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Disjointly homogeneous Banach lattices:

Definition
E is disjointly homogeneous (DH)⇔ ∀ (xn), (yn) normalized disjoint
in E , ∃ (nk) such that∥∥ ∞∑

k=1

akxnk
∥∥ ∼ ∥∥ ∞∑

k=1

akynk
∥∥

Examples: Lp, Lorentz spaces Lp,q, Λ(W , p), . . .

Definition
E is p-disjointly homogeneous (p-DH) if every normalized disjoint
sequence (xn) in E has a subsequence such that∥∥ ∞∑

k=1

akxnk
∥∥ ∼ ( ∞∑

k=1

|ak |p
)1/p

( sup
k
|ak | in case p =∞)
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Applications of DH Banach lattices

Theorem
E DH with finite cotype and unconditional basis.

T ∈ SS(E ) ⇒ T 2 ∈ K(E )

Theorem
E 1-DH with finite cotype. T ∈ SS(E ) ⇒ T ∈ DP(E )

Theorem
E 2-DH with finite cotype. T ∈ SS(E ) ⇒ T ∈ K(E )

Theorem
E discrete with a disjoint basis and DH.

T ∈ SS(E ) ⇒ T ∈ K(E )
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Duality

Question: Is the property DH stable by duality?

Known-facts:

I E ∞-DH ⇒ E ∗ 1-DH.

I Lp,1 is 1-DH but L∗p,1 = Lp′,∞ is not DH.

I Maybe for E reflexive?

We will see that in general the answer is negative
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Positive results

Definition
A Banach lattice E has property P if for every disjoint positive
normalized sequence (fn) ⊂ E there exists a positive operator T :
E → [fn], such that ‖T ∗f ∗n ‖9 0.

Theorem
Let E be a reflexive Banach lattice with property P.

E ∗ DH ⇒ E DH

E ∗ p − DH ⇒ E q − DH
(1

p
+

1

q
= 1
)

Corollary

Let E be a reflexive Banach lattice satisfying an upper p-estimate.

E ∗ q − DH ⇒ E p − DH
(1

p
+

1

q
= 1
)
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Orlicz spaces

Theorem
An Orlicz space Lϕ(0, 1) is p-DH ⇔ E∞ϕ

∼= {tp}.

E∞ϕ =
⋂
s>0

{ϕ(r ·)
ϕ(r)

: r ≥ s
}
.

ĺım
t→∞

tϕ′(t)

ϕ(t)
= p ⇒ E∞ϕ

∼= {tp}

Remark: Lϕ(0, 1) is p-DH ⇔ L∗ϕ(0, 1) is q-DH ( 1
p + 1

q = 1).

Theorem
A separable Orlicz space Lϕ(0,∞) is p-DH ⇔ Cϕ(0,∞) ∼= {tp}.

Cϕ(0,∞) = conv {F ∈ C (0, 1) | ∃s > 0, F (·) =
ϕ(s·)
ϕ(s)

}.
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Counterexemples

Example

Given 1 < p <∞ let

ϕ(t) =


tp t < 1

tp log(1 + t) t ≥ 1

The Orlicz space Lϕ(0,∞) is a reflexive p-DH Banach lattice whose
dual is not DH.

Theorem (Knaust-Odell)

Let E be an atomic Banach lattice. If E is p-DH and E ∗ is p′-DH,
then there is C > 0 such that every disjoint sequence in E has a
subsequence C -equivalent to the basis of `p.

Theorem (Johnson-Odell)

There is a p-DH atomic Banach lattice with no uniform constant
on the equivalence.
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Projections onto disjoint sequences

Question: Does every reflexive Banach lattice contain a
complemented positive disjoint sequence?

It does provided:

1. E contains infinitely many atoms (in particular, discrete),

2. E is non-atomic and contains certain complemented
unconditional basic sequences (Casazza-Kalton),

3. E is a rearrangement invariant space.
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Projections onto disjoint sequences

Theorem
Let E be a DH Banach lattice. E has property P if and only if E
contains a complemented positive disjoint sequence.

Theorem
If E is a separable non-reflexive DH Banach lattice, then every dis-
joint sequence in E has a subsequence spanning a complemented
subspace in E .

Theorem
Let E be reflexive Banach lattice containing a complemented disjoint
sequence. If E and E ∗ are DH, then every disjoint sequence in E
has a subsequence spanning a complemented subspace in E .

Theorem
Let E be a p-DH Banach lattice which is p-convex with 1 < p <∞.
Then every disjoint sequence in E has a subsequence spanning a
complemented subspace in E .
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