A hierarchy of separable commutative Calkin algebras

Despoina Ioanna Zisimopoulou (joint work with Pavlos Motakis and Daniele Puglisi)

Department of Mathematics National Technical University of Athens

Brazilian Workshop in Geometry of Banach spaces, 2014

European Union
European Social Fund

OPERATIONAL PROGRAMME
EDUCATION AND LIFELONG LEARNING
investing in knoweedge society
MINISTRY OF EDUCATION \& RELIGIOUS AFFAIRS, CULTURE \& SPORTS M A N A G IN G AUTH ORITY

Co-financed by Greece and the European Union

Banach algebras as Calkin Algebras

- Let A be a Banach algebra. Does there exist a Banach space X such that the Calkin algebra of X is isomorphic, as a Banach algebra, to A ?
- The Calkin algebra of X is defined to be the space $\operatorname{Cal}(X)=\mathcal{L}(X) / \mathcal{K}(X)$, where $\mathcal{L}(X)$ denotes the space of all bounded linear operators defined on X and $\mathcal{K}(X)$ denotes the spaces of all compact operators defined on X.
- We denote by $[T]$ the equivalence class of $T \in \mathcal{L}(X)$ in $\mathcal{L}(X) / \mathcal{K}(X)$.
- $\operatorname{Cal}(X)$ endowed with the operation $[T] \circ[S]=[T \circ S]$ becomes a Banach algebra.

Banach algebras as Calkin Algebras

- Let A be a Banach algebra. Does there exist a Banach space X such that the Calkin algebra of X is isomorphic, as a Banach algebra, to A ?
- The Calkin algebra of X is defined to be the space $\operatorname{Cal}(X)=\mathcal{L}(X) / \mathcal{K}(X)$, where $\mathcal{L}(X)$ denotes the space of all bounded linear operators defined on X and $\mathcal{K}(X)$ denotes the spaces of all compact operators defined on X.
- We denote by $[T]$ the equivalence class of $T \in \mathcal{L}(X)$ in
- $\operatorname{Cal}(X)$ endowed with the operation $[T] \circ[S]=[T \circ S]$ becomes a Banach algebra.

Banach algebras as Calkin Algebras

- Let A be a Banach algebra. Does there exist a Banach space X such that the Calkin algebra of X is isomorphic, as a Banach algebra, to A ?
- The Calkin algebra of X is defined to be the space $\operatorname{Cal}(X)=\mathcal{L}(X) / \mathcal{K}(X)$, where $\mathcal{L}(X)$ denotes the space of all bounded linear operators defined on X and $\mathcal{K}(X)$ denotes the spaces of all compact operators defined on X.
- We denote by [T] the equivalence class of $T \in \mathcal{L}(X)$ in $\mathcal{L}(X) / \mathcal{K}(X)$.
- $\operatorname{Cal}(X)$ endowed with the operation $[T] \circ[S]=[T \circ S]$ becomes a Banach algebra.

Banach algebras as Calkin Algebras

- Let A be a Banach algebra. Does there exist a Banach space X such that the Calkin algebra of X is isomorphic, as a Banach algebra, to A ?
- The Calkin algebra of X is defined to be the space $\operatorname{Cal}(X)=\mathcal{L}(X) / \mathcal{K}(X)$, where $\mathcal{L}(X)$ denotes the space of all bounded linear operators defined on X and $\mathcal{K}(X)$ denotes the spaces of all compact operators defined on X.
- We denote by $[T]$ the equivalence class of $T \in \mathcal{L}(X)$ in $\mathcal{L}(X) / \mathcal{K}(X)$.
- $\operatorname{Cal}(X)$ endowed with the operation $[T] \circ[S]=[T \circ S]$ becomes a Banach algebra.

Case $A=\mathbb{R}$

- S. Argyros and R. Haydon in 2011 constructed a Banach space $X_{A H}$ that satisfies the "scalar plus compact" property.
S. A. Argyros and R. Haydon: A hereditarily indecomposable \mathcal{L}_{∞}-space that solves the scalar-plus-compact problem, Acta Math. 206 (2011) 1-54.

Hence, $\mathrm{Cal}\left(X_{A H}\right)$ is one-dimensional.

Case $A=\ell_{1}\left(\mathbb{N}_{0}\right)$

- M. Tarbard in 2013 constructed a Banach space X_{∞} such that $\mathrm{Cal}\left(X_{\infty}\right)$ is isometric as a Banach algebra with the convolution algebra $\ell_{1}\left(\mathbb{N}_{0}\right)$.

Matthew Tarbard: Operators on Banach Spaces of Bourgain-Delbaen Type, arXiv:1309.7469 (2013).

Case $A=C(K)$ for K countable compact metric space

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_{∞} space X such that its Calkin algebra is isomorphic, as a Banach algebra, to $C(K)$.
[P.Motakis, D. Puglisi, D. Z] A hierarchy of separable commutative Calkin algebras , arXiv: 1407.8073.

Case $A=C(K)$ for K countable compact metric space

- The basic ingredients of our method are the following:
- The Argyros Haydon space $X_{A H}$.
- The Argyros-Haydon sum of a sequence of separable Banach spaces $\left(X_{n}\right)_{n},\left(\sum_{n} \oplus X_{n}\right)_{A H}$, introduced in
[D. Z] Bourgain-Delbaen \mathcal{L}^{∞}-sums of Banach spaces,
arXiv:1402.6564 (2014)

Case $A=C(K)$ for K countable compact metric space

- The basic ingredients of our method are the following:
- The Argyros Haydon space $X_{A H}$.
- The Argyros-Haydon sum of a sequence of separable Banach spaces $\left(X_{n}\right)_{n},\left(\sum_{n} \oplus X_{n}\right)_{A H}$, introduced in
[D. Z] Bourgain-Delbaen \mathcal{L}^{∞}-sums of Banach spaces,
arXiv:1402.6564 (2014)

Case $A=C(K)$ for K countable compact metric space

- The basic ingredients of our method are the following:
- The Argyros Haydon space $X_{A H}$.
- The Argyros-Haydon sum of a sequence of separable Banach spaces $\left(X_{n}\right)_{n},\left(\sum_{n} \oplus X_{n}\right)_{A H}$, introduced in
[D. Z] Bourgain-Delbaen \mathcal{L}^{∞}-sums of Banach spaces, arXiv:1402.6564 (2014).

Finite sums of Argyros-Haydon spaces

- The space $X_{A H}$ is a separable \mathcal{L}^{∞} space with dual isomorphic to ℓ_{1}.
- The construction of $X_{A H}$ is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers $\left(m_{j}, n_{j}\right)_{j}$ that satisfy certain growth conditions.
- For $L \subset \mathbb{N}$ infinite, we denote by $X_{A H}(L)$ the space constructed using the subsequence $\left(m_{j}, n_{j}\right)_{j \in L}$.
- For every $L \subset \mathbb{N}$ infinite, the space $X_{A H(L)}$ shares the same properties with $X_{A H}$.
- Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T: X_{A H}(L) \rightarrow X_{A H}(M)$ is compact.

Finite sums of Argyros-Haydon spaces

- The space $X_{A H}$ is a separable \mathcal{L}^{∞} space with dual isomorphic to ℓ_{1}.
- The construction of $X_{A H}$ is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers $\left(m_{j}, n_{j}\right)_{j}$ that satisfy certain growth conditions.
- For $L \subset \mathbb{N}$ infinite, we denote by $X_{A H}(L)$ the space constructed using the subsequence $\left(m_{j}, n_{j}\right)_{j \in L}$
- For every $L \subset \mathbb{N}$ infinite, the space $X_{A H(L)}$ shares the same properties with $X_{A H}$.
- Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T: X_{A H}(L) \rightarrow X_{A H}(M)$ is compact.

Finite sums of Argyros-Haydon spaces

- The space $X_{A H}$ is a separable \mathcal{L}^{∞} space with dual isomorphic to ℓ_{1}.
- The construction of $X_{A H}$ is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers $\left(m_{j}, n_{j}\right)_{j}$ that satisfy certain growth conditions.
- For $L \subset \mathbb{N}$ infinite, we denote by $X_{A H}(L)$ the space constructed using the subsequence $\left(m_{j}, n_{j}\right)_{j \in L}$.
- For every $L \subset \mathbb{N}$ infinite, the space $X_{A H(L)}$ shares the same properties with $X_{A H}$.
- Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T: X_{A H}(L) \rightarrow X_{A H}(M)$ is compact.

Finite sums of Argyros-Haydon spaces

- The space $X_{A H}$ is a separable \mathcal{L}^{∞} space with dual isomorphic to ℓ_{1}.
- The construction of $X_{A H}$ is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers $\left(m_{j}, n_{j}\right)_{j}$ that satisfy certain growth conditions.
- For $L \subset \mathbb{N}$ infinite, we denote by $X_{A H}(L)$ the space constructed using the subsequence $\left(m_{j}, n_{j}\right)_{j \in L}$.
- For every $L \subset \mathbb{N}$ infinite, the space $X_{A H(L)}$ shares the same properties with $X_{A H}$.
- Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T: X_{A H}(L) \rightarrow X_{A H}(M)$ is compact.

Finite sums of Argyros-Haydon spaces

- The space $X_{A H}$ is a separable \mathcal{L}^{∞} space with dual isomorphic to ℓ_{1}.
- The construction of $X_{A H}$ is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers $\left(m_{j}, n_{j}\right)_{j}$ that satisfy certain growth conditions.
- For $L \subset \mathbb{N}$ infinite, we denote by $X_{A H}(L)$ the space constructed using the subsequence $\left(m_{j}, n_{j}\right)_{j \in L}$.
- For every $L \subset \mathbb{N}$ infinite, the space $X_{A H(L)}$ shares the same properties with $X_{A H}$.
- Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T: X_{A H}(L) \rightarrow X_{A H}(M)$ is compact.

Finite sums of Banach spaces

- An observation.
- Let $\left(X_{i}\right)_{i=1}^{n}$ a finite sequence of Banach spaces and
assume that every bounded linear operator $T: X_{i} \rightarrow X_{j}$
is compact for every $i \neq j$.
Setting $X=\left(X_{1} \oplus \ldots \oplus X_{n}\right)_{\infty}$ it follows that $\operatorname{Cal}(X)$ is isometric with

Finite sums of Banach spaces

- An observation.
- Let $\left(X_{i}\right)_{i=1}^{n}$ a finite sequence of Banach spaces and assume that every bounded linear operator

$$
T: X_{i} \rightarrow X_{j}
$$

is compact for every $i \neq j$.
Setting $X=\left(X_{1} \oplus \ldots \oplus X_{n}\right)_{\infty}$ it follows that $\operatorname{Cal}(X)$ is isometric with

$$
\left(\operatorname{Cal}\left(X_{1}\right) \oplus \ldots \oplus \operatorname{Cal}\left(X_{n}\right)\right)_{\infty}
$$

Finite sums of Argyros-Haydon spaces

- Let $k \in \mathbb{N}, L_{1}, \ldots, L_{k}$ pairwise disjoint infinite subsets of \mathbb{N} and

$$
X=\left(X_{1} \oplus \cdots \oplus X_{k}\right)_{\infty}
$$

where $X_{i}=X_{A H\left(L_{i}\right)}$ for $i=1, \ldots k$.

- Since L_{i} are pairwise disjoint we have that every $T: X_{A H\left(L_{i}\right)} \rightarrow X_{A H\left(L_{i}\right)}$ is compact for every $i \neq j$.
- Since $\mathcal{C} a l\left(X_{i}\right)$ is one dimensional, by the above observation we obtain that $\operatorname{Cal}(X)$ is k-dimensional.

Finite sums of Argyros-Haydon spaces

- Let $k \in \mathbb{N}, L_{1}, \ldots, L_{k}$ pairwise disjoint infinite subsets of \mathbb{N} and

$$
X=\left(X_{1} \oplus \cdots \oplus X_{k}\right)_{\infty}
$$

where $X_{i}=X_{A H\left(L_{i}\right)}$ for $i=1, \ldots k$.

- Since L_{i} are pairwise disjoint we have that every $T: X_{A H\left(L_{i}\right)} \rightarrow X_{A H\left(L_{j}\right)}$ is compact for every $i \neq j$.
- Since $\mathcal{C a l}\left(X_{i}\right)$ is one dimensional, by the above observation we obtain that $\operatorname{Cal}(X)$ is k-dimensional.

Finite sums of Argyros-Haydon spaces

- Let $k \in \mathbb{N}, L_{1}, \ldots, L_{k}$ pairwise disjoint infinite subsets of \mathbb{N} and

$$
X=\left(X_{1} \oplus \cdots \oplus X_{k}\right)_{\infty}
$$

where $X_{i}=X_{A H\left(L_{i}\right)}$ for $i=1, \ldots k$.

- Since L_{i} are pairwise disjoint we have that every $T: X_{A H\left(L_{i}\right)} \rightarrow X_{A H\left(L_{j}\right)}$ is compact for every $i \neq j$.
- Since $\mathcal{C a l}\left(X_{i}\right)$ is one dimensional, by the above observation we obtain that $\operatorname{Cal}(X)$ is k-dimensional.

AH-sums of separable Banach spaces

- We will now see the Calkin algebra of the space

$$
X=\left(\sum_{n} \oplus X_{n}\right)_{B D}
$$

where $X_{n}=X_{A H}\left(L_{n}\right)$ for a sequence $\left(L_{n}\right)_{n}$ of pairwise disjoint infinite subsets of natural numbers.

- For a sequence $\left(X_{n}\right)_{n}$ of separable Banach spaces, the space $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ is called a Bourgain Delbaen \mathcal{L}^{∞} sum of $\left(X_{n}\right)_{n}$ and is defined as a subspace of
- The sets Δ_{n} are finite,pairwise disjoint and defined using the Bourgain-Delbaen method.

AH-sums of separable Banach spaces

- We will now see the Calkin algebra of the space

$$
X=\left(\sum_{n} \oplus X_{n}\right)_{B D}
$$

where $X_{n}=X_{A H}\left(L_{n}\right)$ for a sequence $\left(L_{n}\right)_{n}$ of pairwise disjoint infinite subsets of natural numbers.

- For a sequence $\left(X_{n}\right)_{n}$ of separable Banach spaces, the space $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ is called a Bourgain Delbaen \mathcal{L}^{∞} sum of $\left(X_{n}\right)_{n}$ and is defined as a subspace of $\left(\sum \oplus\left(X_{n} \oplus \ell_{\infty}\left(\Delta_{n}\right)\right)_{\infty}\right)_{\infty}$.
- The sets Δ_{n} are finite,pairwise disjoint and defined using the Bourgain-Delbaen method.

AH-sums of separable Banach spaces

- We will now see the Calkin algebra of the space

$$
X=\left(\sum_{n} \oplus X_{n}\right)_{B D},
$$

where $X_{n}=X_{A H}\left(L_{n}\right)$ for a sequence $\left(L_{n}\right)_{n}$ of pairwise disjoint infinite subsets of natural numbers.

- For a sequence $\left(X_{n}\right)_{n}$ of separable Banach spaces, the space $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ is called a Bourgain Delbaen \mathcal{L}^{∞} sum of $\left(X_{n}\right)_{n}$ and is defined as a subspace of $\left(\sum \oplus\left(X_{n} \oplus \ell_{\infty}\left(\Delta_{n}\right)\right)_{\infty}\right)_{\infty}$.
- The sets Δ_{n} are finite,pairwise disjoint and defined using the Bourgain-Delbaen method.

The Definition of BD-sums of Banach spaces

- In particular, we define linear extension operators

$$
i_{n}:\left(\sum_{k \leq n} \oplus\left(X_{k} \oplus \ell_{\infty}\left(\Delta_{k}\right)\right)_{\infty}\right)_{\infty} \rightarrow\left(\sum \oplus\left(X_{n} \oplus \ell_{\infty}\left(\Delta_{n}\right)\right)_{\infty}\right)_{\infty}
$$

such that

The Definition of BD-sums of Banach spaces

- In particular, we define linear extension operators

$$
i_{n}:\left(\sum_{k \leq n} \oplus\left(X_{k} \oplus \ell_{\infty}\left(\Delta_{k}\right)\right)_{\infty}\right)_{\infty} \rightarrow\left(\sum \oplus\left(X_{n} \oplus \ell_{\infty}\left(\Delta_{n}\right)\right)_{\infty}\right)_{\infty}
$$

such that

- $\sup _{n}\left\|i_{n}\right\|<\infty$.

The Definition of BD-sums of Banach spaces

- In particular, we define linear extension operators

$$
i_{n}:\left(\sum_{k \leq n} \oplus\left(X_{k} \oplus \ell_{\infty}\left(\Delta_{k}\right)\right)_{\infty}\right)_{\infty} \rightarrow\left(\sum \oplus\left(X_{n} \oplus \ell_{\infty}\left(\Delta_{n}\right)\right)_{\infty}\right)_{\infty}
$$

such that

- $\sup _{n}\left\|i_{n}\right\|<\infty$.
- $\left(\sum_{n} \oplus X_{n}\right)_{B D}=\overline{U_{n} Y_{n}}$, where

$$
Y_{n}=i_{n}\left[\left(\sum_{k \leq n} \oplus\left(X_{k} \oplus \ell_{\infty}\left(\Delta_{k}\right)\right)_{\infty}\right)_{\infty}\right]
$$

The BD-method in AH sums of Banach spaces

- Let x be a vector in $\left(\sum_{k \leq n} \oplus\left(X_{k} \oplus \ell_{\infty}\left(\Delta_{n}\right)\right)_{\infty}\right)_{\infty}$

The BD- method in AH-sums of Banach spaces

- The vector $i_{n}(x)$, i.e. x is extended by assigning to it new values in $\ell_{\infty}\left(\cup_{k>n} \Delta_{k}\right)$.

The \mathcal{L}^{∞} structure of AH-sums

- The finite sets Δ_{n} are defined recursively and for each $\gamma \in \Delta_{n+1}$ we assign a linear functional $c_{\gamma}^{*}:\left(\sum_{k=1}^{n} \oplus\left(X_{k} \oplus \ell_{\infty}\left(\Delta_{k}\right)\right)_{\infty}\right)_{\infty} \rightarrow \mathbb{R}$ such that $i_{n}(x)(\gamma)=c_{\gamma}^{*}(x)$.

- This implies that for a fixed $n \in \mathbb{N}$, taking $x_{k} \in X_{k}$ with $x_{k} \in \cap_{\gamma \in \cup_{i-1}^{n} \Delta_{i}} K_{\text {Kerc }}^{*}$ then the extended vector $i_{k}\left(x_{k}\right)$ does not have non zero values upon Δ_{i} for every $1 \leq i \leq n$.

The \mathcal{L}^{∞} structure of AH-sums

- The finite sets Δ_{n} are defined recursively and for each $\gamma \in \Delta_{n+1}$ we assign a linear functional $c_{\gamma}^{*}:\left(\sum_{k=1}^{n} \oplus\left(X_{k} \oplus \ell_{\infty}\left(\Delta_{k}\right)\right)_{\infty}\right)_{\infty} \rightarrow \mathbb{R}$ such that $i_{n}(x)(\gamma)=c_{\gamma}^{*}(x)$.

- This implies that for a fixed $n \in \mathbb{N}$, taking $x_{k} \in X_{k}$ with $x_{k} \in \cap_{\gamma \in \cup_{i=1}^{n} \Delta_{i}} \operatorname{Kerc}_{\gamma}^{*}$ then the extended vector $i_{k}\left(x_{k}\right)$ does not have non zero values upon Δ_{i} for every $1 \leq i \leq n$.

The \mathcal{L}^{∞} structure of AH -sums

- Hence, for $x_{k} \in \cap_{\gamma \in \cup_{i=1}^{n} \Delta_{i}} \operatorname{Kerc}_{\gamma}^{*} \cap X_{k}, i=1, \ldots, n$

$$
\left\|i_{1}\left(x_{1}\right)+\ldots+i_{n}\left(x_{n}\right)\right\| \simeq \max _{1 \leq k \leq n}\left\|x_{k}\right\| .
$$

- Since Δ_{i} are finite, the above implies that

$$
\left\langle\left[r_{k}\right]: k=1, \ldots, n\right\rangle \simeq c_{0}(n) .
$$

The \mathcal{L}^{∞} structure of AH -sums

- Hence, for $x_{k} \in \cap_{\gamma \in \cup} \cup_{i=1}^{n} \Delta_{i} \operatorname{Kerc}_{\gamma}^{*} \cap X_{k}, i=1, \ldots, n$

$$
\left\|i_{1}\left(x_{1}\right)+\ldots+i_{n}\left(x_{n}\right)\right\| \simeq \max _{1 \leq k \leq n}\left\|x_{k}\right\| .
$$

- Since Δ_{i} are finite, the above implies that

$$
\left\langle\left[I_{k}\right]: k=1, \ldots, n\right\rangle \simeq c_{0}(n) .
$$

The \mathcal{L}^{∞} structure of AH -sums

- Hence, for $x_{k} \in \cap_{\gamma \in \cup} \cup_{i=1}^{n} \Delta_{i} \operatorname{Kerc}_{\gamma}^{*} \cap X_{k}, i=1, \ldots, n$

$$
\left\|i_{1}\left(x_{1}\right)+\ldots+i_{n}\left(x_{n}\right)\right\| \simeq \max _{1 \leq k \leq n}\left\|x_{k}\right\|
$$

- Since Δ_{i} are finite, the above implies that

$$
\left\langle\left[I_{k}\right]: k=1, \ldots, n\right\rangle \simeq c_{0}(n) .
$$

AH-sums of separable Banach spaces

- Without taking any further assumptions for the separable X_{n}, the space $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ satisfies the following basic properties:

- Each X_{n} is isometric with $i_{n}\left[X_{n}\right]$ and complemented in X via projection I_{n}.
- An operator K defined on $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ is called horizontally compact operator if

AH-sums of separable Banach spaces

- Without taking any further assumptions for the separable X_{n}, the space $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ satisfies the following basic properties:
- $X=\sum_{n} \oplus i_{n}\left[X_{n} \oplus \ell_{\infty}\left(\Delta_{n}\right)\right]$.
- Each X_{n} is isometric with $i_{n}\left[X_{n}\right]$ and complemented in X via projection I_{n}.
- An operator K defined on $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ is called horizontally compact operator if

AH-sums of separable Banach spaces

- Without taking any further assumptions for the separable X_{n}, the space $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ satisfies the following basic properties:
- $X=\sum_{n} \oplus i_{n}\left[X_{n} \oplus \ell_{\infty}\left(\Delta_{n}\right)\right]$.
- Each X_{n} is isometric with $i_{n}\left[X_{n}\right]$ and complemented in X via projection I_{n}.
- An operator K defined on $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ is called horizontally compact operator if

AH-sums of separable Banach spaces

- Without taking any further assumptions for the separable X_{n}, the space $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ satisfies the following basic properties:
- $X=\sum_{n} \oplus i_{n}\left[X_{n} \oplus \ell_{\infty}\left(\Delta_{n}\right)\right]$.
- Each X_{n} is isometric with $i_{n}\left[X_{n}\right]$ and complemented in X via projection I_{n}.
- An operator K defined on $X=\left(\sum_{n} \oplus X_{n}\right)_{B D}$ is called horizontally compact operator if

$$
\left\|\left.K\right|_{\sum_{n \geq k} \oplus i_{n}\left[X_{n} \oplus \ell_{\infty}\left(\Delta_{n}\right)\right]}\right\|^{k \rightarrow \infty} 0 .
$$

AH-sums of separable Banach spaces

- The space $\left(\sum_{n} \oplus X_{n}\right)_{B D}$ that is constructed using Bourgain-Delbaen method of constructing $X_{A H}$ is denoted by $\left(\sum \oplus X_{n}\right)_{\text {Aн }}$.
- The construction of $\left(\sum \oplus X_{n}\right)_{\text {AH }}$ depends on the same sequence of parameters $\left(m_{j}, n_{j}\right)_{j}$ of $X_{A H}$.
- Again for $L \subset \mathbb{N}$ infinite, we denote by $\left(\sum_{n} \oplus X_{n}\right)_{A H(L)}$ the space $\left(\sum \oplus X_{n}\right)_{A H}$ constructed using the subsequence $\left(m_{j}, n_{j}\right)_{j \in L}$.

AH-sums of separable Banach spaces

- The space $\left(\sum_{n} \oplus X_{n}\right)_{B D}$ that is constructed using Bourgain-Delbaen method of constructing $X_{A H}$ is denoted by $\left(\sum \oplus X_{n}\right)_{A H}$.
- The construction of $\left(\sum \oplus X_{n}\right)_{A H}$ depends on the same sequence of parameters $\left(m_{j}, n_{j}\right)_{j}$ of $X_{A H}$.

AH-sums of separable Banach spaces

- The space $\left(\sum_{n} \oplus X_{n}\right)_{B D}$ that is constructed using Bourgain-Delbaen method of constructing $X_{A H}$ is denoted by $\left(\sum \oplus X_{n}\right)_{A H}$.
- The construction of $\left(\sum \oplus X_{n}\right)_{A H}$ depends on the same sequence of parameters $\left(m_{j}, n_{j}\right)_{j}$ of $X_{A H}$.
- Again for $L \subset \mathbb{N}$ infinite, we denote by $\left(\sum_{n} \oplus X_{n}\right)_{A H(L)}$ the space $\left(\sum \oplus X_{n}\right)_{A H}$ constructed using the subsequence $\left(m_{j}, n_{j}\right)_{j \in L}$.

AH sums of separable Banach spaces

- For every $L \subset \mathbb{N}$ infinite the space $X=\left(\sum_{n} \oplus X_{n}\right)_{A H(L)}$ has the following additional properties:
- The dual X^{*} is isomorphic with $\left(\sum_{n} \oplus\left(X_{n}^{*} \oplus \ell_{1}\left(\Delta_{n}\right)\right)_{1}\right)_{1}$
- By considering some specific sequences $\left(X_{n}\right)_{n}$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T=\lambda I+K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.
- For example, if X_{n} has the Schur property for every $n \in \mathbb{N}$, or ℓ_{1} does not embed isomorphically in X_{n}^{*} for every $n \in \mathbb{N}$, then the above holds.

AH sums of separable Banach spaces

- For every $L \subset \mathbb{N}$ infinite the space $X=\left(\sum_{n} \oplus X_{n}\right)_{A H(L)}$ has the following additional properties:
- The dual X^{*} is isomorphic with $\left(\sum_{n} \oplus\left(X_{n}^{*} \oplus \ell_{1}\left(\Delta_{n}\right)\right)_{1}\right)_{1}$.
- By considering some specific sequences $\left(X_{n}\right)_{n}$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T=\lambda I+K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.
- For example, if X_{n} has the Schur property for every $n \in \mathbb{N}$. or ℓ_{1} does not embed isomorphically in X_{n}^{*} for every $n \in \mathbb{N}$, then the above holds.

AH sums of separable Banach spaces

- For every $L \subset \mathbb{N}$ infinite the space $X=\left(\sum_{n} \oplus X_{n}\right)_{A H(L)}$ has the following additional properties:
- The dual X^{*} is isomorphic with $\left(\sum_{n} \oplus\left(X_{n}^{*} \oplus \ell_{1}\left(\Delta_{n}\right)\right)_{1}\right)_{1}$.
- By considering some specific sequences $\left(X_{n}\right)_{n}$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T=\lambda I+K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.
- For example, if X_{n} has the Schur property for every $n \in$ or ℓ_{1} does not embed isomorphically in X_{n}^{*} for every $n \in \mathbb{N}$ then the above holds.

AH sums of separable Banach spaces

- For every $L \subset \mathbb{N}$ infinite the space $X=\left(\sum_{n} \oplus X_{n}\right)_{A H(L)}$ has the following additional properties:
- The dual X^{*} is isomorphic with $\left(\sum_{n} \oplus\left(X_{n}^{*} \oplus \ell_{1}\left(\Delta_{n}\right)\right)_{1}\right)_{1}$.
- By considering some specific sequences $\left(X_{n}\right)_{n}$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T=\lambda I+K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.
- For example, if X_{n} has the Schur property for every $n \in \mathbb{N}$, or ℓ_{1} does not embed isomorphically in X_{n}^{*} for every $n \in \mathbb{N}$, then the above holds.

Calkin algebras of AH-sums

Proposition

Let L, L_{n} pairwise disjoints infinite subsets of \mathbb{N} and $X_{\text {AHsum }}=\left(\sum \oplus X_{A H}\left(L_{n}\right)\right)_{A H(L)}$. The space $X_{\text {AHsum }}$ has the "scalar-plus-horizontally compact" property.

- Observe also that since $X_{A H}^{*} \simeq \ell_{1}$, the space $X_{A H \text { sum }}$ is \mathcal{L} space.
- Moreover, Since every operator $T: X_{A H\left(L_{n}\right)} \rightarrow X_{A H\left(L_{m}\right)}$ is compact, we conclude that the space

where I denotes the identity map upon $X_{A H s u m}$ and for
each n, I_{n} is the projection defined on $X_{A H s u m}$ with image isometric with $X_{A H\left(L_{n}\right)}$.

Calkin algebras of AH-sums

Proposition

Let L, L_{n} pairwise disjoints infinite subsets of \mathbb{N} and $X_{\text {AHsum }}=\left(\sum \oplus X_{A H}\left(L_{n}\right)\right)_{A H(L)}$. The space $X_{A H s u m}$ has the "scalar-plus-horizontally compact" property.

- Observe also that since $X_{A H}^{*} \simeq \ell_{1}$, the space $X_{A H \text { sum }}$ is \mathcal{L}^{∞} space.
- Moreover, Since every operator $T: X_{A H\left(L_{n}\right)} \rightarrow X_{A H\left(L_{m}\right)}$ is compact, we conclude that the space

where I denotes the identity map upon $X_{A H s u m}$ and for
each n, I_{n} is the projection defined on $X_{\text {AHsum }}$ with image isometric with $X_{A H\left(L_{n}\right)}$

Calkin algebras of AH-sums

Proposition

Let L, L_{n} pairwise disjoints infinite subsets of \mathbb{N} and $X_{\text {AHsum }}=\left(\sum \oplus X_{A H}\left(L_{n}\right)\right)_{A H(L)}$. The space $X_{\text {AHsum }}$ has the "scalar-plus-horizontally compact" property.

- Observe also that since $X_{A H}^{*} \simeq \ell_{1}$, the space $X_{A H \text { sum }}$ is \mathcal{L}^{∞} space.
- Moreover, Since every operator $T: X_{A H\left(L_{n}\right)} \rightarrow X_{A H\left(L_{m}\right)}$ is compact, we conclude that the space

$$
\mathcal{L}\left(X_{\text {AHsum }}\right)=\overline{\left\langle I,\left(I_{n}\right)_{n}, \mathcal{K}\left(X_{\text {AHsum }}\right)\right\rangle},
$$

where I denotes the identity map upon $X_{A H \text { sum }}$ and for each n, I_{n} is the projection defined on $X_{A H s u m}$ with image isometric with $X_{A H\left(L_{n}\right)}$.

AH-sums of AH-spaces

- Hence \mathcal{C} al $\left(X_{\text {AHsum }}\right)=\mathcal{L}\left(X_{\text {AHsum }}\right) / \mathcal{K}\left(X_{\text {AHsum }}\right)=\overline{\left\langle[I],\left(\left[I_{n}\right]\right)_{n}\right\rangle}$.
- Using the \mathcal{L}^{∞} structure of the BD-sum $\left(\sum \oplus X_{A H}\left(L_{n}\right)\right)_{A H(L)}$ described earlier we obtain that

$$
\langle[1 k]: k=1, \ldots, n\rangle \sim^{C_{n}} c_{0}(n) .
$$

- Using the \mathcal{L}^{∞} structure of the spaces $X_{A H\left(L_{n}\right)}$, we have that $\left(C_{n}\right)_{n}$ is uniformly bounded and by the above we conclude that the Calkin algebra of $X_{\text {AHsum }}$ is isomorphic to C.

AH-sums of AH-spaces

- Hence $\mathcal{C a l}\left(X_{\text {AHsum }}\right)=\mathcal{L}\left(X_{\text {AHsum }}\right) / \mathcal{K}\left(X_{\text {AHsum }}\right)=\overline{\left\langle[I],\left(\left[I_{n}\right]\right)_{n}\right\rangle}$.
- Using the \mathcal{L}^{∞} structure of the BD-sum $\left(\sum \oplus X_{A H}\left(L_{n}\right)\right)_{A H(L)}$ described earlier we obtain that

$$
\left\langle\left[k_{k}\right]: k=1, \ldots, n\right\rangle \simeq^{C_{n}} c_{0}(n) .
$$

- Using the \mathcal{L}^{∞} structure of the spaces $X_{\text {AH }\left(L_{n}\right)}$, we have that $\left(C_{n}\right)_{n}$ is uniformly bounded and by the above we conclude that the Calkin algebra of $X_{\text {AHsum }}$ is isomorphic to c.

AH-sums of AH-spaces

- Hence $\mathcal{C a l}\left(X_{\text {AHsum }}\right)=\mathcal{L}\left(X_{\text {AHsum }}\right) / \mathcal{K}\left(X_{\text {AHsum }}\right)=\overline{\left\langle[I],\left(\left[I_{n}\right]\right)_{n}\right\rangle}$.
- Using the \mathcal{L}^{∞} structure of the BD-sum $\left(\sum \oplus X_{A H}\left(L_{n}\right)\right)_{A H(L)}$ described earlier we obtain that

$$
\left\langle\left[I_{k}\right]: k=1, \ldots, n\right\rangle \simeq^{C_{n}} c_{0}(n) .
$$

- Using the \mathcal{L}^{∞} structure of the spaces $X_{A H\left(L_{n}\right)}$, we have that $\left(C_{n}\right)_{n}$ is uniformly bounded and by the above we conclude that the Calkin algebra of $X_{\text {AHsum }}$ is isomorphic to c.

The Generalization of $X_{\text {AHsum }}=\left(\sum_{n} \oplus X_{A H\left(L_{n}\right)}\right)_{A H(L)}$

- We generalize the above concept using well founded trees \mathcal{T} with a unique root such that every non maximal node of \mathcal{T} has infinitely countable immediate successors.
- For such a tree \mathcal{T} and $L \subset \mathbb{N}$ infinite we construct Banach spaces $X_{(\mathcal{T}, L)}$ using induction on the order of \mathcal{T}
- We generalize the above concept using well founded trees \mathcal{T} with a unique root such that every non maximal node of \mathcal{T} has infinitely countable immediate successors.
- For such a tree \mathcal{T} and $L \subset \mathbb{N}$ infinite we construct Banach spaces $X_{(\mathcal{T}, L)}$ using induction on the order of \mathcal{T}.

The definition of the spaces $X_{(T, L)}$

For \mathcal{T} is a singleton and $L \subset \mathbb{N}$ we define $X_{(\mathcal{T}, L)}$ to be the space $X_{A H}(L)$.

Tree of rank zero:

$$
\begin{gathered}
\circ \\
X_{A H(L)}
\end{gathered}
$$

The definition of the spaces $X_{(T, L)}$

For a tree of order one we define $X_{(\mathcal{T}, L)}=\left(\sum \oplus X_{\left(\mathcal{T}_{n}, L_{n}\right)}\right)_{A H\left(L_{0}\right)}$.

Tree of rank 1:

The definition of the spaces $X_{(\tau, L)}$

For a tree of order two we define $X_{(\mathcal{T}, L)}=\left(\sum \oplus X_{\left(\mathcal{T}_{n}, L_{n}\right)}\right)_{A H\left(L_{0}\right)}$ etc...

Tree of rank 2:

There space $X_{(\mathcal{T}, L)}$ is accompanied by a set of norm-one projections $I_{s}, s \in \mathcal{T}$.

Properties of the spaces $X_{(T, L)}$

Proposition

- For every tree \mathcal{T} and $L \subset \mathbb{N}$ infinite, the space $X_{(\mathcal{T}, L)}$ is \mathcal{L}^{∞} and if $o(\mathcal{T})>0$ it has the "scalar-plus-horizontally compact" property.
- Note that $O(\mathcal{T})=0$, the space $X_{(\mathcal{T}, L)}$ has the "scalar plus compact" property as it coincides with the space $X_{A H(L)}$.

Properties of the spaces $X_{(T, L)}$

Proposition

- For every tree \mathcal{T} and $L \subset \mathbb{N}$ infinite, the space $X_{(\mathcal{T}, L)}$ is \mathcal{L}^{∞} and if $o(\mathcal{T})>0$ it has the "scalar-plus-horizontally compact" property.
- Note that $o(\mathcal{T})=0$, the space $X_{(\mathcal{T}, L)}$ has the "scalar plus compact" property as it coincides with the space $X_{A H(L)}$.

Operators defined on $X_{(T, L)}$

- For an operator S defined on $X_{\mathcal{T}, L}$ we denote by S_{t} the induced operator

$$
I_{t} \circ S \circ I_{t}
$$

which can considered upon $X_{\left(\mathcal{T}_{t}, L_{t}\right)}$.

- Every $S \in \mathcal{L}\left(X_{(\mathcal{T}, L)}\right)$ corresponds to a unique family $\left(\lambda_{t}\right)_{t \in \mathcal{T}}$ of scalars chosen to satisfy:
- If t is maximal (and hence $X_{\left(T_{t}, L_{t}\right)}=X_{A H\left(L_{t}\right)}$), $S_{t}-\lambda_{t} K_{t}$ is compact, while
- If t non maximal, $S_{t}-\lambda_{t} l_{t}$ is horizontally compact.

Operators defined on $X_{(T, L)}$

- For an operator S defined on $X_{\mathcal{T}, L}$ we denote by S_{t} the induced operator

$$
I_{t} \circ S \circ I_{t}
$$

which can considered upon $X_{\left(\mathcal{T}_{t}, L_{t}\right)}$.

- Every $S \in \mathcal{L}\left(X_{(\mathcal{T}, L)}\right)$ corresponds to a unique family $\left(\lambda_{t}\right)_{t \in \mathcal{T}}$ of scalars chosen to satisfy:
- If t is maximal (and hence $\left.X_{\left(\mathcal{T}_{t}, L_{t}\right)}=X_{A H\left(L_{t}\right)}\right), S_{t}-\lambda_{t} l_{t}$ is compact, while
- If t non maximal, $S_{t}-\lambda_{t} l_{t}$ is horizontally compact.

Operators defined on $X_{(T, L)}$

- For an operator S defined on $X_{\mathcal{T}, L}$ we denote by S_{t} the induced operator

$$
I_{t} \circ S \circ I_{t}
$$

which can considered upon $X_{\left(\mathcal{T}_{t}, L_{t}\right)}$.

- Every $S \in \mathcal{L}\left(X_{(\mathcal{T}, L)}\right)$ corresponds to a unique family $\left(\lambda_{t}\right)_{t \in \mathcal{T}}$ of scalars chosen to satisfy:
- If t is maximal (and hence $\left.X_{\left(\mathcal{T}_{t}, L_{t}\right)}=X_{A H\left(L_{t}\right)}\right), S_{t}-\lambda_{t} I_{t}$ is compact, while
- If t non maximal, $S_{t}-\lambda_{t} l_{t}$ is horizontally compact.

Operators defined on $X_{(T, L)}$

- For an operator S defined on $X_{\mathcal{T}, L}$ we denote by S_{t} the induced operator

$$
I_{t} \circ S \circ I_{t}
$$

which can considered upon $X_{\left(\mathcal{T}_{t}, L_{t}\right)}$.

- Every $S \in \mathcal{L}\left(X_{(\mathcal{T}, L)}\right)$ corresponds to a unique family $\left(\lambda_{t}\right)_{t \in \mathcal{T}}$ of scalars chosen to satisfy:
- If t is maximal (and hence $\left.X_{\left(\mathcal{T}_{t}, L_{t}\right)}=X_{A H\left(L_{t}\right)}\right), S_{t}-\lambda_{t} I_{t}$ is compact, while
- If t non maximal, $S_{t}-\lambda_{t} I_{t}$ is horizontally compact.

The Calkin algebras of $X_{(\mathcal{T}, L)}$

- The functional $f_{S}: \mathcal{T} \rightarrow \mathbb{R}$ that assigns to each $t \in \mathcal{T}$ the scalar λ_{t}, is continuous.
- We define $\bar{\Phi}_{(\mathcal{T}, L)}: \mathcal{L}\left(X_{(\mathcal{T}, L)}\right) \rightarrow C(\mathcal{T})$ by the rule
- The induced operator
is a 1-1 homomorphism with dense range has norm one.

The Calkin algebras of $X_{(\mathcal{T}, L)}$

- The functional $f_{S}: \mathcal{T} \rightarrow \mathbb{R}$ that assigns to each $t \in \mathcal{T}$ the scalar λ_{t}, is continuous.
- We define $\bar{\Phi}_{(\mathcal{T}, L)}: \mathcal{L}\left(X_{(\mathcal{T}, L)}\right) \rightarrow C(\mathcal{T})$ by the rule

$$
S \rightarrow f_{S} .
$$

- The induced operator
is a 1-1 homomorphism with dense range has norm one.

The Calkin algebras of $X_{(\mathcal{T}, L)}$

- The functional $f_{S}: \mathcal{T} \rightarrow \mathbb{R}$ that assigns to each $t \in \mathcal{T}$ the scalar λ_{t}, is continuous.
- We define $\bar{\Phi}_{(\mathcal{T}, L)}: \mathcal{L}\left(X_{(\mathcal{T}, L)}\right) \rightarrow C(\mathcal{T})$ by the rule

$$
S \rightarrow f_{S} .
$$

- The induced operator

$$
\Phi_{(\mathcal{T}, L)}: \mathcal{L}\left(X_{(\mathcal{T}, L)}\right) / \mathcal{K}\left(X_{(\mathcal{T}, L)}\right)=\operatorname{Cal}\left(X_{(\mathcal{T}, L)}\right) \rightarrow C(\mathcal{T})
$$

is a 1-1 homomorphism with dense range has norm one.

The Calkin algebras of $X_{(\mathcal{T}, L)}$

Proposition
Let \mathcal{T} be a tree of finite rank and L be an infinite subset of the natural numbers. Then the map
$\Phi_{\mathcal{T}, L}: \operatorname{Cal}\left(X_{(\mathcal{T}, L)}\right) \rightarrow C(\mathcal{T})$ is bounded below.

- Hence, $\mathcal{C a l}\left(X_{(\mathcal{T}, L)}\right) \simeq C(\mathcal{T})$ as a Banach algebra, if $o(\mathcal{T})$

The Calkin algebras of $X_{(\mathcal{T}, L)}$

Proposition
Let \mathcal{T} be a tree of finite rank and L be an infinite subset of the natural numbers. Then the map $\Phi_{\mathcal{T}, L}: \operatorname{Cal}\left(X_{(\mathcal{T}, L)}\right) \rightarrow C(\mathcal{T})$ is bounded below.

Proposition

Let \mathcal{T} be a tree of finite rank and L be an infinite subset of the natural numbers. Then the map $\Phi_{\mathcal{T}, L}: \operatorname{Cal}\left(X_{(\mathcal{T}, L)}\right) \rightarrow C(\mathcal{T})$ is bounded below.

- Hence, \mathcal{C} al $\left(X_{(\mathcal{T}, L)}\right) \simeq C(\mathcal{T})$ as a Banach algebra, if $o(\mathcal{T})<\omega$.

The main result

Theorem (P. Motakis - Daniele Puglisi - D.Z)
Let K be a countable compact metric space with finite Cantor-Bendixson index.
Then there exists a \mathcal{L}_{∞} space X such that its Calkin algebra is isomorphic, as a Banach algebra, to $C(K)$.

- By Sierpinski Mazurkiewichz K is homeomorphic to a countable ordinal number of the form $\omega^{k} \cdot n, k, n \in \mathbb{N}$.
- $X=\left(\sum_{i=1}^{n} \oplus X_{\left(T, L_{i}\right)}\right)_{\infty}$, where $\mathcal{T}=\omega^{k}$ and $\left(L_{i}\right)_{i}$ pairwise disjoint.

The main result

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.
Then there exists a \mathcal{L}_{∞} space X such that its Calkin algebra is isomorphic, as a Banach algebra, to $C(K)$.

- By Sierpinski Mazurkiewichz K is homeomorphic to a countable ordinal number of the form $\omega^{k} \cdot n, k, n \in \mathbb{N}$.

The main result

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_{∞} space X such that its Calkin algebra is isomorphic, as a Banach algebra, to $C(K)$.

- By Sierpinski Mazurkiewichz K is homeomorphic to a countable ordinal number of the form $\omega^{k} \cdot n, k, n \in \mathbb{N}$.

The main result

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_{∞} space X such that its Calkin algebra is isomorphic, as a Banach algebra, to $C(K)$.

- By Sierpinski Mazurkiewichz K is homeomorphic to a countable ordinal number of the form $\omega^{k} \cdot n, k, n \in \mathbb{N}$.
- $X=\left(\sum_{i=1}^{n} \oplus X_{\left(\mathcal{T}, L_{i}\right)}\right)_{\infty}$, where $\mathcal{T}=\omega^{k}$ and $\left(L_{i}\right)_{i}$ pairwise disjoint.

Can it be extended?

- Question: is the above theorem true for every countable compact metric space?
- Question: is the map $\Phi_{(\mathcal{T}, L)}$

Can it be extended?

- Question: is the above theorem true for every countable compact metric space?
- Question: is the map $\Phi_{(\mathcal{T}, L)}: \operatorname{Cal}\left(X_{(\mathcal{T}, L)}\right) \rightarrow C(\mathcal{T})$ always onto?

Indications for affirmative answers

- The dual of $\operatorname{Cal}\left(X_{(\mathcal{T}, L)}\right)$ is separable and has the Schur property.
- The Calkin algebra of $X_{(\mathcal{T}, L)}$ is commutative as a Banach algebra and as a Banach space it is c_{0} saturated and has the Dunford-Peltis property.

Indications for affirmative answers

- The dual of $\operatorname{Cal}\left(X_{(\mathcal{T}, L)}\right)$ is separable and has the Schur property.
- The Calkin algebra of $X_{(\mathcal{T}, L)}$ is commutative as a Banach algebra and as a Banach space it is c_{0} saturated and has the Dunford-Pettis property.

Thank you!

