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Banach algebras as Calkin Algebras

Let A be a Banach algebra. Does there exist a Banach
space X such that the Calkin algebra of X is isomorphic,
as a Banach algebra, to A ?

The Calkin algebra of X is defined to be the space
Cal(X ) = L(X)�K(X), where L(X ) denotes the space of all
bounded linear operators defined on X and K(X ) denotes
the spaces of all compact operators defined on X .

We denote by [T ] the equivalence class of T ∈ L(X ) in
L(X)�K(X).

Cal(X ) endowed with the operation [T ] ◦ [S] = [T ◦ S]
becomes a Banach algebra.
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Case A = R

S. Argyros and R. Haydon in 2011 constructed a Banach
space XAH that satisfies the “scalar plus compact” property.

S. A. Argyros and R. Haydon: A hereditarily indecomposable
L∞-space that solves the scalar-plus-compact problem, Acta
Math. 206 (2011) 1-54.

Hence, Cal(XAH) is one-dimensional.



Case A = `1(N0)

M. Tarbard in 2013 constructed a Banach space X∞ such
that Cal(X∞) is isometric as a Banach algebra with the
convolution algebra `1(N0).

Matthew Tarbard: Operators on Banach Spaces of
Bourgain-Delbaen Type, arXiv:1309.7469 (2013).



Case A = C(K ) for K countable compact metric space

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite
Cantor-Bendixson index.

Then there exists a L∞ space X such that its Calkin algebra is
isomorphic, as a Banach algebra, to C(K ).

[P.Motakis, D. Puglisi, D. Z] A hierarchy of separable
commutative Calkin algebras , arXiv: 1407.8073.



Case A = C(K ) for K countable compact metric space

The basic ingredients of our method are the following:

The Argyros Haydon space XAH .

The Argyros-Haydon sum of a sequence of separable
Banach spaces (Xn)n, (

∑
n⊕Xn)AH , introduced in

[D. Z] Bourgain-Delbaen L∞-sums of Banach spaces,
arXiv:1402.6564 (2014).
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Finite sums of Argyros-Haydon spaces

The space XAH is a separable L∞ space with dual
isomorphic to `1.

The construction of XAH is a generalized modification of
the Bourgain-Delbaen method which depends on a pair of
sequences of natural numbers (mj ,nj)j that satisfy certain
growth conditions.

For L ⊂ N infinite, we denote by XAH(L) the space
constructed using the subsequence (mj ,nj)j∈L.

For every L ⊂ N infinite, the space XAH(L) shares the same
properties with XAH .

Moreover, in the Argyros-Haydon paper it is shown that for
L ∩M is finite, then every T : XAH(L)→ XAH(M) is
compact.
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Finite sums of Banach spaces

An observation.

Let (Xi)
n
i=1 a finite sequence of Banach spaces and

assume that every bounded linear operator

T : Xi → Xj

is compact for every i 6= j .
Setting X = (X1 ⊕ . . .⊕ Xn)∞ it follows that Cal(X ) is
isometric with

(Cal(X1)⊕ . . .⊕ Cal(Xn))∞.
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Finite sums of Argyros-Haydon spaces

Let k ∈ N, L1, . . . ,Lk pairwise disjoint infinite subsets of N
and

X = (X1 ⊕ · · · ⊕ Xk )∞ ,

where Xi = XAH(Li ) for i = 1, . . . k .

Since Li are pairwise disjoint we have that every
T : XAH(Li ) → XAH(Lj ) is compact for every i 6= j .

Since Cal(Xi) is one dimensional, by the above
observation we obtain that Cal(X ) is k -dimensional.
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AH-sums of separable Banach spaces

We will now see the Calkin algebra of the space

X = (
∑

n

⊕Xn)BD,

where Xn = XAH(Ln) for a sequence (Ln)n of pairwise
disjoint infinite subsets of natural numbers.

For a sequence (Xn)n of separable Banach spaces, the
space X = (

∑
n⊕Xn)BD is called a Bourgain Delbaen L∞

sum of (Xn)n and is defined as a subspace of
(
∑⊕(Xn ⊕ `∞(∆n))∞)∞.

The sets ∆n are finite,pairwise disjoint and defined using
the Bourgain-Delbaen method.
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The Definition of BD-sums of Banach spaces

In particular, we define linear extension operators

in :
(∑

k≤n

⊕(Xk ⊕ `∞(∆k ))∞
)
∞
→ (

∑
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such that
supn ‖in‖ <∞.

(
∑

n⊕Xn)BD = ∪nYn, where
Yn = in

[(∑
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)
∞

]
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Let x be a vector in (
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The BD- method in AH-sums of Banach spaces

The vector in(x), i.e. x is extended by assigning to it new
values in `∞(∪k>n∆k ).

X1 ∆1 X2 ∆2 Xn ∆n ∆n+1 ∆n+2Xn+1 Xn+2

x ∈ (
∑n

k=1⊕(Xk ⊕ `∞(∆k)∞)∞

in(x)



The L∞ structure of AH-sums

The finite sets ∆n are defined recursively and for each
γ ∈ ∆n+1 we assign a linear functional
c∗γ : (

∑n
k=1⊕

(
Xk ⊕ `∞(∆k )

)
∞)∞ → R such that

in(x)(γ) = c∗γ(x).

X1 ∆1 X2 ∆2 Xn ∆n ∆n+1 ∆n+2Xn+1 Xn+2

x ∈ (
∑n
k=1⊕(Xk ⊕ `∞(∆k)∞)∞

in(x)

{c∗γ(x)}γ∈∆n+1
{c∗γ(x)}γ∈∆n+2

This implies that for a fixed n ∈ N, taking xk ∈ Xk with
xk ∈ ∩γ∈∪n

i=1∆i Kerc∗γ then the extended vector ik (xk ) does
not have non zero values upon ∆i for every 1 ≤ i ≤ n.
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‖xk‖.

Since ∆i are finite, the above implies that

〈[Ik ] : k = 1, . . . ,n〉 ' c0(n).
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AH-sums of separable Banach spaces

Without taking any further assumptions for the separable
Xn, the space X = (

∑
n⊕Xn)BD satisfies the following

basic properties:

X =
∑

n⊕in[Xn ⊕ `∞(∆n)].

Each Xn is isometric with in[Xn] and complemented in X via
projection In.

An operator K defined on X = (
∑

n⊕Xn)BD is called
horizontally compact operator if

‖K |∑
n≥k ⊕in[Xn⊕`∞(∆n)]‖ k→∞→ 0.
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∑
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Bourgain-Delbaen method of constructing XAH is denoted
by (

∑⊕Xn)AH .

The construction of (
∑⊕Xn)AH depends on the same

sequence of parameters (mj ,nj)j of XAH .

Again for L ⊂ N infinite, we denote by (
∑

n⊕Xn)AH(L) the
space (

∑⊕Xn)AH constructed using the subsequence
(mj ,nj)j∈L.
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AH sums of separable Banach spaces

For every L ⊂ N infinite the space X = (
∑

n⊕Xn)AH(L) has
the following additional properties:

The dual X ∗ is isomorphic with (
∑

n⊕(X ∗n ⊕ `1(∆n))1)1.

By considering some specific sequences (Xn)n of
separable Banach spaces, the space X has the
"scalar-plus-horizontally compact" property, i.e. every
operator T ∈ L(X ) is of the form T = λI + K where λ ∈ R
and K a horizontally compact operator.

For example, if Xn has the Schur property for every n ∈ N,
or `1 does not embed isomorphically in X ∗n for every n ∈ N,
then the above holds.
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Calkin algebras of AH-sums

Proposition
Let L,Ln pairwise disjoints infinite subsets of N and
XAHsum = (

∑⊕XAH(Ln))AH(L). The space XAHsum has the
"scalar-plus-horizontally compact" property.

Observe also that since X ∗AH ' `1, the space XAHsum is L∞
space.
Moreover, Since every operator T : XAH(Ln) → XAH(Lm) is
compact, we conclude that the space

L(XAHsum) = 〈I, (In)n,K(XAHsum)〉,

where I denotes the identity map upon XAHsum and for
each n, In is the projection defined on XAHsum with image
isometric with XAH(Ln).
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Let L,Ln pairwise disjoints infinite subsets of N and
XAHsum = (

∑⊕XAH(Ln))AH(L). The space XAHsum has the
"scalar-plus-horizontally compact" property.
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AH-sums of AH-spaces

Hence Cal(XAHsum) = L(XAHsum)/K(XAHsum) = 〈[I], ([In])n〉.

Using the L∞ structure of the BD-sum (
∑⊕XAH(Ln))AH(L)

described earlier we obtain that

〈[Ik ] : k = 1, . . . ,n〉 'Cn c0(n).

Using the L∞ structure of the spaces XAH(Ln), we have that
(Cn)n is uniformly bounded and by the above we conclude
that the Calkin algebra of XAHsum is isomorphic to c.
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The Generalization of XAHsum = (
∑

n⊕XAH(Ln))AH(L)

We generalize the above concept using well founded trees
T with a unique root such that every non maximal node of
T has infinitely countable immediate successors.

For such a tree T and L ⊂ N infinite we construct Banach
spaces X(T ,L) using induction on the order of T .
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The definition of the spaces X(T ,L)

For T is a singleton and L ⊂ N we define X(T ,L) to be the space
XAH(L).

XAH(L)

Tree of rank zero:



The definition of the spaces X(T ,L)

For a tree of order one we define X(T ,L) =
(∑⊕X(T n,Ln)

)
AH(L0)

.

X(T ,L)
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Tree of rank 1:



The definition of the spaces X(T ,L)

For a tree of order two we define X(T ,L) =
(∑⊕X(T n,Ln)

)
AH(L0)

etc...
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Tree of rank 2:



Properties of the spaces X(T ,L)

There space X(T ,L) is accompanied by a set of norm-one
projections Is, s ∈ T .
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Properties of the spaces X(T ,L)

Proposition
For every tree T and L ⊂ N infinite, the space X(T ,L) is L∞
and if o(T ) > 0 it has the "scalar-plus-horizontally
compact" property.

Note that o(T ) = 0, the space X(T ,L) has the "scalar plus
compact" property as it coincides with the space XAH(L).
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Operators defined on X(T ,L)

For an operator S defined on XT ,L we denote by St the
induced operator

It ◦ S ◦ It

which can considered upon X(T t ,Lt ).

Every S ∈ L(X(T ,L)) corresponds to a unique family (λt )t∈T
of scalars chosen to satisfy:

If t is maximal (and hence X(T t ,Lt ) = XAH(Lt ) ), St − λt It is
compact, while

If t non maximal, St − λt It is horizontally compact.
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The Calkin algebras of X(T ,L)

The functional fS : T → R that assigns to each t ∈ T the
scalar λt , is continuous.

We define Φ̄(T ,L) : L(X(T ,L))→ C(T ) by the rule

S → fS.

The induced operator

Φ(T ,L) : L(X(T ,L))�K(X(T ,L)) = Cal(X(T ,L))→ C(T )

is a 1-1 homomorphism with dense range has norm one.
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The Calkin algebras of X(T ,L)

Proposition
Let T be a tree of finite rank and L be an infinite subset of
the natural numbers. Then the map
ΦT ,L : Cal(X(T ,L))→ C(T ) is bounded below.

Hence, Cal(X(T ,L)) ' C(T ) as a Banach algebra, if
o(T ) < ω.
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The main result

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite
Cantor-Bendixson index.
Then there exists a L∞ space X such that its Calkin
algebra is isomorphic, as a Banach algebra, to C(K ).

By Sierpinski Mazurkiewichz K is homeomorphic to a
countable ordinal number of the form ωk · n, k ,n ∈ N.

X =
(∑n

i=1⊕X(T ,Li )

)
∞

, where T = ωk and (Li)i pairwise
disjoint.
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Can it be extended?

Question: is the above theorem true for every countable
compact metric space?

Question: is the map Φ(T ,L) : Cal(X(T ,L))→ C(T ) always
onto?
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Indications for affirmative answers

The dual of Cal(X(T ,L)) is separable and has the Schur
property.

The Calkin algebra of X(T ,L) is commutative as a Banach
algebra and as a Banach space it is c0 saturated and has
the Dunford-Pettis property.
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Thank you!


