A hierarchy of separable commutative Calkin algebras

Despoina Ioanna Zisimopoulou (joint work with Pavlos Motakis and Daniele Puglisi)

Department of Mathematics National Technical University of Athens

Brazilian Workshop in Geometry of Banach spaces, 2014

European Union European Social Fund

MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS, CULTURE & SPORTS M A N A G I N G A U T H O R I T Y

Co-financed by Greece and the European Union

- Let *A* be a Banach algebra. Does there exist a Banach space *X* such that the Calkin algebra of *X* is isomorphic, as a Banach algebra, to *A* ?
- The Calkin algebra of X is defined to be the space $Cal(X) = {}^{\mathcal{L}(X)}_{\mathcal{K}(X)}$, where $\mathcal{L}(X)$ denotes the space of all bounded linear operators defined on X and $\mathcal{K}(X)$ denotes the spaces of all compact operators defined on X.
- We denote by [*T*] the equivalence class of $T \in \mathcal{L}(X)$ in $\mathcal{L}(X)_{\mathcal{K}(X)}$.
- Cal(X) endowed with the operation [T] ∘ [S] = [T ∘ S] becomes a Banach algebra.

- Let *A* be a Banach algebra. Does there exist a Banach space *X* such that the Calkin algebra of *X* is isomorphic, as a Banach algebra, to *A* ?
- The Calkin algebra of X is defined to be the space $Cal(X) = {\mathcal{L}(X)}_{\mathcal{K}(X)}$, where $\mathcal{L}(X)$ denotes the space of all bounded linear operators defined on X and $\mathcal{K}(X)$ denotes the spaces of all compact operators defined on X.
- We denote by [*T*] the equivalence class of $T \in \mathcal{L}(X)$ in $\mathcal{L}(X)_{\mathcal{K}(X)}$.
- Cal(X) endowed with the operation [T] ∘ [S] = [T ∘ S] becomes a Banach algebra.

- Let *A* be a Banach algebra. Does there exist a Banach space *X* such that the Calkin algebra of *X* is isomorphic, as a Banach algebra, to *A* ?
- The Calkin algebra of X is defined to be the space
 Cal(X) = ^{L(X)}/_{K(X)}, where L(X) denotes the space of all bounded linear operators defined on X and K(X) denotes the spaces of all compact operators defined on X.
- We denote by [*T*] the equivalence class of $T \in \mathcal{L}(X)$ in $\mathcal{L}(X)_{\mathcal{K}(X)}$.
- Cal(X) endowed with the operation [T] ∘ [S] = [T ∘ S] becomes a Banach algebra.

- Let *A* be a Banach algebra. Does there exist a Banach space *X* such that the Calkin algebra of *X* is isomorphic, as a Banach algebra, to *A* ?
- The Calkin algebra of X is defined to be the space
 Cal(X) = ^{L(X)}/_{K(X)}, where L(X) denotes the space of all bounded linear operators defined on X and K(X) denotes the spaces of all compact operators defined on X.
- We denote by [*T*] the equivalence class of $T \in \mathcal{L}(X)$ in $\mathcal{L}(X)_{\mathcal{K}(X)}$.
- Cal(X) endowed with the operation [T] ∘ [S] = [T ∘ S] becomes a Banach algebra.

 S. Argyros and R. Haydon in 2011 constructed a Banach space X_{AH} that satisfies the "scalar plus compact" property.

S. A. Argyros and R. Haydon: A hereditarily indecomposable \mathcal{L}_{∞} -space that solves the scalar-plus-compact problem, Acta Math. 206 (2011) 1-54.

Hence, $Cal(X_{AH})$ is one-dimensional.

 M. Tarbard in 2013 constructed a Banach space X_∞ such that Cal(X_∞) is isometric as a Banach algebra with the convolution algebra ℓ₁(N₀).

Matthew Tarbard: *Operators on Banach Spaces of Bourgain-Delbaen Type*, arXiv:1309.7469 (2013).

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let *K* be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_{∞} space X such that its Calkin algebra is isomorphic, as a Banach algebra, to C(K).

[P.Motakis, D. Puglisi, D. Z] *A hierarchy of separable commutative Calkin algebras*, arXiv: 1407.8073.

• The basic ingredients of our method are the following:

• The Argyros Haydon space X_{AH} .

• The Argyros-Haydon sum of a sequence of separable Banach spaces $(X_n)_n$, $(\sum_n \oplus X_n)_{AH}$, introduced in

[D. Z] Bourgain-Delbaen \mathcal{L}^{∞} -sums of Banach spaces, arXiv:1402.6564 (2014).

- The basic ingredients of our method are the following:
- The Argyros Haydon space X_{AH}.
- The Argyros-Haydon sum of a sequence of separable Banach spaces $(X_n)_n$, $(\sum_n \oplus X_n)_{AH}$, introduced in

[D. Z] Bourgain-Delbaen \mathcal{L}^{∞} -sums of Banach spaces, arXiv:1402.6564 (2014).

ヘロン 人間 とくほど くほどう

- The basic ingredients of our method are the following:
- The Argyros Haydon space X_{AH} .
- The Argyros-Haydon sum of a sequence of separable Banach spaces $(X_n)_n$, $(\sum_n \oplus X_n)_{AH}$, introduced in

[D. Z] Bourgain-Delbaen \mathcal{L}^{∞} -sums of Banach spaces, arXiv:1402.6564 (2014).

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

- The space X_{AH} is a separable L[∞] space with dual isomorphic to ℓ₁.
- The construction of X_{AH} is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers (m_j, n_j)_j that satisfy certain growth conditions.
- For L ⊂ N infinite, we denote by X_{AH}(L) the space constructed using the subsequence (m_j, n_j)_{j∈L}.
- For every L ⊂ N infinite, the space X_{AH(L)} shares the same properties with X_{AH}.
- Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T : X_{AH}(L) \to X_{AH}(M)$ is compact.

- The space X_{AH} is a separable L[∞] space with dual isomorphic to ℓ₁.
- The construction of X_{AH} is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers (m_j, n_j)_j that satisfy certain growth conditions.
- For L ⊂ N infinite, we denote by X_{AH}(L) the space constructed using the subsequence (m_j, n_j)_{j∈L}.
- For every L ⊂ N infinite, the space X_{AH(L)} shares the same properties with X_{AH}.
- Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T : X_{AH}(L) \to X_{AH}(M)$ is compact.

- The space X_{AH} is a separable L[∞] space with dual isomorphic to ℓ₁.
- The construction of X_{AH} is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers (m_j, n_j)_j that satisfy certain growth conditions.
- For L ⊂ N infinite, we denote by X_{AH}(L) the space constructed using the subsequence (m_j, n_j)_{j∈L}.
- For every L ⊂ N infinite, the space X_{AH(L)} shares the same properties with X_{AH}.
- Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T : X_{AH}(L) \to X_{AH}(M)$ is compact.

- The space X_{AH} is a separable L[∞] space with dual isomorphic to ℓ₁.
- The construction of X_{AH} is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers (m_j, n_j)_j that satisfy certain growth conditions.
- For L ⊂ N infinite, we denote by X_{AH}(L) the space constructed using the subsequence (m_j, n_j)_{j∈L}.
- For every L ⊂ N infinite, the space X_{AH(L)} shares the same properties with X_{AH}.
- Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T : X_{AH}(L) \to X_{AH}(M)$ is compact.

- The space X_{AH} is a separable L[∞] space with dual isomorphic to ℓ₁.
- The construction of X_{AH} is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers (m_j, n_j)_j that satisfy certain growth conditions.
- For L ⊂ N infinite, we denote by X_{AH}(L) the space constructed using the subsequence (m_j, n_j)_{j∈L}.
- For every L ⊂ N infinite, the space X_{AH(L)} shares the same properties with X_{AH}.
- Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T : X_{AH}(L) \to X_{AH}(M)$ is compact.

Finite sums of Banach spaces

An observation.

 Let (X_i)ⁿ_{i=1} a finite sequence of Banach spaces and assume that every bounded linear operator

$T:X_i o X_j$

is compact for every $i \neq j$. Setting $X = (X_1 \oplus \ldots \oplus X_n)_{\infty}$ it follows that Cal(X) is isometric with

 $(Cal(X_1)\oplus\ldots\oplus Cal(X_n))_{\infty}.$

・ロト・日本・日本・日本・日本

Finite sums of Banach spaces

An observation.

 Let (X_i)ⁿ_{i=1} a finite sequence of Banach spaces and assume that every bounded linear operator

 $T: X_i \rightarrow X_j$

is compact for every $i \neq j$. Setting $X = (X_1 \oplus ... \oplus X_n)_{\infty}$ it follows that Cal(X) is isometric with

 $(Cal(X_1)\oplus\ldots\oplus Cal(X_n))_{\infty}.$

 Let k ∈ N, L₁,..., L_k pairwise disjoint infinite subsets of N and

$$X=\left(X_1\oplus\cdots\oplus X_k\right)_{\infty},$$

where $X_i = X_{AH(L_i)}$ for $i = 1, \ldots k$.

- Since L_i are pairwise disjoint we have that every $T: X_{AH(L_i)} \rightarrow X_{AH(L_i)}$ is compact for every $i \neq j$.
- Since Cal(X_i) is one dimensional, by the above observation we obtain that Cal(X) is k-dimensional.

 Let k ∈ N, L₁,..., L_k pairwise disjoint infinite subsets of N and

$$X=\left(X_1\oplus\cdots\oplus X_k\right)_{\infty},$$

where $X_i = X_{AH(L_i)}$ for i = 1, ..., k.

- Since L_i are pairwise disjoint we have that every $T: X_{AH(L_i)} \rightarrow X_{AH(L_i)}$ is compact for every $i \neq j$.
- Since Cal(X_i) is one dimensional, by the above observation we obtain that Cal(X) is k-dimensional.

 Let k ∈ N, L₁,..., L_k pairwise disjoint infinite subsets of N and

$$X=\left(X_1\oplus\cdots\oplus X_k\right)_{\infty},$$

where $X_i = X_{AH(L_i)}$ for i = 1, ..., k.

- Since L_i are pairwise disjoint we have that every $T: X_{AH(L_i)} \rightarrow X_{AH(L_i)}$ is compact for every $i \neq j$.
- Since Cal(X_i) is one dimensional, by the above observation we obtain that Cal(X) is k-dimensional.

We will now see the Calkin algebra of the space

$$X=(\sum_n\oplus X_n)_{BD},$$

where $X_n = X_{AH}(L_n)$ for a sequence $(L_n)_n$ of pairwise disjoint infinite subsets of natural numbers.

- For a sequence (X_n)_n of separable Banach spaces, the space X = (∑_n ⊕X_n)_{BD} is called a Bourgain Delbaen L[∞] sum of (X_n)_n and is defined as a subspace of (∑⊕(X_n ⊕ ℓ_∞(Δ_n))_∞)_∞.
- The sets Δ_n are finite, pairwise disjoint and defined using the Bourgain-Delbaen method.

We will now see the Calkin algebra of the space

$$X=(\sum_n\oplus X_n)_{BD},$$

where $X_n = X_{AH}(L_n)$ for a sequence $(L_n)_n$ of pairwise disjoint infinite subsets of natural numbers.

- For a sequence (X_n)_n of separable Banach spaces, the space X = (∑_n ⊕X_n)_{BD} is called a Bourgain Delbaen L[∞] sum of (X_n)_n and is defined as a subspace of (∑⊕(X_n ⊕ ℓ_∞(Δ_n))_∞)_∞.
- The sets Δ_n are finite, pairwise disjoint and defined using the Bourgain-Delbaen method.

We will now see the Calkin algebra of the space

$$X=(\sum_n\oplus X_n)_{BD},$$

where $X_n = X_{AH}(L_n)$ for a sequence $(L_n)_n$ of pairwise disjoint infinite subsets of natural numbers.

- For a sequence (X_n)_n of separable Banach spaces, the space X = (∑_n ⊕X_n)_{BD} is called a Bourgain Delbaen L[∞] sum of (X_n)_n and is defined as a subspace of (∑⊕(X_n ⊕ ℓ_∞(Δ_n))_∞)_∞.
- The sets Δ_n are finite, pairwise disjoint and defined using the Bourgain-Delbaen method.

The Definition of BD-sums of Banach spaces

In particular, we define linear extension operators

$$i_n: \left(\sum_{k\leq n} \oplus (X_k \oplus \ell_\infty(\Delta_k))_\infty\right)_\infty \to (\sum \oplus (X_n \oplus \ell_\infty(\Delta_n))_\infty)_\infty$$

such that

• $\sup_n \|i_n\| < \infty$.

• $(\sum_{n} \oplus X_{n})_{BD} = \overline{\bigcup_{n} Y_{n}}$, where $Y_{n} = i_{n} \Big[\Big(\sum_{k \leq n} \oplus (X_{k} \oplus \ell_{\infty}(\Delta_{k}))_{\infty} \Big)_{\infty} \Big].$

◆□▶★@▶★≧▶★≧▶ ≧ りへぐ

The Definition of BD-sums of Banach spaces

In particular, we define linear extension operators

$$i_n: \left(\sum_{k\leq n} \oplus (X_k \oplus \ell_\infty(\Delta_k))_\infty\right)_\infty \to (\sum \oplus (X_n \oplus \ell_\infty(\Delta_n))_\infty)_\infty$$

such that

• $\sup_n \|i_n\| < \infty$.

• $(\sum_{n} \oplus X_{n})_{BD} = \overline{\bigcup_{n} Y_{n}}$, where $Y_{n} = i_{n} \Big[\Big(\sum_{k \leq n} \oplus (X_{k} \oplus \ell_{\infty}(\Delta_{k}))_{\infty} \Big)_{\infty} \Big].$

・ロト・西・・日・・日・ 日・ ろくの

The Definition of BD-sums of Banach spaces

In particular, we define linear extension operators

$$i_n: \left(\sum_{k\leq n} \oplus (X_k \oplus \ell_\infty(\Delta_k))_\infty\right)_\infty \to (\sum \oplus (X_n \oplus \ell_\infty(\Delta_n))_\infty)_\infty$$

イロト イポト イヨト イヨト

such that

• $\sup_n \|i_n\| < \infty$.

•
$$(\sum_{n} \oplus X_{n})_{BD} = \overline{\bigcup_{n} Y_{n}}$$
, where
 $Y_{n} = i_{n} \Big[\Big(\sum_{k \leq n} \oplus (X_{k} \oplus \ell_{\infty}(\Delta_{k}))_{\infty} \Big)_{\infty} \Big].$

The BD-method in AH sums of Banach spaces

• Let x be a vector in $(\sum_{k \le n} \oplus (X_k \oplus \ell_\infty(\Delta_n))_\infty)_\infty$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ の Q ()~

The BD- method in AH-sums of Banach spaces

The vector *i_n(x)*, i.e. *x* is extended by assigning to it new values in ℓ_∞(∪_{k>n}Δ_k).

• The finite sets Δ_n are defined recursively and for each $\gamma \in \Delta_{n+1}$ we assign a linear functional $c^*_{\gamma} : (\sum_{k=1}^n \oplus (X_k \oplus \ell_{\infty}(\Delta_k))_{\infty})_{\infty} \to \mathbb{R}$ such that $i_n(x)(\gamma) = c^*_{\gamma}(x)$.

This implies that for a fixed n ∈ N, taking x_k ∈ X_k with x_k ∈ ∩<sub>γ∈∪ⁿ_{i=1}Δ_i Kerc^{*}_γ then the extended vector i_k(x_k) does not have non zero values upon Δ_i for every 1 ≤ i ≤ n.
</sub>

• The finite sets Δ_n are defined recursively and for each $\gamma \in \Delta_{n+1}$ we assign a linear functional $c^*_{\gamma} : (\sum_{k=1}^n \oplus (X_k \oplus \ell_{\infty}(\Delta_k))_{\infty})_{\infty} \to \mathbb{R}$ such that $i_n(x)(\gamma) = c^*_{\gamma}(x)$.

This implies that for a fixed n ∈ N, taking x_k ∈ X_k with x_k ∈ ∩<sub>γ∈∪ⁿ_{i=1}Δ_iKerc^{*}_γ then the extended vector i_k(x_k) does not have non zero values upon Δ_i for every 1 ≤ i ≤ n.
</sub>

• Hence, for $x_k \in \bigcap_{\gamma \in \cup_{i=1}^n \Delta_i} Kerc^*_{\gamma} \cap X_k$, i = 1, ..., n

$$||i_1(x_1) + \ldots + i_n(x_n)|| \simeq \max_{1 \le k \le n} ||x_k||.$$

• Since Δ_i are finite, the above implies that

$$\langle [I_k]: k = 1, \ldots, n \rangle \simeq c_0(n).$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のQ@

• Hence, for $x_k \in \bigcap_{\gamma \in \bigcup_{i=1}^n \Delta_i} Kerc^*_{\gamma} \cap X_k$, $i = 1, \dots, n$ $\|i_1(x_1) + \dots + i_n(x_n)\| \simeq \max_{1 \le k \le n} \|x_k\|$.

• Since Δ_i are finite, the above implies that

$$\langle [I_k]: k = 1, \ldots, n \rangle \simeq c_0(n).$$

(ロト 《聞 と 《臣 と 《臣 と 三臣 … のへの

• Hence, for $x_k \in \bigcap_{\gamma \in \cup_{i=1}^n \Delta_i} Kerc^*_{\gamma} \cap X_k$, $i = 1, \dots, n$

$$||i_1(x_1) + \ldots + i_n(x_n)|| \simeq \max_{1 \le k \le n} ||x_k||.$$

Since Δ_i are finite, the above implies that

$$\langle [I_k]: k = 1, \ldots, n \rangle \simeq c_0(n).$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへの

- Without taking any further assumptions for the separable X_n , the space $X = (\sum_n \oplus X_n)_{BD}$ satisfies the following basic properties:
- $X = \sum_n \oplus i_n [X_n \oplus \ell_\infty(\Delta_n)].$
- Each X_n is isometric with $i_n[X_n]$ and complemented in X via projection I_n .
- An operator *K* defined on $X = (\sum_n \oplus X_n)_{BD}$ is called horizontally compact operator if

$$\|K\|_{\sum_{n\geq k}\oplus i_n[X_n\oplus\ell_\infty(\Delta_n)]}\|\stackrel{k\to\infty}{\to} 0.$$

- Without taking any further assumptions for the separable X_n , the space $X = (\sum_n \oplus X_n)_{BD}$ satisfies the following basic properties:
- $X = \sum_n \oplus i_n [X_n \oplus \ell_\infty(\Delta_n)].$
- Each X_n is isometric with i_n[X_n] and complemented in X via projection I_n.
- An operator *K* defined on $X = (\sum_n \oplus X_n)_{BD}$ is called horizontally compact operator if

$$\|K\|_{\sum_{n\geq k}\oplus i_n[X_n\oplus\ell_\infty(\Delta_n)]}\|\stackrel{k\to\infty}{\to} 0.$$
- Without taking any further assumptions for the separable X_n , the space $X = (\sum_n \oplus X_n)_{BD}$ satisfies the following basic properties:
- $X = \sum_n \oplus i_n [X_n \oplus \ell_\infty(\Delta_n)].$
- Each X_n is isometric with i_n[X_n] and complemented in X via projection I_n.
- An operator *K* defined on $X = (\sum_n \oplus X_n)_{BD}$ is called horizontally compact operator if

$$\|K\|_{\sum_{n>k}\oplus i_n[X_n\oplus\ell_\infty(\Delta_n)]}\|\overset{k\to\infty}{\to} 0.$$

・ロン・西方・ ・ ヨン・ ヨン・

- Without taking any further assumptions for the separable X_n , the space $X = (\sum_n \oplus X_n)_{BD}$ satisfies the following basic properties:
- $X = \sum_n \oplus i_n [X_n \oplus \ell_\infty(\Delta_n)].$
- Each X_n is isometric with i_n[X_n] and complemented in X via projection I_n.
- An operator K defined on $X = (\sum_n \oplus X_n)_{BD}$ is called horizontally compact operator if

$$\|K|_{\sum_{n\geq k}\oplus i_n[X_n\oplus\ell_\infty(\Delta_n)]}\|\stackrel{k\to\infty}{\to} 0.$$

- The space $(\sum_{n} \oplus X_{n})_{BD}$ that is constructed using Bourgain-Delbaen method of constructing X_{AH} is denoted by $(\sum \oplus X_{n})_{AH}$.
- The construction of (∑⊕X_n)_{AH} depends on the same sequence of parameters (m_j, n_j)_j of X_{AH}.
- Again for L ⊂ N infinite, we denote by (∑_n⊕X_n)_{AH(L)} the space (∑⊕X_n)_{AH} constructed using the subsequence (m_j, n_j)_{j∈L}.

- The space (∑_n ⊕X_n)_{BD} that is constructed using Bourgain-Delbaen method of constructing X_{AH} is denoted by (∑⊕X_n)_{AH}.
- The construction of (∑⊕X_n)_{AH} depends on the same sequence of parameters (m_j, n_j)_j of X_{AH}.
- Again for L ⊂ N infinite, we denote by (∑_n⊕X_n)_{AH(L)} the space (∑⊕X_n)_{AH} constructed using the subsequence (m_j, n_j)_{j∈L}.

- The space (∑_n ⊕X_n)_{BD} that is constructed using Bourgain-Delbaen method of constructing X_{AH} is denoted by (∑⊕X_n)_{AH}.
- The construction of (∑⊕X_n)_{AH} depends on the same sequence of parameters (m_i, n_j)_i of X_{AH}.
- Again for L ⊂ N infinite, we denote by (∑_n⊕X_n)_{AH(L)} the space (∑⊕X_n)_{AH} constructed using the subsequence (m_j, n_j)_{j∈L}.

- For every L ⊂ N infinite the space X = (∑_n⊕X_n)_{AH(L)} has the following additional properties:
- The dual X^{*} is isomorphic with $(\sum_n \oplus (X_n^* \oplus \ell_1(\Delta_n))_1)_1$.
- By considering some specific sequences $(X_n)_n$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T = \lambda I + K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.
- For example, if X_n has the Schur property for every n ∈ N, or ℓ₁ does not embed isomorphically in X_n^{*} for every n ∈ N, then the above holds.

- For every L ⊂ N infinite the space X = (∑_n⊕X_n)_{AH(L)} has the following additional properties:
- The dual X^{*} is isomorphic with $(\sum_n \oplus (X_n^* \oplus \ell_1(\Delta_n))_1)_1$.
- By considering some specific sequences $(X_n)_n$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T = \lambda I + K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.
- For example, if X_n has the Schur property for every n ∈ N, or ℓ₁ does not embed isomorphically in X_n^{*} for every n ∈ N, then the above holds.

- For every L ⊂ N infinite the space X = (∑_n⊕X_n)_{AH(L)} has the following additional properties:
- The dual X^{*} is isomorphic with $(\sum_n \oplus (X_n^* \oplus \ell_1(\Delta_n))_1)_1$.
- By considering some specific sequences $(X_n)_n$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T = \lambda I + K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.
- For example, if X_n has the Schur property for every n ∈ N, or ℓ₁ does not embed isomorphically in X_n^{*} for every n ∈ N, then the above holds.

- For every L ⊂ N infinite the space X = (∑_n⊕X_n)_{AH(L)} has the following additional properties:
- The dual X^{*} is isomorphic with $(\sum_n \oplus (X_n^* \oplus \ell_1(\Delta_n))_1)_1$.
- By considering some specific sequences $(X_n)_n$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T = \lambda I + K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.
- For example, if X_n has the Schur property for every n ∈ N, or ℓ₁ does not embed isomorphically in X_n^{*} for every n ∈ N, then the above holds.

Calkin algebras of AH-sums

Proposition

Let L, L_n pairwise disjoints infinite subsets of \mathbb{N} and $X_{AHsum} = (\sum \oplus X_{AH}(L_n))_{AH(L)}$. The space X_{AHsum} has the "scalar-plus-horizontally compact" property.

- Observe also that since X^{*}_{AH} ≃ ℓ₁, the space X_{AHsum} is L[∞] space.
- Moreover, Since every operator *T* : X_{AH(Ln)} → X_{AH(Lm)} is compact, we conclude that the space

$$\mathcal{L}(X_{AHsum}) = \overline{\langle I, (I_n)_n, \mathcal{K}(X_{AHsum}) \rangle},$$

where *I* denotes the identity map upon X_{AHsum} and for each *n*, I_n is the projection defined on X_{AHsum} with image isometric with $X_{AH(L_n)}$.

Calkin algebras of AH-sums

Proposition

Let L, L_n pairwise disjoints infinite subsets of \mathbb{N} and $X_{AHsum} = (\sum \oplus X_{AH}(L_n))_{AH(L)}$. The space X_{AHsum} has the "scalar-plus-horizontally compact" property.

- Observe also that since X^{*}_{AH} ≃ ℓ₁, the space X_{AHsum} is L[∞] space.
- Moreover, Since every operator *T* : X_{AH(Ln)} → X_{AH(Lm)} is compact, we conclude that the space

$$\mathcal{L}(X_{AHsum}) = \overline{\langle I, (I_n)_n, \mathcal{K}(X_{AHsum}) \rangle},$$

where *I* denotes the identity map upon X_{AHsum} and for each *n*, I_n is the projection defined on X_{AHsum} with image isometric with $X_{AH(L_n)}$.

Calkin algebras of AH-sums

Proposition

Let L, L_n pairwise disjoints infinite subsets of \mathbb{N} and $X_{AHsum} = (\sum \oplus X_{AH}(L_n))_{AH(L)}$. The space X_{AHsum} has the "scalar-plus-horizontally compact" property.

- Observe also that since X^{*}_{AH} ≃ ℓ₁, the space X_{AHsum} is L[∞] space.
- Moreover, Since every operator *T* : X_{AH(L_n)} → X_{AH(L_m)} is compact, we conclude that the space

$$\mathcal{L}(X_{AHsum}) = \overline{\langle I, (I_n)_n, \mathcal{K}(X_{AHsum}) \rangle},$$

where *I* denotes the identity map upon X_{AHsum} and for each *n*, I_n is the projection defined on X_{AHsum} with image isometric with $X_{AH(L_n)}$.

• Hence $Cal(X_{AHsum}) = \mathcal{L}(X_{AHsum})/\mathcal{K}(X_{AHsum}) = \overline{\langle [I], ([I_n])_n \rangle}.$

• Using the \mathcal{L}^{∞} structure of the BD-sum $(\sum \oplus X_{AH}(L_n))_{AH(L)}$ described earlier we obtain that

$$\langle [I_k]: k = 1, \ldots, n \rangle \simeq^{C_n} c_0(n).$$

• Using the \mathcal{L}^{∞} structure of the spaces $X_{AH(L_n)}$, we have that $(C_n)_n$ is uniformly bounded and by the above we conclude that the Calkin algebra of X_{AHsum} is isomorphic to *c*.

• Hence
$$Cal(X_{AHsum}) = \mathcal{L}(X_{AHsum})/\mathcal{K}(X_{AHsum}) = \overline{\langle [I], ([I_n])_n \rangle}.$$

• Using the \mathcal{L}^{∞} structure of the BD-sum $(\sum \oplus X_{AH}(L_n))_{AH(L)}$ described earlier we obtain that

$$\langle [I_k]: k = 1, \ldots, n \rangle \simeq^{C_n} c_0(n).$$

• Using the \mathcal{L}^{∞} structure of the spaces $X_{AH(L_n)}$, we have that $(C_n)_n$ is uniformly bounded and by the above we conclude that the Calkin algebra of X_{AHsum} is isomorphic to *c*.

• Hence
$$Cal(X_{AHsum}) = \mathcal{L}(X_{AHsum})/\mathcal{K}(X_{AHsum}) = \overline{\langle [I], ([I_n])_n \rangle}.$$

• Using the \mathcal{L}^{∞} structure of the BD-sum $(\sum \oplus X_{AH}(L_n))_{AH(L)}$ described earlier we obtain that

$$\langle [I_k]: k = 1, \ldots, n \rangle \simeq^{C_n} c_0(n).$$

Using the L[∞] structure of the spaces X_{AH(L_n)}, we have that (C_n)_n is uniformly bounded and by the above we conclude that the Calkin algebra of X_{AHsum} is isomorphic to c.

The Generalization of $X_{AHsum} = (\sum_n \oplus X_{AH(L_n)})_{AH(L)}$

We generalize the above concept using well founded trees

 T with a unique root such that every non maximal node of

 T has infinitely countable immediate successors.

For such a tree *T* and *L* ⊂ ℕ infinite we construct Banach spaces *X*_(*T*,*L*) using induction on the order of *T*.

The Generalization of $X_{AHsum} = (\sum_n \oplus X_{AH(L_n)})_{AH(L)}$

• We generalize the above concept using well founded trees \mathcal{T} with a unique root such that every non maximal node of \mathcal{T} has infinitely countable immediate successors.

For such a tree *T* and *L* ⊂ ℕ infinite we construct Banach spaces *X*_(*T*,*L*) using induction on the order of *T*.

For \mathcal{T} is a singleton and $L \subset \mathbb{N}$ we define $X_{(\mathcal{T},L)}$ to be the space $X_{AH}(L)$.

・ロト ・聞 ト ・ ヨト ・ ヨト

Tree of rank zero:

 $\mathbf{O} \\ X_{AH(L)}$

For a tree of order one we define $X_{(\mathcal{T},L)} = (\sum \oplus X_{(\mathcal{T}_n,L_n)})_{AH(L_0)}$.

Tree of rank 1:

The definition of the spaces $X_{(\mathcal{T},L)}$

For a tree of order two we define $X_{(\mathcal{T},L)} = (\sum \oplus X_{(\mathcal{T}_n,L_n)})_{AH(L_0)}$ etc...

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

There space $X_{(\mathcal{T},L)}$ is accompanied by a set of norm-one projections $I_s, s \in \mathcal{T}$.

For every tree *T* and L ⊂ N infinite, the space X_(*T*,L) is L[∞] and if o(*T*) > 0 it has the "scalar-plus-horizontally compact" property.

Note that o(T) = 0, the space X_(T,L) has the "scalar plus compact" property as it coincides with the space X_{AH(L)}.

- For every tree *T* and L ⊂ N infinite, the space X_(*T*,L) is L[∞] and if o(*T*) > 0 it has the "scalar-plus-horizontally compact" property.
- Note that o(T) = 0, the space X_(T,L) has the "scalar plus compact" property as it coincides with the space X_{AH(L)}.

Operators defined on $X_{(\mathcal{T},L)}$

 For an operator S defined on X_{T,L} we denote by S_t the induced operator

 $I_t \circ S \circ I_t$

- Every S ∈ L(X_(T,L)) corresponds to a unique family (λ_t)_{t∈T} of scalars chosen to satisfy:
- If *t* is maximal (and hence X_(Tt,Lt) = X_{AH(Lt)}), S_t λ_t I_t is compact, while
- If *t* non maximal, $S_t \lambda_t I_t$ is horizontally compact.

Operators defined on $X_{(\mathcal{T},L)}$

 For an operator S defined on X_{T,L} we denote by S_t the induced operator

 $I_t \circ S \circ I_t$

- Every S ∈ L(X_(T,L)) corresponds to a unique family (λ_t)_{t∈T} of scalars chosen to satisfy:
- If *t* is maximal (and hence X_(Tt,Lt) = X_{AH(Lt)}), S_t − λ_t I_t is compact, while
- If *t* non maximal, $S_t \lambda_t I_t$ is horizontally compact.

 For an operator S defined on X_{T,L} we denote by S_t the induced operator

 $I_t \circ S \circ I_t$

- Every S ∈ L(X_(T,L)) corresponds to a unique family (λ_t)_{t∈T} of scalars chosen to satisfy:
- If *t* is maximal (and hence X_(Tt,Lt) = X_{AH(Lt)}), S_t λ_tI_t is compact, while
- If *t* non maximal, $S_t \lambda_t I_t$ is horizontally compact.

 For an operator S defined on X_{T,L} we denote by S_t the induced operator

 $I_t \circ S \circ I_t$

- Every S ∈ L(X_(T,L)) corresponds to a unique family (λ_t)_{t∈T} of scalars chosen to satisfy:
- If *t* is maximal (and hence X_(Tt,Lt) = X_{AH(Lt)}), S_t λ_tI_t is compact, while
- If *t* non maximal, $S_t \lambda_t I_t$ is horizontally compact.

The Calkin algebras of $X_{(\mathcal{T},L)}$

- The functional f_S : T → ℝ that assigns to each t ∈ T the scalar λ_t, is continuous.
- We define $\overline{\Phi}_{(\mathcal{T},L)} : \mathcal{L}(X_{(\mathcal{T},L)}) \to C(\mathcal{T})$ by the rule

 $S \rightarrow f_S$.

• The induced operator

 $\Phi_{(\mathcal{T},L)}: \overset{\mathcal{L}(X_{(\mathcal{T},L)})}{\longrightarrow} \mathcal{K}(X_{(\mathcal{T},L)}) = Cal(X_{(\mathcal{T},L)}) \to C(\mathcal{T})$

is a 1-1 homomorphism with dense range has norm one.

The Calkin algebras of $X_{(\mathcal{T},L)}$

- The functional f_S : T → ℝ that assigns to each t ∈ T the scalar λ_t, is continuous.
- We define $\bar{\Phi}_{(\mathcal{T},L)} : \mathcal{L}(X_{(\mathcal{T},L)}) \to \mathcal{C}(\mathcal{T})$ by the rule

 $S \rightarrow f_S$.

• The induced operator

 $\Phi_{(\mathcal{T},L)}: \overset{\mathcal{L}(X_{(\mathcal{T},L)})}{\longrightarrow} \mathcal{K}(X_{(\mathcal{T},L)}) = Cal(X_{(\mathcal{T},L)}) \to C(\mathcal{T})$

is a 1-1 homomorphism with dense range has norm one.

The Calkin algebras of $X_{(\mathcal{T},L)}$

- The functional f_S : T → ℝ that assigns to each t ∈ T the scalar λ_t, is continuous.
- We define $\bar{\Phi}_{(\mathcal{T},L)} : \mathcal{L}(X_{(\mathcal{T},L)}) \to \mathcal{C}(\mathcal{T})$ by the rule

 $S \rightarrow f_S$.

• The induced operator

$$\Phi_{(\mathcal{T},L)}: \overset{\mathcal{L}(X_{(\mathcal{T},L)})}{\longrightarrow} \mathcal{K}(X_{(\mathcal{T},L)}) = Cal(X_{(\mathcal{T},L)}) \to C(\mathcal{T})$$

is a 1-1 homomorphism with dense range has norm one.

Let \mathcal{T} be a tree of finite rank and L be an infinite subset of the natural numbers. Then the map $\Phi_{\mathcal{T},L}$: $Cal(X_{(\mathcal{T},L)}) \rightarrow C(\mathcal{T})$ is bounded below.

Hence, Cal(X_(T,L)) ≃ C(T) as a Banach algebra, if *o*(T) < ω.

Let \mathcal{T} be a tree of finite rank and L be an infinite subset of the natural numbers. Then the map $\Phi_{\mathcal{T},L} : Cal(X_{(\mathcal{T},L)}) \to C(\mathcal{T})$ is bounded below.

 Hence, Cal(X_(T,L)) ≃ C(T) as a Banach algebra, if *o*(T) < ω.

Let \mathcal{T} be a tree of finite rank and L be an infinite subset of the natural numbers. Then the map $\Phi_{\mathcal{T},L} : Cal(X_{(\mathcal{T},L)}) \to C(\mathcal{T})$ is bounded below.

<ロ> <問> <問> < E> < E> < E> < E

 Hence, Cal(X_(T,L)) ≃ C(T) as a Banach algebra, if o(T) < ω.

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_{∞} space X such that its Calkin algebra is isomorphic, as a Banach algebra, to C(K).

• By Sierpinski Mazurkiewichz *K* is homeomorphic to a countable ordinal number of the form $\omega^k \cdot n, k, n \in \mathbb{N}$.

• $X = \left(\sum_{i=1}^{n} \oplus X_{(\mathcal{T},L_i)}\right)_{\infty}$, where $\mathcal{T} = \omega^k$ and $(L_i)_i$ pairwise disjoint.

(日本・西本・西本・西本・日本の人の

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_{∞} space X such that its Calkin algebra is isomorphic, as a Banach algebra, to C(K).

• By Sierpinski Mazurkiewichz *K* is homeomorphic to a countable ordinal number of the form $\omega^k \cdot n, k, n \in \mathbb{N}$.

• $X = \left(\sum_{i=1}^{n} \oplus X_{(\mathcal{T},L_i)}\right)_{\infty}$, where $\mathcal{T} = \omega^k$ and $(L_i)_i$ pairwise disjoint.

<ロト < @ ト < 臣 ト < 臣 ト < 臣 の < @</p>

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_{∞} space X such that its Calkin algebra is isomorphic, as a Banach algebra, to C(K).

By Sierpinski Mazurkiewichz K is homeomorphic to a countable ordinal number of the form ω^k · n, k, n ∈ N.

• $X = \left(\sum_{i=1}^{n} \oplus X_{(\mathcal{T},L_i)}\right)_{\infty}$, where $\mathcal{T} = \omega^k$ and $(L_i)_i$ pairwise disjoint.
Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_{∞} space X such that its Calkin algebra is isomorphic, as a Banach algebra, to C(K).

By Sierpinski Mazurkiewichz K is homeomorphic to a countable ordinal number of the form ω^k · n, k, n ∈ N.

• $X = \left(\sum_{i=1}^{n} \oplus X_{(\mathcal{T},L_i)}\right)_{\infty}$, where $\mathcal{T} = \omega^k$ and $(L_i)_i$ pairwise disjoint.

- Question: is the above theorem true for every countable compact metric space?
- Question: is the map Φ_(T,L) : Cal(X_(T,L)) → C(T) always onto?

- Question: is the above theorem true for every countable compact metric space?
- Question: is the map Φ_(T,L) : Cal(X_(T,L)) → C(T) always onto?

Indications for affirmative answers

- The dual of *Cal*(*X*(*T*,*L*)) is separable and has the Schur property.
- The Calkin algebra of $X_{(\mathcal{T},L)}$ is commutative as a Banach algebra and as a Banach space it is c_0 saturated and has the Dunford-Pettis property.

Indications for affirmative answers

- The dual of *Cal*(*X*(*T*,*L*)) is separable and has the Schur property.
- The Calkin algebra of $X_{(\mathcal{T},L)}$ is commutative as a Banach algebra and as a Banach space it is c_0 saturated and has the Dunford-Pettis property.

Thank you!

▲口 > ▲圖 > ▲ 三 > ▲ 三 > -

æ