal{S}(X, Y) \subset \mathcal{L}(X, Y)
$$

Some definitions

An ideal in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $A T B \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y), B \in \mathcal{L}(X)$.
$T: X \rightarrow Y$ is strictly singular if for all $Z \subset X$ with $\operatorname{dim} Z=\infty$ and for all $\varepsilon>0$, there exists $x \in Z$ such that $\|T x\|<\varepsilon\|x\|$.
T is finitely strictly singular if for all $\varepsilon>0$ there exists $n \in \mathbb{N}$ such that for all $E \subset X$ with $\operatorname{dim} E \geq n$, there exists $x \in E$ such that $\|T x\|<\varepsilon\|x\|$.

$$
\{0\} \subsetneq \mathcal{K}(X, Y) \subset \mathcal{F} \mathcal{S}(X, Y) \subset \mathcal{S}(X, Y) \subset \mathcal{L}(X, Y)
$$

Fix $T: U \rightarrow V$. For any X, Y we let $\mathcal{J}^{T}=\mathcal{J}^{\top}(X, Y)$ be the closed ideal in $\mathcal{L}(X, Y)$ generated by operators fectoring through T.

Some definitions

An ideal in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $A T B \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y), B \in \mathcal{L}(X)$.
$T: X \rightarrow Y$ is strictly singular if for all $Z \subset X$ with $\operatorname{dim} Z=\infty$ and for all $\varepsilon>0$, there exists $x \in Z$ such that $\left\|T_{x}\right\|<\varepsilon\|x\|$.
T is finitely strictly singular if for all $\varepsilon>0$ there exists $n \in \mathbb{N}$ such that for all $E \subset X$ with $\operatorname{dim} E \geq n$, there exists $x \in E$ such that $\|T x\|<\varepsilon\|x\|$.

$$
\{0\} \subsetneq \mathcal{K}(X, Y) \subset \mathcal{F} \mathcal{S}(X, Y) \subset \mathcal{S}(X, Y) \subset \mathcal{L}(X, Y)
$$

Fix $T: U \rightarrow V$. For any X, Y we let $\mathcal{J}^{T}=\mathcal{J}^{\top}(X, Y)$ be the closed ideal in $\mathcal{L}(X, Y)$ generated by operators fectoring through T.

$$
\mathcal{J}^{T}(X, Y)=\overline{\operatorname{span}}\{A T B: A \in \mathcal{L}(V, Y), B \in \mathcal{L}(X, U)\}
$$

Some definitions

An ideal in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $A T B \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y), B \in \mathcal{L}(X)$.
$T: X \rightarrow Y$ is strictly singular if for all $Z \subset X$ with $\operatorname{dim} Z=\infty$ and for all $\varepsilon>0$, there exists $x \in Z$ such that $\left\|T_{x}\right\|<\varepsilon\|x\|$.
T is finitely strictly singular if for all $\varepsilon>0$ there exists $n \in \mathbb{N}$ such that for all $E \subset X$ with $\operatorname{dim} E \geq n$, there exists $x \in E$ such that $\|T x\|<\varepsilon\|x\|$.

$$
\{0\} \subsetneq \mathcal{K}(X, Y) \subset \mathcal{F} \mathcal{S}(X, Y) \subset \mathcal{S}(X, Y) \subset \mathcal{L}(X, Y)
$$

Fix $T: U \rightarrow V$. For any X, Y we let $\mathcal{J}^{T}=\mathcal{J}^{\top}(X, Y)$ be the closed ideal in $\mathcal{L}(X, Y)$ generated by operators fectoring through T.

$$
\mathcal{J}^{T}(X, Y)=\overline{\operatorname{span}}\{A T B: A \in \mathcal{L}(V, Y), B \in \mathcal{L}(X, U)\}
$$

If $U=V$ and $T=\operatorname{Id}_{U}$, then $\mathcal{J}^{U}=\mathcal{J}^{\mathrm{ld} U}$.

Closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$

Closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$

Recall: if $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{\rho}\right)$, then $\mathrm{Id}_{\ell_{p}}=A T B$.

Closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$

Recall: if $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{p}\right)$, then $\mathrm{Id}_{\ell_{p}}=A T B$.
$T \in \mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ is a matrix $T=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)$, where $T_{11} \in \mathcal{L}\left(\ell_{p}\right), T_{22} \in \mathcal{L}\left(\ell_{q}\right)$,

Closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$

Recall: if $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{p}\right)$, then $\mathrm{Id}_{\ell_{p}}=A T B$.
$T \in \mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ is a matrix $T=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)$, where $T_{11} \in \mathcal{L}\left(\ell_{p}\right), T_{22} \in \mathcal{L}\left(\ell_{q}\right)$, $T_{12} \in \mathcal{L}\left(\ell_{q}, \ell_{p}\right)=\mathcal{K}\left(\ell_{q}, \ell_{p}\right)$,

Closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$

Recall: if $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{p}\right)$, then $\operatorname{Id} \ell_{\rho}=A T B$.
$T \in \mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ is a matrix $T=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)$, where $T_{11} \in \mathcal{L}\left(\ell_{p}\right), T_{22} \in \mathcal{L}\left(\ell_{q}\right)$, $T_{12} \in \mathcal{L}\left(\ell_{q}, \ell_{p}\right)=\mathcal{K}\left(\ell_{q}, \ell_{p}\right), T_{12} \in \mathcal{L}\left(\ell_{p}, \ell_{q}\right)=\mathcal{S}\left(\ell_{p}, \ell_{q}\right)$.

Closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$

Recall: if $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{p}\right)$, then $\operatorname{Id} \ell_{\rho}=A T B$.
$T \in \mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ is a matrix $T=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)$, where $T_{11} \in \mathcal{L}\left(\ell_{p}\right), T_{22} \in \mathcal{L}\left(\ell_{q}\right)$, $T_{12} \in \mathcal{L}\left(\ell_{q}, \ell_{p}\right)=\mathcal{K}\left(\ell_{q}, \ell_{p}\right), T_{12} \in \mathcal{L}\left(\ell_{p}, \ell_{q}\right)=\mathcal{S}\left(\ell_{p}, \ell_{q}\right)$.

Two maximal ideals:

$$
\begin{aligned}
& \left\{T: T_{22} \in \mathcal{K}\left(\ell_{q}\right)\right\}=\mathcal{J}^{\ell_{p}} \\
& \left\{T: T_{11} \in \mathcal{K}\left(\ell_{p}\right)\right\}=\mathcal{J}^{\ell_{q}}
\end{aligned}
$$

Closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$

Recall: if $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{\rho}\right)$, then $\operatorname{Id} \ell_{\rho}=A T B$.
$T \in \mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ is a matrix $T=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)$, where $T_{11} \in \mathcal{L}\left(\ell_{p}\right), T_{22} \in \mathcal{L}\left(\ell_{q}\right)$, $T_{12} \in \mathcal{L}\left(\ell_{q}, \ell_{p}\right)=\mathcal{K}\left(\ell_{q}, \ell_{p}\right), T_{12} \in \mathcal{L}\left(\ell_{p}, \ell_{q}\right)=\mathcal{S}\left(\ell_{p}, \ell_{q}\right)$.

Two maximal ideals:

$$
\begin{aligned}
& \left\{T: T_{22} \in \mathcal{K}\left(\ell_{q}\right)\right\}=\mathcal{J}^{\ell_{p}} \\
& \left\{T: T_{11} \in \mathcal{K}\left(\ell_{p}\right)\right\}=\mathcal{J}^{\ell_{q}}
\end{aligned}
$$

Other closed, proper ideals:
$\left\{T: T_{j j} \in \mathcal{K}, T_{21} \in \mathcal{J}\right\}$ where \mathcal{J} is a closed ideal in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$.

Closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$

Recall: if $T \in \mathcal{L}\left(\ell_{p}\right) \backslash \mathcal{K}\left(\ell_{p}\right)$, then $\operatorname{Id} \ell_{\rho}=A T B$.
$T \in \mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ is a matrix $T=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)$, where $T_{11} \in \mathcal{L}\left(\ell_{p}\right), T_{22} \in \mathcal{L}\left(\ell_{q}\right)$, $T_{12} \in \mathcal{L}\left(\ell_{q}, \ell_{p}\right)=\mathcal{K}\left(\ell_{q}, \ell_{p}\right), T_{12} \in \mathcal{L}\left(\ell_{p}, \ell_{q}\right)=\mathcal{S}\left(\ell_{p}, \ell_{q}\right)$.

Two maximal ideals:

$$
\begin{aligned}
& \left\{T: T_{22} \in \mathcal{K}\left(\ell_{q}\right)\right\}=\mathcal{J}^{\ell_{p}} \\
& \left\{T: T_{11} \in \mathcal{K}\left(\ell_{p}\right)\right\}=\mathcal{J}^{\ell_{q}}
\end{aligned}
$$

Other closed, proper ideals:
$\left\{T: T_{j j} \in \mathcal{K}, T_{21} \in \mathcal{J}\right\}$ where \mathcal{J} is a closed ideal in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$.
E.g., $\mathcal{J}=\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$ corresponds to $\mathcal{J}^{\ell_{p}} \cap \mathcal{J}^{\ell_{2}}$.

Closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$

Closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$

Let $1 \leq p<q<\infty$.

$$
\{0\} \subsetneq \mathcal{K}\left(\ell_{p}, \ell_{q}\right) \subsetneq \mathcal{J}^{1_{p, q}} \subset \mathcal{L}\left(\ell_{p}, \ell_{q}\right),
$$

where $I_{p, q}: \ell_{p} \rightarrow \ell_{q}$ is the formal inclusion map.

Closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$

Let $1 \leq p<q<\infty$.

$$
\{0\} \subsetneq \mathcal{K}\left(\ell_{p}, \ell_{q}\right) \subsetneq \mathcal{J}^{1_{p, q}} \subset \mathcal{L}\left(\ell_{p}, \ell_{q}\right),
$$

where $I_{p, q}: \ell_{p} \rightarrow \ell_{q}$ is the formal inclusion map. Milman [1970] proved the following:

Closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$

Let $1 \leq p<q<\infty$.

$$
\{0\} \subsetneq \mathcal{K}\left(\ell_{p}, \ell_{q}\right) \subsetneq \mathcal{J}^{1_{p, q}} \subset \mathcal{L}\left(\ell_{p}, \ell_{q}\right),
$$

where $I_{p, q}: \ell_{p} \rightarrow \ell_{q}$ is the formal inclusion map. Milman [1970] proved the following:

If $E \subset c_{0}$ with $\operatorname{dim} E=n$, then there exists $x=\left(x_{i}\right) \in E, x \neq 0$, such that $\left|x_{i}\right|=\|x\|_{\infty}$ for at least n values of i. ('flat' vectors)

Closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$

Let $1 \leq p<q<\infty$.

$$
\{0\} \subsetneq \mathcal{K}\left(\ell_{p}, \ell_{q}\right) \subsetneq \mathcal{J}^{1_{p, q}} \subset \mathcal{L}\left(\ell_{p}, \ell_{q}\right),
$$

where $I_{p, q}: \ell_{p} \rightarrow \ell_{q}$ is the formal inclusion map. Milman [1970] proved the following:

If $E \subset c_{0}$ with $\operatorname{dim} E=n$, then there exists $x=\left(x_{i}\right) \in E, x \neq 0$, such that $\left|x_{i}\right|=\|x\|_{\infty}$ for at least n values of i. ('flat' vectors)
Since for a flat vector x we have $\|x\|_{\ell_{q}} \ll\|x\|_{\ell_{p}}$, it follows that $I_{p, q} \in \mathcal{F} \mathcal{S}$.

Closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$

Let $1 \leq p<q<\infty$.

$$
\{0\} \subsetneq \mathcal{K}\left(\ell_{p}, \ell_{q}\right) \subsetneq \mathcal{J}^{1_{p, q}} \subset \mathcal{L}\left(\ell_{p}, \ell_{q}\right),
$$

where $I_{p, q}: \ell_{p} \rightarrow \ell_{q}$ is the formal inclusion map. Milman [1970] proved the following:

If $E \subset c_{0}$ with $\operatorname{dim} E=n$, then there exists $x=\left(x_{i}\right) \in E, x \neq 0$, such that $\left|x_{i}\right|=\|x\|_{\infty}$ for at least n values of i. ('flat' vectors)
Since for a flat vector x we have $\|x\|_{\ell_{q}} \ll\|x\|_{\ell_{p}}$, it follows that $I_{p, q} \in \mathcal{F} \mathcal{S}$.

The formal inclusion map $\ell_{p} \sim\left(\oplus \ell_{2}^{n}\right)_{\ell_{p}} \rightarrow\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}} \sim \ell_{q}$ is not finitely strictly singular.

Closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$

Let $1 \leq p<q<\infty$.

$$
\{0\} \subsetneq \mathcal{K}\left(\ell_{p}, \ell_{q}\right) \subsetneq \mathcal{J}^{1_{p, q}} \subset \mathcal{L}\left(\ell_{p}, \ell_{q}\right),
$$

where $I_{p, q}: \ell_{p} \rightarrow \ell_{q}$ is the formal inclusion map. Milman [1970] proved the following:

If $E \subset c_{0}$ with $\operatorname{dim} E=n$, then there exists $x=\left(x_{i}\right) \in E, x \neq 0$, such that $\left|x_{i}\right|=\|x\|_{\infty}$ for at least n values of i. ('flat' vectors)
Since for a flat vector x we have $\|x\|_{\ell_{q}} \ll\|x\|_{\ell_{p}}$, it follows that $I_{p, q} \in \mathcal{F} \mathcal{S}$.

The formal inclusion map $\ell_{p} \sim\left(\oplus \ell_{2}^{n}\right)_{\ell_{p}} \rightarrow\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}} \sim \ell_{q}$ is not finitely strictly singular. So

$$
\{0\} \subsetneq \mathcal{K}\left(\ell_{p}, \ell_{q}\right) \subsetneq \mathcal{J}^{\rho_{p, q}} \subset \mathcal{F S} \subsetneq \mathcal{L}\left(\ell_{p}, \ell_{q}\right) .
$$

Closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$

Let $1 \leq p<q<\infty$.

$$
\{0\} \subsetneq \mathcal{K}\left(\ell_{p}, \ell_{q}\right) \subsetneq \mathcal{J}^{1_{p, q}} \subset \mathcal{L}\left(\ell_{p}, \ell_{q}\right),
$$

where $I_{p, q}: \ell_{p} \rightarrow \ell_{q}$ is the formal inclusion map. Milman [1970] proved the following:

If $E \subset c_{0}$ with $\operatorname{dim} E=n$, then there exists $x=\left(x_{i}\right) \in E, x \neq 0$, such that $\left|x_{i}\right|=\|x\|_{\infty}$ for at least n values of i. ('flat' vectors)
Since for a flat vector x we have $\|x\|_{\ell_{q}} \ll\|x\|_{\ell_{p}}$, it follows that $I_{p, q} \in \mathcal{F} \mathcal{S}$.

The formal inclusion map $\ell_{p} \sim\left(\oplus \ell_{2}^{n}\right)_{\ell_{p}} \rightarrow\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}} \sim \ell_{q}$ is not finitely strictly singular. So

$$
\{0\} \subsetneq \mathcal{K}\left(\ell_{p}, \ell_{q}\right) \subsetneq \mathcal{J}^{\rho_{p, q}} \subset \mathcal{F S} \subsetneq \mathcal{L}\left(\ell_{p}, \ell_{q}\right) .
$$

We have at least 2 closed ideals.

Recent results

Let $1<p<2<q<\infty$.

Recent results

Let $1<p<2<q<\infty$.
Sari, Schlumprecht, Tomczak-Jaegerman, Troitsky [2007]

Recent results

Let $1<p<2<q<\infty$.
Sari, Schlumprecht, Tomczak-Jaegerman, Troitsky [2007]

So we have 4 closed ideals.

Recent results

Let $1<p<2<q<\infty$.
Sari, Schlumprecht, Tomczak-Jaegerman, Troitsky [2007]

So we have 4 closed ideals.
Schlumprecht [2011]:

Recent results

Let $1<p<2<q<\infty$.
Sari, Schlumprecht, Tomczak-Jaegerman, Troitsky [2007]

So we have 4 closed ideals.
Schlumprecht [2011]:

So we have $4+2=7$ closed ideals.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$
WLOG $1<p<2$ and $p<q<\infty$.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$
WLOG $1<p<2$ and $p<q<\infty$.
Set $Z=\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}}$ and fix an isomorphism $U: Z \rightarrow \ell_{q}$.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$
WLOG $1<p<2$ and $p<q<\infty$.
Set $Z=\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}}$ and fix an isomorphism $U: Z \rightarrow \ell_{q}$.
Consider $G_{n}, \operatorname{dim} G_{n}=n$, with normalized, 1-unconditional basis $\left(g_{j}^{(n)}\right)_{j=1}^{n}$.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$
WLOG $1<p<2$ and $p<q<\infty$.
Set $Z=\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}}$ and fix an isomorphism $U: Z \rightarrow \ell_{q}$.
Consider $G_{n}, \operatorname{dim} G_{n}=n$, with normalized, 1-unconditional basis $\left(g_{j}^{(n)}\right)_{j=1}^{n}$. We will have $G_{n} \subset \ell_{p}^{k_{n}}$ uniformly complemented.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$
WLOG $1<p<2$ and $p<q<\infty$.
Set $Z=\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}}$ and fix an isomorphism $U: Z \rightarrow \ell_{q}$.
Consider $G_{n}, \operatorname{dim} G_{n}=n$, with normalized, 1-unconditional basis $\left(g_{j}^{(n)}\right)_{j=1}^{n}$. We will have $G_{n} \subset \ell_{p}^{k_{n}}$ uniformly complemented. Have $W=\left(\oplus G_{n}\right)_{\ell_{p}}$ with a projection $P: \ell_{p} \rightarrow W$.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$
WLOG $1<p<2$ and $p<q<\infty$.
Set $Z=\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}}$ and fix an isomorphism $U: Z \rightarrow \ell_{q}$.
Consider $G_{n}, \operatorname{dim} G_{n}=n$, with normalized, 1-unconditional basis $\left(g_{j}^{(n)}\right)_{j=1}^{n}$. We will have $G_{n} \subset \ell_{p}^{k_{n}}$ uniformly complemented.
Have $W=\left(\oplus G_{n}\right)_{\ell_{p}}$ with a projection $P: \ell_{p} \rightarrow W$.
We let $I_{W, Z}: W \rightarrow Z$ be the formal inclusion given by $I_{W, z}\left(g_{j}^{(n)}\right)=e_{j}^{(n)}$.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$

WLOG $1<p<2$ and $p<q<\infty$.
Set $Z=\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}}$ and fix an isomorphism $U: Z \rightarrow \ell_{q}$.
Consider G_{n}, $\operatorname{dim} G_{n}=n$, with normalized, 1-unconditional basis $\left(g_{j}^{(n)}\right)_{j=1}^{n}$. We will have $G_{n} \subset \ell_{p}^{k_{n}}$ uniformly complemented. Have $W=\left(\oplus G_{n}\right)_{\ell_{p}}$ with a projection $P: \ell_{p} \rightarrow W$.
We let $I_{W, Z}: W \rightarrow Z$ be the formal inclusion given by $I_{W, Z}\left(g_{j}^{(n)}\right)=e_{j}^{(n)}$.
This yields the closed ideal $\mathcal{J}^{\prime} w, z$ of $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$

WLOG $1<p<2$ and $p<q<\infty$.
Set $Z=\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}}$ and fix an isomorphism $U: Z \rightarrow \ell_{q}$.
Consider G_{n}, $\operatorname{dim} G_{n}=n$, with normalized, 1-unconditional basis $\left(g_{j}^{(n)}\right)_{j=1}^{n}$. We will have $G_{n} \subset \ell_{p}^{k_{n}}$ uniformly complemented.
Have $W=\left(\oplus G_{n}\right)_{\ell_{p}}$ with a projection $P: \ell_{p} \rightarrow W$.
We let $I_{W, Z}: W \rightarrow Z$ be the formal inclusion given by $I_{W, Z}\left(g_{j}^{(n)}\right)=e_{j}^{(n)}$. This yields the closed ideal $\mathcal{J}^{\prime} \omega, z$ of $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$. This contains $T=U \circ I_{W, z} \circ P$.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$
WLOG $1<p<2$ and $p<q<\infty$.
Set $Z=\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}}$ and fix an isomorphism $U: Z \rightarrow \ell_{q}$.
Consider $G_{n}, \operatorname{dim} G_{n}=n$, with normalized, 1-unconditional basis $\left(g_{j}^{(n)}\right)_{j=1}^{n}$. We will have $G_{n} \subset \ell_{p}^{k_{n}}$ uniformly complemented.
Have $W=\left(\oplus G_{n}\right)_{\ell_{p}}$ with a projection $P: \ell_{p} \rightarrow W$.
We let $I_{W, Z}: W \rightarrow Z$ be the formal inclusion given by $I_{W, z}\left(g_{j}^{(n)}\right)=e_{j}^{(n)}$. This yields the closed ideal $\mathcal{J}^{\prime} \omega, z$ of $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$. This contains $T=U \circ I_{W, z} \circ P$.

Consider $F_{n},\left(f_{j}^{(n)}\right)_{j=1}^{n}, Y=\left(\oplus F_{n}\right)_{\ell_{p}}, I_{Y, Z}, \mathcal{J}^{I_{Y, Z}}$.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$
WLOG $1<p<2$ and $p<q<\infty$.
Set $Z=\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}}$ and fix an isomorphism $U: Z \rightarrow \ell_{q}$.
Consider $G_{n}, \operatorname{dim} G_{n}=n$, with normalized, 1-unconditional basis $\left(g_{j}^{(n)}\right)_{j=1}^{n}$. We will have $G_{n} \subset \ell_{p}^{k_{n}}$ uniformly complemented. Have $W=\left(\oplus G_{n}\right)_{\ell_{p}}$ with a projection $P: \ell_{p} \rightarrow W$.
We let $I_{W, Z}: W \rightarrow Z$ be the formal inclusion given by $I_{W, z}\left(g_{j}^{(n)}\right)=e_{j}^{(n)}$. This yields the closed ideal $\mathcal{J}^{\prime} \omega, z$ of $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$. This contains $T=U \circ I_{W, z} \circ P$.

Consider $F_{n},\left(f_{j}^{(n)}\right)_{j=1}^{n}, Y=\left(\oplus F_{n}\right)_{\ell_{p}} I_{Y, Z}, \mathcal{J}^{I_{Y, Z}}$.
Assume that $\left(f_{j}^{(n)}\right)_{j=1}^{n}$ dominates $\left(g_{j}^{(n)}\right)_{j=1}^{n}$ for all n. Then $I_{Y, W}$ is continuous, and $I_{Y, Z}=I_{W, Z} \circ I_{Y, W}$, and so $\mathcal{J}^{I_{r, Z}} \subset \mathcal{J}^{I_{W, Z}}$.

Infinitely many closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$
WLOG $1<p<2$ and $p<q<\infty$.
Set $Z=\left(\oplus \ell_{2}^{n}\right)_{\ell_{q}}$ and fix an isomorphism $U: Z \rightarrow \ell_{q}$.
Consider $G_{n}, \operatorname{dim} G_{n}=n$, with normalized, 1-unconditional basis $\left(g_{j}^{(n)}\right)_{j=1}^{n}$. We will have $G_{n} \subset \ell_{p}^{k_{n}}$ uniformly complemented. Have $W=\left(\oplus G_{n}\right)_{\ell_{p}}$ with a projection $P: \ell_{p} \rightarrow W$.
We let $I_{W, Z}: W \rightarrow Z$ be the formal inclusion given by $I_{W, z}\left(g_{j}^{(n)}\right)=e_{j}^{(n)}$. This yields the closed ideal $\mathcal{J}^{\prime} \omega, z$ of $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$. This contains $T=U \circ I_{W, z} \circ P$.

Consider $F_{n},\left(f_{j}^{(n)}\right)_{j=1}^{n}, Y=\left(\oplus F_{n}\right)_{\ell_{p}} I_{Y, Z}, \mathcal{J}^{I_{Y, Z}}$.
Assume that $\left(f_{j}^{(n)}\right)_{j=1}^{n}$ dominates $\left(g_{j}^{(n)}\right)_{j=1}^{n}$ for all n. Then $I_{Y, W}$ is continuous, and $I_{Y, Z}=I_{W, Z} \circ I_{Y, W}$, and so $\mathcal{J}^{I_{r, Z}} \subset \mathcal{J}^{I_{W, Z}}$.

Under some conditions we show that $T \notin \mathcal{J}^{l_{Y, Z}}$.

Rosenthal's $X_{p, w}$ spaces

Fix $1<p<2$. Let (w_{n}) be a decreasing sequence in (0,1]. Fix n. We let G_{n} be the span of a sequence $g_{j}^{(n)}, 1 \leq j \leq n$, of independent symmetric, 3 -valued random variables in L_{p}, where $\left\|g_{j}^{(n)}\right\|_{L_{p}}=1$ and $w_{n}=\left\|g_{j}^{(n)}\right\|_{L_{2}}^{-1}$.

Rosenthal's $X_{p, w}$ spaces

Fix $1<p<2$. Let $\left(w_{n}\right)$ be a decreasing sequence in $(0,1]$. Fix n. We let G_{n} be the span of a sequence $g_{j}^{(n)}, 1 \leq j \leq n$, of independent symmetric, 3-valued random variables in L_{p}, where $\left\|g_{j}^{(n)}\right\|_{L_{p}}=1$ and $w_{n}=\left\|g_{j}^{(n)}\right\|_{L_{2}}^{-1}$.

Then G_{n}^{*} is isomorphic to $\left(\mathbb{R}^{n},\|\cdot\|_{p^{\prime}, w_{n}}\right)$, where

$$
\left\|\left(a_{j}\right)_{j=1}^{n}\right\|_{p^{\prime}, w_{n}}=\left(\sum\left|a_{j}\right|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}} \vee w_{n}\left(\sum\left|a_{j}\right|^{2}\right)^{\frac{1}{2}}
$$

Rosenthal's $X_{p, w}$ spaces

Fix $1<p<2$. Let $\left(w_{n}\right)$ be a decreasing sequence in $(0,1]$. Fix n. We let G_{n} be the span of a sequence $g_{j}^{(n)}, 1 \leq j \leq n$, of independent symmetric, 3-valued random variables in L_{p}, where $\left\|g_{j}^{(n)}\right\|_{L_{p}}=1$ and $w_{n}=\left\|g_{j}^{(n)}\right\|_{L_{2}}^{-1}$.

Then G_{n}^{*} is isomorphic to $\left(\mathbb{R}^{n},\|\cdot\|_{p^{\prime}, w_{n}}\right)$, where

$$
\left\|\left(a_{j}\right)_{j=1}^{n}\right\|_{p^{\prime}, w_{n}}=\left(\sum\left|a_{j}\right|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}} \vee w_{n}\left(\sum\left|a_{j}\right|^{2}\right)^{\frac{1}{2}}
$$

The spaces F_{n} are defined using a different sequence $\left(v_{n}\right)$. The condition we need is as follows.

Rosenthal's $X_{p, w}$ spaces

Fix $1<p<2$. Let $\left(w_{n}\right)$ be a decreasing sequence in $(0,1]$. Fix n. We let G_{n} be the span of a sequence $g_{j}^{(n)}, 1 \leq j \leq n$, of independent symmetric, 3-valued random variables in L_{p}, where $\left\|g_{j}^{(n)}\right\|_{L_{p}}=1$ and $w_{n}=\left\|g_{j}^{(n)}\right\|_{L_{2}}^{-1}$.

Then G_{n}^{*} is isomorphic to $\left(\mathbb{R}^{n},\|\cdot\|_{p^{\prime}, w_{n}}\right)$, where

$$
\left\|\left(a_{j}\right)_{j=1}^{n}\right\|_{p^{\prime}, w_{n}}=\left(\sum\left|a_{j}\right|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}} \vee w_{n}\left(\sum\left|a_{j}\right|^{2}\right)^{\frac{1}{2}}
$$

The spaces F_{n} are defined using a different sequence $\left(v_{n}\right)$. The condition we need is as follows.

$$
\frac{v_{\sqrt{ } c n}}{w_{n}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \quad \text { for all } c \in(0,1)
$$

