András Zsák

Peterhouse, Cambridge

(Joint work with Thomas Schlumprecht.)

August 2014, Maresias, Brazil

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{L}(\ell_2).$

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{L}(\ell_2).$

Gohberg, Markus, Feldman [1960]: Same holds for ℓ_p , $1 \le p < \infty$, and c_0 .

(ロ)、(型)、(E)、(E)、 E) の(の)

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{L}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: Same holds for ℓ_p , $1 \le p < \infty$, and c_0 .

If $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $\mathrm{Id}_{\ell_p} = ATB$ for some $A, B \in \mathcal{L}(\ell_p)$.

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{L}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: Same holds for ℓ_p , $1 \le p < \infty$, and c_0 .

If $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $\mathrm{Id}_{\ell_p} = ATB$ for some $A, B \in \mathcal{L}(\ell_p)$.

It is natural to consider $\mathcal{L}(\ell_p \oplus \ell_q)$. Early results by Pietsch and Milman in 70s.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{L}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: Same holds for ℓ_p , $1 \le p < \infty$, and c_0 .

If $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $\mathrm{Id}_{\ell_p} = ATB$ for some $A, B \in \mathcal{L}(\ell_p)$.

It is natural to consider $\mathcal{L}(\ell_p \oplus \ell_q)$. Early results by Pietsch and Milman in 70s.

Pietsch [Operator Ideals, 1977]: $\mathcal{L}(\ell_{p} \oplus \ell_{q})$ has exactly two maximal ideals, and all other proper, closed ideals are in one-to-one correspondence with closed ideals in $\mathcal{L}(\ell_{p}, \ell_{q})$.

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{L}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: Same holds for ℓ_p , $1 \le p < \infty$, and c_0 .

If $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $\mathrm{Id}_{\ell_p} = ATB$ for some $A, B \in \mathcal{L}(\ell_p)$.

It is natural to consider $\mathcal{L}(\ell_p \oplus \ell_q)$. Early results by Pietsch and Milman in 70s.

Pietsch [Operator Ideals, 1977]: $\mathcal{L}(\ell_{p} \oplus \ell_{q})$ has exactly two maximal ideals, and all other proper, closed ideals are in one-to-one correspondence with closed ideals in $\mathcal{L}(\ell_{p}, \ell_{q})$.

Question (Pietsch): Are there infinitely many closed ideals in $\mathcal{L}(\ell_p, \ell_q)$?

Calkin [1941]: $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{L}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: Same holds for ℓ_p , $1 \le p < \infty$, and c_0 .

If $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $\mathrm{Id}_{\ell_p} = ATB$ for some $A, B \in \mathcal{L}(\ell_p)$.

It is natural to consider $\mathcal{L}(\ell_p \oplus \ell_q)$. Early results by Pietsch and Milman in 70s.

Pietsch [Operator Ideals, 1977]: $\mathcal{L}(\ell_{p} \oplus \ell_{q})$ has exactly two maximal ideals, and all other proper, closed ideals are in one-to-one correspondence with closed ideals in $\mathcal{L}(\ell_{p}, \ell_{q})$.

Question (Pietsch): Are there infinitely many closed ideals in $\mathcal{L}(\ell_p, \ell_q)$?

Answer (Schlumprecht, Z): Yes for 1 .

<ロ> <@> < E> < E> E のQの

An *ideal* in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $ATB \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y)$, $B \in \mathcal{L}(X)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An *ideal* in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $ATB \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y)$, $B \in \mathcal{L}(X)$.

 $T: X \to Y$ is strictly singular if for all $Z \subset X$ with dim $Z = \infty$ and for all $\varepsilon > 0$, there exists $x \in Z$ such that $||Tx|| < \varepsilon ||x||$.

An *ideal* in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $ATB \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y)$, $B \in \mathcal{L}(X)$.

 $T: X \to Y$ is strictly singular if for all $Z \subset X$ with dim $Z = \infty$ and for all $\varepsilon > 0$, there exists $x \in Z$ such that $||Tx|| < \varepsilon ||x||$.

T is *finitely strictly singular* if for all $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that for all $E \subset X$ with dim $E \ge n$, there exists $x \in E$ such that $||Tx|| < \varepsilon ||x||$.

An *ideal* in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $ATB \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y)$, $B \in \mathcal{L}(X)$.

 $T: X \to Y$ is strictly singular if for all $Z \subset X$ with dim $Z = \infty$ and for all $\varepsilon > 0$, there exists $x \in Z$ such that $||Tx|| < \varepsilon ||x||$.

T is *finitely strictly singular* if for all $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that for all $E \subset X$ with dim $E \ge n$, there exists $x \in E$ such that $||Tx|| < \varepsilon ||x||$.

 $\{0\} \subsetneq \mathcal{K}(X,Y) \subset \mathcal{FS}(X,Y) \subset \mathcal{S}(X,Y) \subset \mathcal{L}(X,Y)$.

An *ideal* in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $ATB \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y)$, $B \in \mathcal{L}(X)$.

 $T: X \to Y$ is strictly singular if for all $Z \subset X$ with dim $Z = \infty$ and for all $\varepsilon > 0$, there exists $x \in Z$ such that $||Tx|| < \varepsilon ||x||$.

T is *finitely strictly singular* if for all $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that for all $E \subset X$ with dim $E \ge n$, there exists $x \in E$ such that $||Tx|| < \varepsilon ||x||$.

$$\{0\} \subsetneq \mathcal{K}(X,Y) \subset \mathcal{FS}(X,Y) \subset \mathcal{S}(X,Y) \subset \mathcal{L}(X,Y)$$
.

Fix $T: U \to V$. For any X, Y we let $\mathcal{J}^T = \mathcal{J}^T(X, Y)$ be the closed ideal in $\mathcal{L}(X, Y)$ generated by operators fectoring through T.

An *ideal* in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $ATB \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y)$, $B \in \mathcal{L}(X)$.

 $T: X \to Y$ is strictly singular if for all $Z \subset X$ with dim $Z = \infty$ and for all $\varepsilon > 0$, there exists $x \in Z$ such that $||Tx|| < \varepsilon ||x||$.

T is *finitely strictly singular* if for all $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that for all $E \subset X$ with dim $E \ge n$, there exists $x \in E$ such that $||Tx|| < \varepsilon ||x||$.

$$\{0\} \subsetneq \mathcal{K}(X,Y) \subset \mathcal{FS}(X,Y) \subset \mathcal{S}(X,Y) \subset \mathcal{L}(X,Y)$$
.

Fix $T: U \to V$. For any X, Y we let $\mathcal{J}^T = \mathcal{J}^T(X, Y)$ be the closed ideal in $\mathcal{L}(X, Y)$ generated by operators fectoring through T.

$$\mathcal{J}^{T}(X,Y) = \overline{\operatorname{span}}\{ATB : A \in \mathcal{L}(V,Y), B \in \mathcal{L}(X,U)\}.$$

An *ideal* in $\mathcal{L}(X, Y)$ is a subspace \mathcal{J} of $\mathcal{L}(X, Y)$ such that $ATB \in \mathcal{J}$ whenever $T \in \mathcal{J}$ and $A \in \mathcal{L}(Y)$, $B \in \mathcal{L}(X)$.

 $T: X \to Y$ is strictly singular if for all $Z \subset X$ with dim $Z = \infty$ and for all $\varepsilon > 0$, there exists $x \in Z$ such that $||Tx|| < \varepsilon ||x||$.

T is *finitely strictly singular* if for all $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that for all $E \subset X$ with dim $E \ge n$, there exists $x \in E$ such that $||Tx|| < \varepsilon ||x||$.

$$\{0\} \subsetneq \mathcal{K}(X,Y) \subset \mathcal{FS}(X,Y) \subset \mathcal{S}(X,Y) \subset \mathcal{L}(X,Y)$$
.

Fix $T: U \to V$. For any X, Y we let $\mathcal{J}^T = \mathcal{J}^T(X, Y)$ be the closed ideal in $\mathcal{L}(X, Y)$ generated by operators fectoring through T.

$$\mathcal{J}^{\mathsf{T}}(X,Y) = \overline{\operatorname{span}}\{ATB : A \in \mathcal{L}(V,Y), B \in \mathcal{L}(X,U)\}.$$

If U = V and $T = Id_U$, then $\mathcal{J}^U = \mathcal{J}^{Id_U}$.

<□ > < @ > < E > < E > E のQ @

Recall: if $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $Id_{\ell_p} = ATB$.

Recall: if $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $Id_{\ell_p} = ATB$.

$$T \in \mathcal{L}(\ell_p \oplus \ell_q)$$
 is a matrix $T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$, where $T_{11} \in \mathcal{L}(\ell_p)$, $T_{22} \in \mathcal{L}(\ell_q)$,

Recall: if $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $Id_{\ell_p} = ATB$.

$$T \in \mathcal{L}(\ell_p \oplus \ell_q)$$
 is a matrix $T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$, where $T_{11} \in \mathcal{L}(\ell_p)$, $T_{22} \in \mathcal{L}(\ell_q)$, $T_{12} \in \mathcal{L}(\ell_q, \ell_p) = \mathcal{K}(\ell_q, \ell_p)$,

Recall: if $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $Id_{\ell_p} = ATB$.

$$T \in \mathcal{L}(\ell_p \oplus \ell_q) \text{ is a matrix } T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}, \text{ where } T_{11} \in \mathcal{L}(\ell_p), \ T_{22} \in \mathcal{L}(\ell_q), \\ T_{12} \in \mathcal{L}(\ell_q, \ell_p) = \mathcal{K}(\ell_q, \ell_p), \ T_{12} \in \mathcal{L}(\ell_p, \ell_q) = \mathcal{S}(\ell_p, \ell_q).$$

Recall: if $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $Id_{\ell_p} = ATB$.

$$T \in \mathcal{L}(\ell_p \oplus \ell_q) \text{ is a matrix } T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}, \text{ where } T_{11} \in \mathcal{L}(\ell_p), \ T_{22} \in \mathcal{L}(\ell_q), \\ T_{12} \in \mathcal{L}(\ell_q, \ell_p) = \mathcal{K}(\ell_q, \ell_p), \ T_{12} \in \mathcal{L}(\ell_p, \ell_q) = \mathcal{S}(\ell_p, \ell_q).$$

Two maximal ideals:

$$\{T: T_{22} \in \mathcal{K}(\ell_q)\} = \mathcal{J}^{\ell_p}$$
$$\{T: T_{11} \in \mathcal{K}(\ell_p)\} = \mathcal{J}^{\ell_q}$$

Recall: if $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $\mathrm{Id}_{\ell_p} = ATB$.

$$T \in \mathcal{L}(\ell_p \oplus \ell_q) \text{ is a matrix } T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}, \text{ where } T_{11} \in \mathcal{L}(\ell_p), \ T_{22} \in \mathcal{L}(\ell_q), \\ T_{12} \in \mathcal{L}(\ell_q, \ell_p) = \mathcal{K}(\ell_q, \ell_p), \ T_{12} \in \mathcal{L}(\ell_p, \ell_q) = \mathcal{S}(\ell_p, \ell_q).$$

Two maximal ideals:

$$\{T: T_{22} \in \mathcal{K}(\ell_q)\} = \mathcal{J}^{\ell_p}$$
$$\{T: T_{11} \in \mathcal{K}(\ell_p)\} = \mathcal{J}^{\ell_q}$$

Other closed, proper ideals: { $T : T_{jj} \in \mathcal{K}, T_{21} \in \mathcal{J}$ } where \mathcal{J} is a closed ideal in $\mathcal{L}(\ell_p, \ell_q)$.

Recall: if $T \in \mathcal{L}(\ell_p) \setminus \mathcal{K}(\ell_p)$, then $Id_{\ell_p} = ATB$.

$$T \in \mathcal{L}(\ell_p \oplus \ell_q) \text{ is a matrix } T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}, \text{ where } T_{11} \in \mathcal{L}(\ell_p), \ T_{22} \in \mathcal{L}(\ell_q), \\ T_{12} \in \mathcal{L}(\ell_q, \ell_p) = \mathcal{K}(\ell_q, \ell_p), \ T_{12} \in \mathcal{L}(\ell_p, \ell_q) = \mathcal{S}(\ell_p, \ell_q).$$

Two maximal ideals:

$$\{T: T_{22} \in \mathcal{K}(\ell_q)\} = \mathcal{J}^{\ell_p}$$
$$\{T: T_{11} \in \mathcal{K}(\ell_p)\} = \mathcal{J}^{\ell_q}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other closed, proper ideals: { $T : T_{jj} \in \mathcal{K}, T_{21} \in \mathcal{J}$ } where \mathcal{J} is a closed ideal in $\mathcal{L}(\ell_p, \ell_q)$.

E.g., $\mathcal{J} = \mathcal{L}(\ell_p, \ell_q)$ corresponds to $\mathcal{J}^{\ell_p} \cap \mathcal{J}^{\ell_2}$.

<□ > < @ > < E > < E > E のQ @

Let $1 \leq p < q < \infty$.

$$\{0\} \subsetneq \mathcal{K}(\ell_p, \ell_q) \subsetneq \mathcal{J}^{l_{p,q}} \subset \mathcal{L}(\ell_p, \ell_q) ,$$

where $I_{p,q} \colon \ell_p \to \ell_q$ is the formal inclusion map.

Let $1 \leq p < q < \infty$. $\{0\} \subsetneq \mathcal{K}(\ell_p, \ell_q) \subsetneq \mathcal{J}^{\ell_{p,q}} \subset \mathcal{L}(\ell_p, \ell_q)$, where $\ell_p \downarrow : \ell_p \to \ell_p$ is the formal inclusion map. Milman [1970] (

where $I_{p,q}: \ell_p \to \ell_q$ is the formal inclusion map. Milman [1970] proved the following:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

following:

Let $1 \leq p < q < \infty$. $\{0\} \subsetneq \mathcal{K}(\ell_p, \ell_q) \subsetneq \mathcal{J}^{I_{p,q}} \subset \mathcal{L}(\ell_p, \ell_q)$, where $I_{p,q} \colon \ell_p \to \ell_q$ is the formal inclusion map. Milman [1970] proved the

If $E \subset c_0$ with dim E = n, then there exists $x = (x_i) \in E$, $x \neq 0$, such that

 $|x_i| = ||x||_{\infty}$ for at least *n* values of *i*. ('flat' vectors)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Let $1 \leq p < q < \infty$. $\{0\} \subsetneq \mathcal{K}(\ell_p, \ell_q) \subsetneq \mathcal{J}^{I_{p,q}} \subset \mathcal{L}(\ell_p, \ell_q)$, where $I_{p,q} : \ell_p \to \ell_q$ is the formal inclusion map. Milman [1970] proved the

where $I_{p,q}$: $\ell_p \to \ell_q$ is the formal inclusion map. Milman [1970] proved the following:

If $E \subset c_0$ with dim E = n, then there exists $x = (x_i) \in E$, $x \neq 0$, such that $|x_i| = ||x||_{\infty}$ for at least *n* values of *i*. ('flat' vectors) Since for a flat vector *x* we have $||x||_{\ell_q} \ll ||x||_{\ell_p}$, it follows that $I_{p,q} \in \mathcal{FS}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

following:

Let $1 \leq p < q < \infty$. $\{0\} \subsetneq \mathcal{K}(\ell_p, \ell_q) \subsetneq \mathcal{J}^{I_{p,q}} \subset \mathcal{L}(\ell_p, \ell_q)$, where $I_{p,q} : \ell_p \to \ell_q$ is the formal inclusion map. Milman [1970] proved the

If $E \subset c_0$ with dim E = n, then there exists $x = (x_i) \in E$, $x \neq 0$, such that $|x_i| = ||x||_{\infty}$ for at least *n* values of *i*. ('flat' vectors) Since for a flat vector *x* we have $||x||_{\ell_a} \ll ||x||_{\ell_p}$, it follows that $I_{p,q} \in \mathcal{FS}$.

The formal inclusion map $\ell_{p} \sim \left(\bigoplus \ell_{2}^{n}\right)_{\ell_{p}} \rightarrow \left(\bigoplus \ell_{2}^{n}\right)_{\ell_{q}} \sim \ell_{q}$ is not finitely strictly singular.

Let
$$1 \leq p < q < \infty$$
.
 $\{0\} \subsetneq \mathcal{K}(\ell_p, \ell_q) \subsetneq \mathcal{J}^{\ell_{p,q}} \subset \mathcal{L}(\ell_p, \ell_q)$,
where $I_{p,q} \colon \ell_p \to \ell_q$ is the formal inclusion map. Milman [1970]

where $I_{p,q}: \ell_p \to \ell_q$ is the formal inclusion map. Milman [1970] proved the following:

If $E \subset c_0$ with dim E = n, then there exists $x = (x_i) \in E$, $x \neq 0$, such that $|x_i| = ||x||_{\infty}$ for at least *n* values of *i*. ('flat' vectors) Since for a flat vector *x* we have $||x||_{\ell_q} \ll ||x||_{\ell_p}$, it follows that $I_{p,q} \in \mathcal{FS}$.

The formal inclusion map $\ell_{\rho} \sim \left(\bigoplus \ell_2^n\right)_{\ell_{\rho}} \rightarrow \left(\bigoplus \ell_2^n\right)_{\ell_q} \sim \ell_q$ is not finitely strictly singular. So

$$\{0\} \subsetneq \mathcal{K}(\ell_p, \ell_q) \subsetneq \mathcal{J}^{l_{p,q}} \subset \mathcal{FS} \subsetneq \mathcal{L}(\ell_p, \ell_q) \;.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Let
$$1 \leq p < q < \infty$$
.
 $\{0\} \subsetneq \mathcal{K}(\ell_p, \ell_q) \subsetneq \mathcal{J}^{l_{p,q}} \subset \mathcal{L}(\ell_p, \ell_q)$,
where $I_{p,q} \colon \ell_p \to \ell_q$ is the formal inclusion map. Milman [1970] p

where $I_{p,q}\colon \ell_p\to \ell_q$ is the formal inclusion map. Milman [1970] proved the following:

If $E \subset c_0$ with dim E = n, then there exists $x = (x_i) \in E$, $x \neq 0$, such that $|x_i| = ||x||_{\infty}$ for at least *n* values of *i*. ('flat' vectors) Since for a flat vector *x* we have $||x||_{\ell_q} \ll ||x||_{\ell_p}$, it follows that $I_{p,q} \in \mathcal{FS}$.

The formal inclusion map $\ell_{\rho} \sim \left(\bigoplus \ell_2^n\right)_{\ell_{\rho}} \rightarrow \left(\bigoplus \ell_2^n\right)_{\ell_q} \sim \ell_q$ is not finitely strictly singular. So

$$\{0\} \subsetneq \mathcal{K}(\ell_p, \ell_q) \subsetneq \mathcal{J}^{I_{p,q}} \subset \mathcal{FS} \subsetneq \mathcal{L}(\ell_p, \ell_q) \ .$$

We have at least 2 closed ideals.

Let 1 .

<□ > < @ > < E > < E > E のQ @

Let 1 .

Sari, Schlumprecht, Tomczak-Jaegerman, Troitsky [2007]

Let 1 .

Sari, Schlumprecht, Tomczak-Jaegerman, Troitsky [2007]

So we have 4 closed ideals.

Let 1 .

Sari, Schlumprecht, Tomczak-Jaegerman, Troitsky [2007]

So we have 4 closed ideals.

Schlumprecht [2011]:

Let 1 .

Sari, Schlumprecht, Tomczak-Jaegerman, Troitsky [2007]

So we have 4 closed ideals.

Schlumprecht [2011]:

So we have 4 + 2 = 7 closed ideals.

WLOG $1 and <math>p < q < \infty$.

<□ > < @ > < E > < E > E のQ @

WLOG $1 and <math>p < q < \infty$.

Set $Z = \left(\bigoplus \ell_2^n\right)_{\ell_q}$ and fix an isomorphism $U \colon Z \to \ell_q$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

WLOG $1 and <math>p < q < \infty$.

Set $Z = \left(\bigoplus \ell_2^n\right)_{\ell_q}$ and fix an isomorphism $U \colon Z \to \ell_q$.

Consider G_n , dim $G_n = n$, with normalized, 1-unconditional basis $(g_i^{(n)})_{i=1}^n$.

WLOG $1 and <math>p < q < \infty$.

Set $Z = \left(\bigoplus \ell_2^n\right)_{\ell_q}$ and fix an isomorphism $U \colon Z \to \ell_q$.

Consider G_n , dim $G_n = n$, with normalized, 1-unconditional basis $(g_j^{(n)})_{j=1}^n$. We will have $G_n \subset \ell_p^{k_n}$ uniformly complemented.

WLOG $1 and <math>p < q < \infty$.

Set $Z = \left(\bigoplus \ell_2^n\right)_{\ell_q}$ and fix an isomorphism $U \colon Z \to \ell_q$.

Consider G_n , dim $G_n = n$, with normalized, 1-unconditional basis $(g_j^{(n)})_{j=1}^n$. We will have $G_n \subset \ell_p^{k_n}$ uniformly complemented. Have $W = (\bigoplus G_n)_{\ell_n}$ with a projection $P \colon \ell_p \to W$.

WLOG $1 and <math>p < q < \infty$.

Set $Z = \left(\bigoplus \ell_2^n\right)_{\ell_q}$ and fix an isomorphism $U \colon Z \to \ell_q$.

Consider G_n , dim $G_n = n$, with normalized, 1-unconditional basis $(g_j^{(n)})_{j=1}^n$. We will have $G_n \subset \ell_p^{k_n}$ uniformly complemented. Have $W = (\bigoplus G_n)_{\ell_p}$ with a projection $P \colon \ell_p \to W$. We let $I_{W,Z} \colon W \to Z$ be the formal inclusion given by $I_{W,Z}(g_j^{(n)}) = e_j^{(n)}$.

WLOG $1 and <math>p < q < \infty$.

Set $Z = \left(\bigoplus \ell_2^n\right)_{\ell_q}$ and fix an isomorphism $U \colon Z \to \ell_q$.

Consider G_n , dim $G_n = n$, with normalized, 1-unconditional basis $(g_j^{(n)})_{j=1}^n$. We will have $G_n \subset \ell_p^{k_n}$ uniformly complemented. Have $W = (\bigoplus G_n)_{\ell_p}$ with a projection $P \colon \ell_p \to W$. We let $I_{W,Z} \colon W \to Z$ be the formal inclusion given by $I_{W,Z}(g_j^{(n)}) = e_j^{(n)}$. This yields the closed ideal $\mathcal{J}^{I_{W,Z}}$ of $\mathcal{L}(\ell_p, \ell_q)$.

(日) (同) (三) (三) (三) (○) (○)

WLOG $1 and <math>p < q < \infty$.

Set $Z = \left(\bigoplus \ell_2^n\right)_{\ell_q}$ and fix an isomorphism $U \colon Z \to \ell_q$.

Consider G_n , dim $G_n = n$, with normalized, 1-unconditional basis $(g_j^{(n)})_{j=1}^n$. We will have $G_n \subset \ell_p^{k_n}$ uniformly complemented. Have $W = (\bigoplus G_n)_{\ell_p}$ with a projection $P \colon \ell_p \to W$. We let $I_{W,Z} \colon W \to Z$ be the formal inclusion given by $I_{W,Z}(g_j^{(n)}) = e_j^{(n)}$. This yields the closed ideal $\mathcal{J}^{I_{W,Z}}$ of $\mathcal{L}(\ell_p, \ell_q)$. This contains $T = U \circ I_{W,Z} \circ P$.

WLOG $1 and <math>p < q < \infty$.

Set $Z = \left(\bigoplus \ell_2^n\right)_{\ell_q}$ and fix an isomorphism $U \colon Z \to \ell_q$.

Consider G_n , dim $G_n = n$, with normalized, 1-unconditional basis $(g_j^{(n)})_{j=1}^n$. We will have $G_n \subset \ell_p^{k_n}$ uniformly complemented. Have $W = (\bigoplus G_n)_{\ell_p}$ with a projection $P \colon \ell_p \to W$. We let $I_{W,Z} \colon W \to Z$ be the formal inclusion given by $I_{W,Z}(g_j^{(n)}) = e_j^{(n)}$. This yields the closed ideal $\mathcal{J}^{I_{W,Z}}$ of $\mathcal{L}(\ell_p, \ell_q)$. This contains $T = U \circ I_{W,Z} \circ P$.

Consider
$$F_n$$
, $(f_j^{(n)})_{j=1}^n$, $Y = (\bigoplus F_n)_{\ell_p}$, $I_{Y,Z}$, $\mathcal{J}^{I_{Y,Z}}$.

WLOG $1 and <math>p < q < \infty$.

Set $Z = \left(\bigoplus \ell_2^n\right)_{\ell_q}$ and fix an isomorphism $U: Z \to \ell_q$.

Consider G_n , dim $G_n = n$, with normalized, 1-unconditional basis $(g_j^{(n)})_{j=1}^n$. We will have $G_n \subset \ell_p^{k_n}$ uniformly complemented. Have $W = (\bigoplus G_n)_{\ell_p}$ with a projection $P \colon \ell_p \to W$. We let $I_{W,Z} \colon W \to Z$ be the formal inclusion given by $I_{W,Z}(g_j^{(n)}) = e_j^{(n)}$. This yields the closed ideal $\mathcal{J}^{I_{W,Z}}$ of $\mathcal{L}(\ell_p, \ell_q)$. This contains $T = U \circ I_{W,Z} \circ P$.

Consider
$$F_n$$
, $(f_j^{(n)})_{j=1}^n$, $Y = (\bigoplus F_n)_{\ell_p}$, $I_{Y,Z}$, $\mathcal{J}^{I_{Y,Z}}$.

Assume that $(f_j^{(n)})_{j=1}^n$ dominates $(g_j^{(n)})_{j=1}^n$ for all *n*. Then $I_{Y,W}$ is continuous, and $I_{Y,Z} = I_{W,Z} \circ I_{Y,W}$, and so $\mathcal{J}^{I_{Y,Z}} \subset \mathcal{J}^{I_{W,Z}}$.

WLOG $1 and <math>p < q < \infty$.

Set $Z = \left(\bigoplus \ell_2^n\right)_{\ell_q}$ and fix an isomorphism $U \colon Z \to \ell_q$.

Consider G_n , dim $G_n = n$, with normalized, 1-unconditional basis $(g_j^{(n)})_{j=1}^n$. We will have $G_n \subset \ell_p^{k_n}$ uniformly complemented. Have $W = (\bigoplus G_n)_{\ell_p}$ with a projection $P \colon \ell_p \to W$. We let $I_{W,Z} \colon W \to Z$ be the formal inclusion given by $I_{W,Z}(g_j^{(n)}) = e_j^{(n)}$. This yields the closed ideal $\mathcal{J}^{I_{W,Z}}$ of $\mathcal{L}(\ell_p, \ell_q)$. This contains $T = U \circ I_{W,Z} \circ P$.

Consider
$$F_n$$
, $(f_j^{(n)})_{j=1}^n$, $Y = (\bigoplus F_n)_{\ell_p}$, $I_{Y,Z}$, $\mathcal{J}^{I_{Y,Z}}$.

Assume that $(f_j^{(n)})_{j=1}^n$ dominates $(g_j^{(n)})_{j=1}^n$ for all *n*. Then $I_{Y,W}$ is continuous, and $I_{Y,Z} = I_{W,Z} \circ I_{Y,W}$, and so $\mathcal{J}^{I_{Y,Z}} \subset \mathcal{J}^{I_{W,Z}}$.

Under some conditions we show that $T \notin \mathcal{J}^{I_{Y,Z}}$.

Fix $1 . Let <math>(w_n)$ be a decreasing sequence in (0, 1]. Fix *n*. We let G_n be the span of a sequence $g_j^{(n)}$, $1 \le j \le n$, of independent symmetric, 3-valued random variables in L_p , where $\|g_j^{(n)}\|_{L_p} = 1$ and $w_n = \|g_j^{(n)}\|_{L_2}^{-1}$.

Fix $1 . Let <math>(w_n)$ be a decreasing sequence in (0, 1]. Fix *n*. We let G_n be the span of a sequence $g_j^{(n)}$, $1 \le j \le n$, of independent symmetric, 3-valued random variables in L_p , where $\|g_j^{(n)}\|_{L_p} = 1$ and $w_n = \|g_j^{(n)}\|_{L_2}^{-1}$.

Then G_n^* is isomorphic to $(\mathbb{R}^n, \|\cdot\|_{p', w_n})$, where

$$\|(a_j)_{j=1}^n\|_{p',w_n} = \left(\sum |a_j|^{p'}\right)^{\frac{1}{p'}} \vee w_n \left(\sum |a_j|^2\right)^{\frac{1}{2}}$$

Fix $1 . Let <math>(w_n)$ be a decreasing sequence in (0, 1]. Fix *n*. We let G_n be the span of a sequence $g_j^{(n)}$, $1 \le j \le n$, of independent symmetric, 3-valued random variables in L_p , where $\|g_j^{(n)}\|_{L_p} = 1$ and $w_n = \|g_j^{(n)}\|_{L_2}^{-1}$.

Then G_n^* is isomorphic to $(\mathbb{R}^n, \|\cdot\|_{p', w_n})$, where

$$\|(a_j)_{j=1}^n\|_{p',w_n} = \left(\sum |a_j|^{p'}\right)^{\frac{1}{p'}} \vee w_n \left(\sum |a_j|^2\right)^{\frac{1}{2}}$$

The spaces F_n are defined using a different sequence (v_n) . The condition we need is as follows.

Fix $1 . Let <math>(w_n)$ be a decreasing sequence in (0, 1]. Fix *n*. We let G_n be the span of a sequence $g_j^{(n)}$, $1 \le j \le n$, of independent symmetric, 3-valued random variables in L_p , where $\|g_j^{(n)}\|_{L_p} = 1$ and $w_n = \|g_j^{(n)}\|_{L_2}^{-1}$.

Then G_n^* is isomorphic to $(\mathbb{R}^n, \|\cdot\|_{p', w_n})$, where

$$\|(a_j)_{j=1}^n\|_{p',w_n} = \left(\sum |a_j|^{p'}\right)^{\frac{1}{p'}} \vee w_n \left(\sum |a_j|^2\right)^{\frac{1}{2}}$$

The spaces F_n are defined using a different sequence (v_n) . The condition we need is as follows.

$$rac{v_{\sqrt{cn}}}{w_n} o 0$$
 as $n o \infty$ for all $c \in (0,1)$.