Sequences in Large Spaces

Stevo Todorcevic

C.N.R.S. Paris and University of Toronto

Maresias, 28 August 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Weakly Null Sequences

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers
- 3. w^* -null sequences and the quotient problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers
- 3. w^* -null sequences and the quotient problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

4. P-ideal Dichotomy

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers
- 3. w^* -null sequences and the quotient problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 4. P-ideal Dichotomy
- 5. Weakly-null sequence on Polish spaces

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers
- 3. w^* -null sequences and the quotient problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 4. P-ideal Dichotomy
- 5. Weakly-null sequence on Polish spaces
- 6. Ramsey Theory on Trees

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers
- 3. w^* -null sequences and the quotient problem

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 4. P-ideal Dichotomy
- 5. Weakly-null sequence on Polish spaces
- 6. Ramsey Theory on Trees
- 7. Unconditional sequences

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers
- 3. w^* -null sequences and the quotient problem
- 4. P-ideal Dichotomy
- 5. Weakly-null sequence on Polish spaces
- 6. Ramsey Theory on Trees
- 7. Unconditional sequences
- 8. The Free-Set Property and the Product Ramsey property

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers
- 3. w^* -null sequences and the quotient problem
- 4. P-ideal Dichotomy
- 5. Weakly-null sequence on Polish spaces
- 6. Ramsey Theory on Trees
- 7. Unconditional sequences
- 8. The Free-Set Property and the Product Ramsey property

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

9. Long Conditional Weakly-null Sequences

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers
- 3. w^* -null sequences and the quotient problem
- 4. P-ideal Dichotomy
- 5. Weakly-null sequence on Polish spaces
- 6. Ramsey Theory on Trees
- 7. Unconditional sequences
- 8. The Free-Set Property and the Product Ramsey property

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 9. Long Conditional Weakly-null Sequences
- 10. Positional Graphs

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers
- 3. w^* -null sequences and the quotient problem
- 4. P-ideal Dichotomy
- 5. Weakly-null sequence on Polish spaces
- 6. Ramsey Theory on Trees
- 7. Unconditional sequences
- 8. The Free-Set Property and the Product Ramsey property

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 9. Long Conditional Weakly-null Sequences
- 10. Positional Graphs
- 11. Subsymmetric sequences

- 1. Weakly Null Sequences
- 2. Ramsey Theory of Fronts and Barriers
- 3. w^* -null sequences and the quotient problem
- 4. P-ideal Dichotomy
- 5. Weakly-null sequence on Polish spaces
- 6. Ramsey Theory on Trees
- 7. Unconditional sequences
- 8. The Free-Set Property and the Product Ramsey property

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 9. Long Conditional Weakly-null Sequences
- 10. Positional Graphs
- 11. Subsymmetric sequences
- 12. Compact families on trees

Theorem (Bessage-Pelczynski, 1958)

For every $\varepsilon > 0$, every normalized weakly null sequence (x_n) contains an infinite $(1 + \varepsilon)$ -basic subsequence (x_{n_i}) .

Theorem (Bessage-Pelczynski, 1958)

For every $\varepsilon > 0$, every normalized weakly null sequence (x_n) contains an infinite $(1 + \varepsilon)$ -basic subsequence (x_{n_i}) .

Theorem (Maurey-Rosenthal, 1977)

(1) For every $\varepsilon > 0$ and every $\alpha < \omega^{\omega}$, every normalized weakly null sequence in $C(\alpha + 1)$ has a $(2 + \varepsilon)$ -unconditional subsequence.

Theorem (Bessage-Pelczynski, 1958)

For every $\varepsilon > 0$, every normalized weakly null sequence (x_n) contains an infinite $(1 + \varepsilon)$ -basic subsequence (x_{n_i}) .

Theorem (Maurey-Rosenthal, 1977)

- For every ε > 0 and every α < ω^ω, every normalized weakly null sequence in C(α + 1) has a (2 + ε)-unconditional subsequence.
- (2) For every $\varepsilon > 0$ every normalized weakly null sequence in $C(\omega^{\omega} + 1)$ has a $(4 + \varepsilon)$ -unconditional subsequence.

Theorem (Bessage-Pelczynski, 1958)

For every $\varepsilon > 0$, every normalized weakly null sequence (x_n) contains an infinite $(1 + \varepsilon)$ -basic subsequence (x_{n_i}) .

Theorem (Maurey-Rosenthal, 1977)

- (1) For every $\varepsilon > 0$ and every $\alpha < \omega^{\omega}$, every normalized weakly null sequence in $C(\alpha + 1)$ has a $(2 + \varepsilon)$ -unconditional subsequence.
- (2) For every $\varepsilon > 0$ every normalized weakly null sequence in $C(\omega^{\omega} + 1)$ has a $(4 + \varepsilon)$ -unconditional subsequence.
- (3) There is a normalized weakly null sequence in $C(\omega^{\omega^2} + 1)$ with no unconditional subsequence.

Finite and partial unconditionality

Theorem (Odell 1993, Dodos-LopezAbad-Todorcevic, 2011) Let k a positive integer and $\varepsilon > 0$. Suppose that for every i < kwe are given a normalized weakly null sequence $(x_n^i)_{n=0}^{\infty}$ in some Banach space X. Then, there exists an infinite set M of integers such that for every $\{n_0 < \cdots < n_{k-1}\} \subseteq M$ the k-sequence $(x_{n_i}^i)_{i < k}$ is $(1 + \varepsilon)$ -unconditional.

Finite and partial unconditionality

Theorem (Odell 1993, Dodos-LopezAbad-Todorcevic, 2011) Let k a positive integer and $\varepsilon > 0$. Suppose that for every i < kwe are given a normalized weakly null sequence $(x_n^i)_{n=0}^{\infty}$ in some Banach space X. Then, there exists an infinite set M of integers such that for every $\{n_0 < \cdots < n_{k-1}\} \subseteq M$ the k-sequence $(x_{n_i}^i)_{i < k}$ is $(1 + \varepsilon)$ -unconditional.

Theorem (Arvanitakis 2006, Gasparis-Odell-Wahl, 2006 Todorcevic 2005)

Suppose that (x_n) is a normalized weakly-null sequence in $\ell_\infty(\Gamma)$ with the property that

$$\inf\{|x_n(\gamma)|: n \in \mathbb{N}, \gamma \in \Gamma\} > 0.$$

Then (x_n) contains an infinite unconditional basic subsequence.

Theorem (Elton 1978)

For every $0 < \varepsilon \le 1$ there is a constant $C(\varepsilon) \ge 1$ such that every normalized weakly null sequence (x_n) has an infinite subsequence (x_{n_i}) such that

$$\|\sum_{i\in I} a_i x_{n_i}\| \le C(\varepsilon) \|\sum_{j\in J} a_j x_{n_j}\|$$

for every pair $I \subseteq J$ of subsets of \mathbb{N} and every choice $(a_j : j \in J)$ of scalars such that $\varepsilon \leq |a_j| \leq 1$ for all $j \in J$.

Theorem (Elton 1978)

For every $0 < \varepsilon \le 1$ there is a constant $C(\varepsilon) \ge 1$ such that every normalized weakly null sequence (x_n) has an infinite subsequence (x_{n_i}) such that

$$\|\sum_{i\in I} a_i x_{n_i}\| \le C(\varepsilon) \|\sum_{j\in J} a_j x_{n_j}\|$$

for every pair $I \subseteq J$ of subsets of \mathbb{N} and every choice $(a_j : j \in J)$ of scalars such that $\varepsilon \leq |a_j| \leq 1$ for all $j \in J$.

Problem (Elton unconditionality constant problem) Is $\sup_{0 < \varepsilon \le 1} C(\varepsilon) < \infty$?

Definition (Nash-Williams 1965)

For a family ${\mathcal F}$ of finite subsets of ${\mathbb N}$ we say that:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition (Nash-Williams 1965)

For a family ${\mathcal F}$ of finite subsets of ${\mathbb N}$ we say that:

1. \mathcal{F} is **thin** whenever $s \not\sqsubseteq t$ for $s \neq t$ in \mathcal{F} .

・ロト・日本・モート モー うへぐ

Definition (Nash-Williams 1965)

For a family ${\mathcal F}$ of finite subsets of ${\mathbb N}$ we say that:

- 1. \mathcal{F} is **thin** whenever $s \not\sqsubseteq t$ for $s \neq t$ in \mathcal{F} .
- 2. \mathcal{F} is a **front** if \mathcal{F} is thin and if every infinite subset of \mathbb{N} contains an initial segment in \mathcal{F} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (Nash-Williams 1965)

For a family ${\mathcal F}$ of finite subsets of ${\mathbb N}$ we say that:

- 1. \mathcal{F} is **thin** whenever $s \not\sqsubseteq t$ for $s \neq t$ in \mathcal{F} .
- 2. \mathcal{F} is a **front** if \mathcal{F} is thin and if every infinite subset of \mathbb{N} contains an initial segment in \mathcal{F} .
- 3. \mathcal{F} is a **barrier** if \mathcal{F} is a front and if $s \not\subseteq t$ for $s \neq t$ in \mathcal{F} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (Nash-Williams 1965)

For a family ${\mathcal F}$ of finite subsets of ${\mathbb N}$ we say that:

- 1. \mathcal{F} is **thin** whenever $s \not\sqsubseteq t$ for $s \neq t$ in \mathcal{F} .
- 2. \mathcal{F} is a **front** if \mathcal{F} is thin and if every infinite subset of \mathbb{N} contains an initial segment in \mathcal{F} .
- 3. \mathcal{F} is a **barrier** if \mathcal{F} is a front and if $s \not\subseteq t$ for $s \neq t$ in \mathcal{F} .

Theorem (Nash-Williams 1965)

Suppose $\mathcal{H} = \mathcal{H}_0 \cup \cdots \cup \mathcal{H}_I$ is a finite partition of a thin family \mathcal{H} of finite subsets of \mathbb{N} . Then there is an infinite set $M \subseteq \mathbb{N}$ and i < I such that $\mathcal{H} \upharpoonright M \subseteq \mathcal{H}_i$, where

$$\mathcal{H} \upharpoonright M = \{s \in \mathcal{H} : s \subseteq M\}.$$

For every front \mathcal{B} on \mathbb{N} and every mapping $f : \mathcal{B} \to \mathbb{N}$ there exist an infinite subset M of \mathbb{N} and a mapping $\varphi : \mathcal{B} \upharpoonright M \to [\mathbb{N}]^{<\infty}$ such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For every front \mathcal{B} on \mathbb{N} and every mapping $f : \mathcal{B} \to \mathbb{N}$ there exist an infinite subset M of \mathbb{N} and a mapping $\varphi : \mathcal{B} \upharpoonright M \to [\mathbb{N}]^{<\infty}$ such that:

(1) φ is an internal mapping, i.e., $\varphi(s) \subseteq s$ for all $\in \mathcal{B} \upharpoonright M$,

For every front \mathcal{B} on \mathbb{N} and every mapping $f : \mathcal{B} \to \mathbb{N}$ there exist an infinite subset M of \mathbb{N} and a mapping $\varphi : \mathcal{B} \upharpoonright M \to [\mathbb{N}]^{<\infty}$ such that:

- (1) φ is an internal mapping, *i.e.*, $\varphi(s) \subseteq s$ for all $\in \mathcal{B} \upharpoonright M$,
- (2) the range of φ is a thin family, i.e., $\varphi(s) \not\sqsubseteq \varphi(t)$ for all $s, t \in \mathcal{B} \upharpoonright M$ such that $\varphi(s) \neq \varphi(t)$, and

For every front \mathcal{B} on \mathbb{N} and every mapping $f : \mathcal{B} \to \mathbb{N}$ there exist an infinite subset M of \mathbb{N} and a mapping $\varphi : \mathcal{B} \upharpoonright M \to [\mathbb{N}]^{<\infty}$ such that:

- (1) φ is an internal mapping, *i.e.*, $\varphi(s) \subseteq s$ for all $\in \mathcal{B} \upharpoonright M$,
- (2) the range of φ is a thin family, i.e., $\varphi(s) \not\sqsubseteq \varphi(t)$ for all $s, t \in \mathcal{B} \upharpoonright M$ such that $\varphi(s) \neq \varphi(t)$, and
- (3) for $s, t \in \mathcal{B} \upharpoonright M$, f(s) = f(t) iff $\varphi(s) = \varphi(t)$.

For every front \mathcal{B} on \mathbb{N} and every mapping $f : \mathcal{B} \to \mathbb{N}$ there exist an infinite subset M of \mathbb{N} and a mapping $\varphi : \mathcal{B} \upharpoonright M \to [\mathbb{N}]^{<\infty}$ such that:

- (1) φ is an internal mapping, i.e., $\varphi(s) \subseteq s$ for all $\in \mathcal{B} \upharpoonright M$,
- (2) the range of φ is a thin family, i.e., $\varphi(s) \not\sqsubseteq \varphi(t)$ for all $s, t \in \mathcal{B} \upharpoonright M$ such that $\varphi(s) \neq \varphi(t)$, and
- (3) for $s, t \in \mathcal{B} \upharpoonright M$, f(s) = f(t) iff $\varphi(s) = \varphi(t)$.

Remark

There can be only one mapping $\varphi : \mathcal{B} \upharpoonright M \to [\mathbb{N}]^{<\infty}$ satisfying the conditions (1), (2) and (3) from the Theorem on a given infinite subset M of \mathbb{N} .

 w^* -null sequences and the quotient problem

 w^* -null sequences and the quotient problem

Theorem (Josefson 1975, Nissenzweig 1975) For every infinite-dimensional normed space X there is a normalized w*-null sequence $(f_n)_{n=0}^{\infty}$ in X*.

 w^* -null sequences and the quotient problem

Theorem (Josefson 1975, Nissenzweig 1975) For every infinite-dimensional normed space X there is a normalized w*-null sequence $(f_n)_{n=0}^{\infty}$ in X*.

Theorem (Johnson-Rosenthal 1972)

Every separable infinite-dimensional space has an infinite-dimensional quotient with a Schauder basis.
w^* -null sequences and the quotient problem

Theorem (Josefson 1975, Nissenzweig 1975) For every infinite-dimensional normed space X there is a normalized w*-null sequence $(f_n)_{n=0}^{\infty}$ in X*.

Theorem (Johnson-Rosenthal 1972)

Every separable infinite-dimensional space has an infinite-dimensional quotient with a Schauder basis.

Theorem (Todorcevic 2006)

Suppose that a Banach space X has density $< \mathfrak{m}$ and that its dual X^* has an uncountable normalized w^* -null sequence. Then X has a quotient with a Schauder basis of length ω_1 .

w*-null sequences and the quotient problem

Theorem (Josefson 1975, Nissenzweig 1975) For every infinite-dimensional normed space X there is a normalized w*-null sequence $(f_n)_{n=0}^{\infty}$ in X*.

Theorem (Johnson-Rosenthal 1972)

Every separable infinite-dimensional space has an infinite-dimensional quotient with a Schauder basis.

Theorem (Todorcevic 2006)

Suppose that a Banach space X has density $< \mathfrak{m}$ and that its dual X^* has an uncountable normalized w^* -null sequence. Then X has a quotient with a Schauder basis of length ω_1 .

Remark

Recall that \mathfrak{m} is the Baire-category number of the class of compact Hausdorff spaces satisfying the **countable chain condition.**

<ロ>

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

We shall consider only ideals of **countable** subsets of S and assume that all our ideals include the ideal of all finite subsets of S.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

We shall consider only ideals of **countable** subsets of S and assume that all our ideals include the ideal of all finite subsets of S.

We say that such an ideal \mathcal{I} is a **P-ideal** if for every sequence (x_n) in \mathcal{I} there is $y \in \mathcal{I}$ such that $x_n \setminus y$ is finite for all n.

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

We shall consider only ideals of **countable** subsets of S and assume that all our ideals include the ideal of all finite subsets of S.

We say that such an ideal \mathcal{I} is a **P-ideal** if for every sequence (x_n) in \mathcal{I} there is $y \in \mathcal{I}$ such that $x_n \setminus y$ is finite for all n.

Example

1. The ideal $[S]^{\leq \aleph_0}$ of all countable subsets of S is a P-ideal.

Definition

An **ideal** on an index set S is simply a family \mathcal{I} of subsets of S closed under taking subsets and finite unions of its elements.

We shall consider only ideals of **countable** subsets of S and assume that all our ideals include the ideal of all finite subsets of S.

We say that such an ideal \mathcal{I} is a **P-ideal** if for every sequence (x_n) in \mathcal{I} there is $y \in \mathcal{I}$ such that $x_n \setminus y$ is finite for all n.

Example

- 1. The ideal $[S]^{\leq \aleph_0}$ of all countable subsets of S is a P-ideal.
- 2. Given a family \mathcal{F} of cardinality $< \mathfrak{b}$ the ideal

$$\mathcal{F}^{\perp} = \{x \in [\mathcal{S}]^{\leq leph_0} : (orall Y \in \mathcal{F}) | x \cap Y | < leph_0\}$$

is a P-ideal.

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set *S* either

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set S either

```
(1) there is uncountable T \subseteq S such that [T]^{\aleph_0} \subseteq \mathcal{I}, or
```

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set S either

- (1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_0} \subseteq \mathcal{I}$, or
- (2) there is a countable decomposition $S = \bigcup_{n < \omega} S_n$ such that $S_n \perp \mathcal{I}$ for all *n*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set S either

- (1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_0} \subseteq \mathcal{I}$, or
- (2) there is a countable decomposition $S = \bigcup_{n < \omega} S_n$ such that $S_n \perp \mathcal{I}$ for all *n*.

Remark

1. It is known that PID follows from the strong Baire category principles such as $\mathfrak{mm} > \omega_1$.

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set S either

- (1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_0} \subseteq \mathcal{I}$, or
- (2) there is a countable decomposition $S = \bigcup_{n < \omega} S_n$ such that $S_n \perp \mathcal{I}$ for all *n*.

Remark

1. It is known that PID follows from the strong Baire category principles such as $\mathfrak{mm} > \omega_1$.

2. It is also known that PID is consistent with GCH.

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} on some index set S either

- (1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_0} \subseteq \mathcal{I}$, or
- (2) there is a countable decomposition $S = \bigcup_{n < \omega} S_n$ such that $S_n \perp \mathcal{I}$ for all *n*.

Remark

1. It is known that PID follows from the strong Baire category principles such as $\mathfrak{mm} > \omega_1$.

- 2. It is also known that PID is consistent with GCH.
- 3. It is known that PID implies, for example, the Souslin Hypothesis.

Assume PID. Let X be a nonseparable Banach space of density $< \mathfrak{p}$. Then X^{*} has an uncountable normalized w^{*}-null sequence.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume PID. Let X be a nonseparable Banach space of density $< \mathfrak{p}$. Then X^{*} has an uncountable normalized w^{*}-null sequence.

Remark

Recall that \mathfrak{p} is the minimal cardinality of a family \mathcal{F} of infinite subsets of \mathbb{N} such that the intersection of every subfamily of \mathcal{F} is infinite but there is no infinite set $M \subseteq \mathbb{N}$ such that $M \setminus N$ is finite for all $N \in \mathcal{F}$.

Assume PID. Let X be a nonseparable Banach space of density $< \mathfrak{p}$. Then X^{*} has an uncountable normalized w^{*}-null sequence.

Remark

Recall that \mathfrak{p} is the minimal cardinality of a family \mathcal{F} of infinite subsets of \mathbb{N} such that the intersection of every subfamily of \mathcal{F} is infinite but there is no infinite set $M \subseteq \mathbb{N}$ such that $M \setminus N$ is finite for all $N \in \mathcal{F}$.

Corollary (Todorcevic 2006)

Assume PID and $\mathfrak{m} > \omega_1$. Then every non-separable Banach space has un uncountable biorthogonal system.

Assume PID. Let X be a nonseparable Banach space of density $< \mathfrak{p}$. Then X^{*} has an uncountable normalized w^{*}-null sequence.

Remark

Recall that \mathfrak{p} is the minimal cardinality of a family \mathcal{F} of infinite subsets of \mathbb{N} such that the intersection of every subfamily of \mathcal{F} is infinite but there is no infinite set $M \subseteq \mathbb{N}$ such that $M \setminus N$ is finite for all $N \in \mathcal{F}$.

Corollary (Todorcevic 2006)

Assume PID and $\mathfrak{m} > \omega_1$. Then every non-separable Banach space has un uncountable biorthogonal system.

Corollary (Todorcevic 2006)

Assume PID and $\mathfrak{m} > \omega_1$. Then every non-separable Banach space has closed convex subset supported by all of its points.

Assume PID. Let X be a nonseparable Banach space of density $< \mathfrak{p}$. Then X^{*} has an uncountable normalized w^{*}-null sequence.

Remark

Recall that \mathfrak{p} is the minimal cardinality of a family \mathcal{F} of infinite subsets of \mathbb{N} such that the intersection of every subfamily of \mathcal{F} is infinite but there is no infinite set $M \subseteq \mathbb{N}$ such that $M \setminus N$ is finite for all $N \in \mathcal{F}$.

Corollary (Todorcevic 2006)

Assume PID and $\mathfrak{m} > \omega_1$. Then every non-separable Banach space has un uncountable biorthogonal system.

Corollary (Todorcevic 2006)

Assume PID and $\mathfrak{m} > \omega_1$. Then every non-separable Banach space has closed convex subset supported by all of its points.

PID and Asplund spaces

Definition

An **Asplund space**, or a **strong differentiability space** is a Banach space X with the property that every continuous convex function $f : U \to \mathbb{R}$ on an open convex domain $U \subseteq X$ is Fréchet differentiable in every point of a dense G_{δ} -subset of U.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PID and Asplund spaces

Definition

An **Asplund space**, or a **strong differentiability space** is a Banach space X with the property that every continuous convex function $f : U \to \mathbb{R}$ on an open convex domain $U \subseteq X$ is Fréchet differentiable in every point of a dense G_{δ} -subset of U.

Remark

This is a well studied class of spaces with many pleasant properties such as the **projectional resolution of the identity** of its dual space, the **norm-fragmentability of the** w^* -topology of the dual ball, separability of the dual of every separable subspace, etc.

If $\mathfrak{b} = \omega_1$ then there is an Asplund space with no uncountable ε -biorthogonal system for any $0 \leq \varepsilon < 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If $\mathfrak{b} = \omega_1$ then there is an Asplund space with no uncountable ε -biorthogonal system for any $0 \leq \varepsilon < 1$.

Recall that \mathfrak{b} is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ that is unbounded in the ordering of eventual dominance.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $\mathfrak{b} = \omega_1$ then there is an Asplund space with no uncountable ε -biorthogonal system for any $0 \leq \varepsilon < 1$.

Recall that \mathfrak{b} is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ that is unbounded in the ordering of eventual dominance.

Theorem (Brech-Todorcevic 2012)

Assume PID. Let X be nonseparable Asplund space of density $< \mathfrak{b}$. Then X^{*} has an uncountable normalized w^{*}-null sequence.

If $\mathfrak{b} = \omega_1$ then there is an Asplund space with no uncountable ε -biorthogonal system for any $0 \leq \varepsilon < 1$.

Recall that \mathfrak{b} is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ that is unbounded in the ordering of eventual dominance.

Theorem (Brech-Todorcevic 2012)

Assume PID. Let X be nonseparable Asplund space of density $< \mathfrak{b}$. Then X^{*} has an uncountable normalized w^{*}-null sequence.

Corollary

Assume PID. The following are equivalent:

1. Every non-separable Asplund space has an uncountable ε -biorthogonal system for every $\varepsilon > 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $\mathfrak{b} = \omega_1$ then there is an Asplund space with no uncountable ε -biorthogonal system for any $0 \leq \varepsilon < 1$.

Recall that \mathfrak{b} is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ that is unbounded in the ordering of eventual dominance.

Theorem (Brech-Todorcevic 2012)

Assume PID. Let X be nonseparable Asplund space of density < b. Then X^{*} has an uncountable normalized w^{*}-null sequence.

Corollary

Assume PID. The following are equivalent:

1. Every non-separable Asplund space has an uncountable ε -biorthogonal system for every $\varepsilon > 0$.

 $2. \ \mathfrak{b} = \aleph_2.$

Weakly null sequences on Polish spaces

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

Weakly null sequences on Polish spaces

Theorem (Mycielski 1964)

Suppose $M_n \subseteq X^{k_n} (n = 0, 1, ...)$ is a sequence of subsets of the finite powers of some fixed Polish space X and suppose that M_n is a meager subset of X^{k_n} for all n. Then there is a perfect set $P \subseteq X$ such that $[P]^{k_n} \cap M_n = \emptyset$ for all n.

Weakly null sequences on Polish spaces

Theorem (Mycielski 1964)

Suppose $M_n \subseteq X^{k_n} (n = 0, 1, ...)$ is a sequence of subsets of the finite powers of some fixed Polish space X and suppose that M_n is a meager subset of X^{k_n} for all n. Then there is a perfect set $P \subseteq X$ such that $[P]^{k_n} \cap M_n = \emptyset$ for all n.

Theorem (Argyros-Dodos-Kanellopoulos 2008)

Suppose X is a Polish space and that $(f_a)_{a \in 2^{\mathbb{N}}}$ is a bounded sequence in $\ell_{\infty}(X)$ such that $(x, a) \mapsto f_a(x)$ is a Borel function from $X \times 2^{\mathbb{N}}$ into \mathbb{R} and that

$$|\{a \in 2^{\mathbb{N}} : f_a(x) \neq 0\}| \leq \aleph_0 \text{ for all } x \in X.$$

Then there is a perfect set $P \subseteq 2^{\mathbb{N}}$ such that the sequence $(f_a)_{a \in P}$ is 1-unconditional.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

Definition

Fix a rooted finitely branching tree U with no terminal nodes. A subtree T of U will be called a **strong subtree** if the levels of T are subsets of the levels of U and if for every $t \in T$ every immediate successor of t in U is extended by a unique immediate successor of t in T.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Fix a rooted finitely branching tree U with no terminal nodes. A subtree T of U will be called a **strong subtree** if the levels of T are subsets of the levels of U and if for every $t \in T$ every immediate successor of t in U is extended by a unique immediate successor of t in T.

Theorem (Halpern-Läuchli 1966)

For every sequence $U_0, ..., U_{d-1}$ of rooted finitelly branching trees with no terminal nodes and for every finite colouring of the level product $U_0 \otimes \cdots \otimes U_{d-1}$, we can find for each i < d a strong subtree T_i of U_i such that the T_i 's share the same level set and such that the level product $T_0 \otimes \cdots \otimes T_{d-1}$ is monochromatic.

Definition

Fix a rooted finitely branching tree U with no terminal nodes. A subtree T of U will be called a **strong subtree** if the levels of T are subsets of the levels of U and if for every $t \in T$ every immediate successor of t in U is extended by a unique immediate successor of t in T.

Theorem (Halpern-Läuchli 1966)

For every sequence $U_0, ..., U_{d-1}$ of rooted finitelly branching trees with no terminal nodes and for every finite colouring of the level product $U_0 \otimes \cdots \otimes U_{d-1}$, we can find for each i < d a strong subtree T_i of U_i such that the T_i 's share the same level set and such that the level product $T_0 \otimes \cdots \otimes T_{d-1}$ is monochromatic.

Theorem (Miliken 1981)

For every finite Borel colouring of the space $S_{\infty}(U)$ of all strong subtrees of U there is a strong subtree T of U such that the set $S_{\infty}(T)$ of strong subtrees of T is monochromatic. A parametrized Ramsey theorem for perfect sets

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

A parametrized Ramsey theorem for perfect sets

Theorem

For every countable Borel colouring of the product $[2^{\mathbb{N}}]^2 \times [\mathbb{N}]^{\infty}$ with colours that are invariant under finite changes on the second coordinate, there is a perfect set $P \subseteq 2^{\mathbb{N}}$ and an infinite set $M \subseteq \mathbb{N}$ such that the product $[P]^2 \times [M]^{\infty}$ is monochromatic.

A parametrized Ramsey theorem for perfect sets

Theorem

For every countable Borel colouring of the product $[2^{\mathbb{N}}]^2 \times [\mathbb{N}]^{\infty}$ with colours that are invariant under finite changes on the second coordinate, there is a perfect set $P \subseteq 2^{\mathbb{N}}$ and an infinite set $M \subseteq \mathbb{N}$ such that the product $[P]^2 \times [M]^{\infty}$ is monochromatic.

Example (Pol 1986)

Pol's compact set of Baire class-1 function is represented as

$$\mathbb{P}=2^{<\mathbb{N}}\cup 2^{\mathbb{N}}\cup\{\infty\},$$

where the points of the Cantor tree $2^{<\mathbb{N}}$ are isolated, the nodes of a branch of this tree converge to the corresponding member of $2^{\mathbb{N}}$ and ∞ is the point that compactifies the rest of the space.
Theorem (Todorcevic 1999)

Suppose K is a separable compact set of Baire class-1 functions defined on some Polish space X. Let D be a countable dense subset of K, and let f be a point of K that is not G_{δ} in K. Then there is a homeomorphic embedding

$\Phi:\mathbb{P}\to K$

such that $\Phi(\infty) = f$ and $\Phi[2^{<\mathbb{N}}] \subseteq D$.

Theorem (Todorcevic 1999)

Suppose K is a separable compact set of Baire class-1 functions defined on some Polish space X. Let D be a countable dense subset of K, and let f be a point of K that is not G_{δ} in K. Then there is a homeomorphic embedding

 $\Phi: \mathbb{P} \to K$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

such that $\Phi(\infty) = f$ and $\Phi[2^{<\mathbb{N}}] \subseteq D$.

Theorem (Argyros-Dodos-Kanellopoulos 2008) Every infinite-dimensional dual Banach space has an infinite-dimensional quotient with a Schauder basis.

Theorem (Gowers-Maurey, 1993)

There is a separable reflexive infinite-dimensional space X with no infinite unconditional basic sequence.

Theorem (Gowers-Maurey, 1993)

There is a separable reflexive infinite-dimensional space X with no infinite unconditional basic sequence.

Theorem (Argyros-LopezAbad-Todorcevic, 2006)

There is also a non-separable reflexive space X with no infinite unconditional basic sequence.

Theorem (Gowers-Maurey, 1993)

There is a separable reflexive infinite-dimensional space X with no infinite unconditional basic sequence.

Theorem (Argyros-LopezAbad-Todorcevic, 2006)

There is also a non-separable reflexive space X with no infinite unconditional basic sequence.

Problem

Is there a reflexive space of density $> \aleph_1$ without an infinite unconditional basic sequence?

Theorem (Gowers-Maurey, 1993)

There is a separable reflexive infinite-dimensional space X with no infinite unconditional basic sequence.

Theorem (Argyros-LopezAbad-Todorcevic, 2006)

There is also a non-separable reflexive space X with no infinite unconditional basic sequence.

Problem

Is there a reflexive space of density $> \aleph_1$ without an infinite unconditional basic sequence?

Theorem (Argyros-Tolias, 2004)

There is a space X of density 2^{\aleph_0} with no infinite unconditional basic sequence.

Theorem (Gowers-Maurey, 1993)

There is a separable reflexive infinite-dimensional space X with no infinite unconditional basic sequence.

Theorem (Argyros-LopezAbad-Todorcevic, 2006)

There is also a non-separable reflexive space X with no infinite unconditional basic sequence.

Problem

Is there a reflexive space of density $> \aleph_1$ without an infinite unconditional basic sequence?

Theorem (Argyros-Tolias, 2004)

There is a space X of density 2^{\aleph_0} with no infinite unconditional basic sequence.

Problem

Is there a space of density $> 2^{\aleph_0}$ without an infinite unconditional basic sequence?

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

Problem

1. When does an infinite-dimensional normed space contain an infinite unconditional basic sequence?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem

- 1. When does an infinite-dimensional normed space contain an infinite unconditional basic sequence?
- 2. When does an infinite normalized weakly null sequence in some normed space contains an infinite unconditional subsequence?

Problem

- 1. When does an infinite-dimensional normed space contain an infinite unconditional basic sequence?
- 2. When does an infinite normalized weakly null sequence in some normed space contains an infinite unconditional subsequence?

Theorem (Johnson-Rosenthal 1972, Hagler-Johnson 1977) If the dual X^* of some Banach space X contains an infinite unconditional basic sequence then X admits a quotient with an unconditional basis.

Free-set Property and Product-Ramsey Property

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Free-set Property and Product-Ramsey Property

Definition

We say that an index-set Γ has the **free-set property**, and write $FSP(\Gamma)$, if every algebra \mathcal{A} on Γ with no more than countably many operations has an infinite *free set*, an infinite subset X of Γ such that no $x \in X$ is in the sub algebra of \mathcal{A} generated by $X \setminus \{x\}$.

Free-set Property and Product-Ramsey Property

Definition

We say that an index-set Γ has the **free-set property**, and write $FSP(\Gamma)$, if every algebra \mathcal{A} on Γ with no more than countably many operations has an infinite *free set*, an infinite subset X of Γ such that no $x \in X$ is in the sub algebra of \mathcal{A} generated by $X \setminus \{x\}$.

Definition

We say that Γ has the **product-Ramsey property**, and write $\mathrm{PRP}(\Gamma),$ if for every colouring

 $\chi:\Gamma^{<\omega}\to \mathbf{2}$

of the set of all finite sequences of the index-set Γ into 2 colours there exists an infinite sequence (X_i) of 2-element subsets of Γ or, equivalently, an infinite sequence (X_i) of *infinite* subsets of Γ , such that χ is constant on $\prod_{i < n} X_i$ for all n. Proposition $PRP(\Gamma)$ implies $FSP(\Gamma)$ but not vice versa.

Proposition $\operatorname{PRP}(\Gamma)$ implies $\operatorname{FSP}(\Gamma)$ but not vice versa.

Theorem (Erdős-Hajnal 1966)

The free-set property fails for index-sets of cardinalities $< \aleph_{\omega}$.

Proposition

 $\mathrm{PRP}(\Gamma)$ implies $\mathrm{FSP}(\Gamma)$ but not vice versa.

Theorem (Erdős-Hajnal 1966)

The free-set property fails for index-sets of cardinalities $< \aleph_{\omega}$.

Theorem (Koepke 1984, DiPrisco-Todorcevic 1999)

The following are equiconsistent:

- 1. FSP(\aleph_{ω}).
- 2. PRP(\aleph_{ω}).
- 3. There is an index set supporting a non-principal countably complete ultrafilter.

Definition

We say that an index-set Γ has the 2-dimensional polarized Ramsey property) and write $PRP_2(\Gamma)$, if for every colouring

$$\chi: ([\Gamma]^2)^{<\omega} \to 2$$

of all finite sequences of 2-element subsets of the index-set Γ into 2 colours there exist an infinite sequence (X_i) of **infinite** subsets of Γ such that χ is constant on $\prod_{i \le n} [X_i]^2$ for all n.

Definition

We say that an index-set Γ has the 2-dimensional polarized Ramsey property) and write $PRP_2(\Gamma)$, if for every colouring

$$\chi: ([\Gamma]^2)^{<\omega} \to 2$$

of all finite sequences of 2-element subsets of the index-set Γ into 2 colours there exist an infinite sequence (X_i) of **infinite** subsets of Γ such that χ is constant on $\prod_{i \le n} [X_i]^2$ for all n.

Theorem (Shelah 1980)

 $PRP_2(\aleph_{\omega})$ is consistent relative to the existence of infinitely many compact cardinals.

Definition

We say that an index-set Γ has the 2-dimensional polarized Ramsey property) and write $PRP_2(\Gamma)$, if for every colouring

$$\chi: ([\Gamma]^2)^{<\omega} \to 2$$

of all finite sequences of 2-element subsets of the index-set Γ into 2 colours there exist an infinite sequence (X_i) of **infinite** subsets of Γ such that χ is constant on $\prod_{i < n} [X_i]^2$ for all n.

Theorem (Shelah 1980)

 $\operatorname{PRP}_2(\aleph_{\omega})$ is consistent relative to the existence of infinitely many compact cardinals.

Question

What is the equiconsistency result here?

Long weakly-null sequences

- ◆ □ ▶ → 個 ▶ → 差 ▶ → 差 → のへで

Long weakly-null sequences

Theorem (Dodos-LopezAbad-Todorcevic 2011)

If a normalized weakly null sequence $(x_i)_{i \in I}$ is indexed by a set I that has the free-set property then it contains an infinite unconditional basic subsequence.

Long weakly-null sequences

Theorem (Dodos-LopezAbad-Todorcevic 2011)

If a normalized weakly null sequence $(x_i)_{i \in I}$ is indexed by a set I that has the free-set property then it contains an infinite unconditional basic subsequence.

Theorem (Dodos-LopezAbad-Todorcevic 2011)

Suppose that $(x_{\gamma})_{\gamma \in \Gamma}$ is a normalized and separated sequence in some Banach space X containing no ℓ_1 . If the index-set Γ satisfies $\operatorname{PRP}_2(\Gamma)$ then there is an infinite sequence (β_n, γ_n) of pairs of elements of Γ such that the semi-normalized sequence $(x_{\beta_n} - x_{\gamma_n})$ is unconditional.

Corollary

It is consistent relative to the existence of a measurable cardinal that every normalized weakly null sequence of length at least \aleph_{ω} has an infinite unconditional subsequence.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollary

It is consistent relative to the existence of a measurable cardinal that every normalized weakly null sequence of length at least \aleph_{ω} has an infinite unconditional subsequence.

Corollary

It is consistent relative to the existence of infinitely many compact cardinals that every Banach space of density at least \aleph_{ω} has an infinite unconditional basic sequence and an infinite-dimensional quotient with an unconditional basis.

Corollary

It is consistent relative to the existence of a measurable cardinal that every normalized weakly null sequence of length at least \aleph_{ω} has an infinite unconditional subsequence.

Corollary

It is consistent relative to the existence of infinitely many compact cardinals that every Banach space of density at least \aleph_{ω} has an infinite unconditional basic sequence and an infinite-dimensional quotient with an unconditional basis.

Question

Can \aleph_{ω} be lowered to some \aleph_n in both or one of these corollaries?

Fix an ordinal Γ.

For two elements I and J of $[\Gamma]^{<\omega}$, let I < J denote the fact that every ordinal in I is smaller than any ordinal in J.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fix an ordinal Γ.

For two elements I and J of $[\Gamma]^{<\omega}$, let I < J denote the fact that every ordinal in I is smaller than any ordinal in J.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $I \subseteq J$ denote the fact that I is an initial segment of J.

Fix an ordinal Γ.

For two elements I and J of $[\Gamma]^{<\omega}$, let I < J denote the fact that every ordinal in I is smaller than any ordinal in J.

Let $I \subseteq J$ denote the fact that I is an initial segment of J.

Definition

For an integer *n*, we say that two subsets *F* and *G* of Γ are in $\Delta(n)$ -position if there is a decomposition $F \cap G = I \cup J$ such that

Fix an ordinal Γ.

For two elements I and J of $[\Gamma]^{<\omega}$, let I < J denote the fact that every ordinal in I is smaller than any ordinal in J.

Let $I \subseteq J$ denote the fact that I is an initial segment of J.

Definition

For an integer n, we say that two subsets F and G of Γ are in $\Delta(n)$ -position if there is a decomposition $F \cap G = I \cup J$ such that

(1) $I \sqsubseteq F$ and $I \sqsubseteq G$,

Fix an ordinal Γ .

For two elements I and J of $[\Gamma]^{<\omega}$, let I < J denote the fact that every ordinal in I is smaller than any ordinal in J.

Let $I \subseteq J$ denote the fact that I is an initial segment of J.

Definition

For an integer *n*, we say that two subsets *F* and *G* of Γ are in $\Delta(n)$ -position if there is a decomposition $F \cap G = I \cup J$ such that

(1) $I \sqsubseteq F$ and $I \sqsubseteq G$, (2) I < J,

Fix an ordinal Γ .

For two elements I and J of $[\Gamma]^{<\omega}$, let I < J denote the fact that every ordinal in I is smaller than any ordinal in J.

Let $I \subseteq J$ denote the fact that I is an initial segment of J.

Definition

For an integer *n*, we say that two subsets *F* and *G* of Γ are in $\Delta(n)$ -position if there is a decomposition $F \cap G = I \cup J$ such that

(1)
$$I \sqsubseteq F$$
 and $I \sqsubseteq G$,
(2) $I < J$,
(3) $|J| \le n$.

Fix an ordinal Γ .

For two elements I and J of $[\Gamma]^{<\omega}$, let I < J denote the fact that every ordinal in I is smaller than any ordinal in J.

Let $I \subseteq J$ denote the fact that I is an initial segment of J.

Definition

For an integer *n*, we say that two subsets *F* and *G* of Γ are in $\Delta(n)$ -position if there is a decomposition $F \cap G = I \cup J$ such that

(1)
$$I \sqsubseteq F$$
 and $I \sqsubseteq G$,
(2) $I < J$,
(3) $|J| \le n$.

For a family $\mathbf{V}\subseteq [\Gamma]^{<\omega},$ we associate the corresponding **positional graph**

$$\mathcal{G}_n(\mathbf{V}) = (\mathbf{V}, \ \Delta(n)^c),$$

where we put an edge between two finite $F, G \in \mathbf{V}$ if they are **not** in the $\Delta(n)$ -position. Let $\mathcal{G}_n(\Gamma) = ([\Gamma]^{<\omega}, \ \Delta(n)^c)$.
For which Γ and $\mathbf{V} \subseteq [\Gamma]^{<\omega}$, the positional graph $\mathcal{G}_n(\mathbf{V})$ is countably chromatic?

・ロト・日本・モト・モート ヨー うへで

For which Γ and $\mathbf{V} \subseteq [\Gamma]^{<\omega}$, the positional graph $\mathcal{G}_n(\mathbf{V})$ is countably chromatic?

Proposition

 $\mathcal{G}_0(\omega_1)$ is countably chromatic but $\mathcal{G}_0(\omega_2)$ is not.

For which Γ and $\mathbf{V} \subseteq [\Gamma]^{<\omega}$, the positional graph $\mathcal{G}_n(\mathbf{V})$ is countably chromatic?

Proposition

 $\mathcal{G}_0(\omega_1)$ is countably chromatic but $\mathcal{G}_0(\omega_2)$ is not.

Definition

We say that a family **V** of finite subsets of Γ is **dense** if for every infinite $A \subseteq \Gamma$ there is infinite $B \subseteq A$ such that $[B]^{<\omega} \subseteq \mathbf{V}$.

For which Γ and $\mathbf{V} \subseteq [\Gamma]^{<\omega}$, the positional graph $\mathcal{G}_n(\mathbf{V})$ is countably chromatic?

Proposition

 $\mathcal{G}_0(\omega_1)$ is countably chromatic but $\mathcal{G}_0(\omega_2)$ is not.

Definition

We say that a family **V** of finite subsets of Γ is **dense** if for every infinite $A \subseteq \Gamma$ there is infinite $B \subseteq A$ such that $[B]^{<\omega} \subseteq \mathbf{V}$.

Question

For which Γ there exist dense $\mathbf{V} \subseteq [\Gamma]^{<\omega}$ and an integer *n* such that the corresponding positional graph $\mathcal{G}_n(\mathbf{V})$ is countably chromatic?

If for some integer n there is a dense family $\mathbf{V} \subseteq [\Gamma]^{<\omega}$ such that $\mathcal{G}_n(\mathbf{V})$ is countably chromatic, then there is a normalized weakly null sequence indexed by Γ without infinite unconditional basic subsequence.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If for some integer n there is a dense family $\mathbf{V} \subseteq [\Gamma]^{<\omega}$ such that $\mathcal{G}_n(\mathbf{V})$ is countably chromatic, then there is a normalized weakly null sequence indexed by Γ without infinite unconditional basic subsequence.

Fix an infinite subset M of \mathbb{N} such that $\min(M) \ge n$ and such that $\sum_{k < l} \inf_{M} \sqrt{\frac{k}{l}} \le 1$.

If for some integer n there is a dense family $\mathbf{V} \subseteq [\Gamma]^{<\omega}$ such that $\mathcal{G}_n(\mathbf{V})$ is countably chromatic, then there is a normalized weakly null sequence indexed by Γ without infinite unconditional basic subsequence.

Fix an infinite subset M of \mathbb{N} such that $\min(M) \ge n$ and such that $\sum_{k < l} \inf_{M} \sqrt{\frac{k}{l}} \le 1$. Since $\mathcal{G}_n(\mathbf{V})$ is countably chromatic, we can fix

$$c: \mathbf{V} \to M$$

such that:

If for some integer n there is a dense family $\mathbf{V} \subseteq [\Gamma]^{<\omega}$ such that $\mathcal{G}_n(\mathbf{V})$ is countably chromatic, then there is a normalized weakly null sequence indexed by Γ without infinite unconditional basic subsequence.

Fix an infinite subset M of \mathbb{N} such that $\min(M) \ge n$ and such that $\sum_{k < l \text{ in } M} \sqrt{\frac{k}{l}} \le 1$. Since $\mathcal{G}_n(\mathbf{V})$ is countably chromatic, we can fix

$$c: \mathbf{V} \to M$$

such that:

(1) c(F) = c(G) implies that F and G are in $\Delta(n)$ -position and

If for some integer n there is a dense family $\mathbf{V} \subseteq [\Gamma]^{<\omega}$ such that $\mathcal{G}_n(\mathbf{V})$ is countably chromatic, then there is a normalized weakly null sequence indexed by Γ without infinite unconditional basic subsequence.

Fix an infinite subset M of \mathbb{N} such that $\min(M) \ge n$ and such that $\sum_{k < l \text{ in } M} \sqrt{\frac{k}{l}} \le 1$. Since $\mathcal{G}_n(\mathbf{V})$ is countably chromatic, we can fix

$$c: \mathbf{V} \to M$$

such that:

c(F) = c(G) implies that F and G are in Δ(n)-position and
 c(F) = c(G) implies that |F| = |G|.

We say that a finite block sequence $(s_i)_{i < k}$ of subsets of Γ is *c*-special whenever

We say that a finite block sequence $(s_i)_{i < k}$ of subsets of Γ is *c*-special whenever

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(a) $\bigcup_{i < j} s_i \in \mathbf{V}$ for every j < k.

We say that a finite block sequence $(s_i)_{i < k}$ of subsets of Γ is *c*-special whenever

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(a)
$$\bigcup_{i < j} s_i \in \mathbf{V}$$
 for every $j < k$.
(b) $|s_j| = c(\bigcup_{i < j} s_i)$ for every $j < k$.

We say that a finite block sequence $(s_i)_{i < k}$ of subsets of Γ is *c*-special whenever

(a)
$$\bigcup_{i < j} s_i \in \mathbf{V}$$
 for every $j < k$.
(b) $|s_j| = c(\bigcup_{i < j} s_i)$ for every $j < k$.

This leads us to the collection of special functionals

$$\mathcal{F} = \{\sum_{i < k} |s_i|^{-1/2} \mathbf{1}_{s_i} : (s_i)_{i < k} \text{ is a finite } c\text{-special block-sequence}\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We say that a finite block sequence $(s_i)_{i < k}$ of subsets of Γ is *c*-special whenever

(a)
$$\bigcup_{i < j} s_i \in \mathbf{V}$$
 for every $j < k$.
(b) $|s_j| = c(\bigcup_{i < j} s_i)$ for every $j < k$.

This leads us to the collection of special functionals

$$\mathcal{F} = \{\sum_{i < k} |s_i|^{-1/2} \mathbf{1}_{s_i} : (s_i)_{i < k} \text{ is a finite } c\text{-special block-sequence} \}.$$

and the corresponding norm on $c_{00}(\Gamma)$

$$\|x\|_{\mathcal{F}} := \max\{\|x\|_{\infty}, \quad \sup_{f \in \mathcal{F}} \langle x, f \rangle\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We say that a finite block sequence $(s_i)_{i < k}$ of subsets of Γ is *c*-special whenever

(a)
$$\bigcup_{i < j} s_i \in \mathbf{V}$$
 for every $j < k$.
(b) $|s_j| = c(\bigcup_{i < j} s_i)$ for every $j < k$.

This leads us to the collection of special functionals

$$\mathcal{F} = \{\sum_{i < k} |s_i|^{-1/2} \mathbf{1}_{s_i} : (s_i)_{i < k} \text{ is a finite } c\text{-special block-sequence} \}.$$

and the corresponding norm on $c_{00}(\Gamma)$

$$\|x\|_{\mathcal{F}} := \max\{\|x\|_{\infty}, \quad \sup_{f \in \mathcal{F}} \langle x, f \rangle\}.$$

Lemma

The weakly null sequence $(e_{\gamma})_{\gamma \in \Gamma}$ contains no infinite unconditional basic subsequence.

Countably chromatic positional graphs

Countably chromatic positional graphs

Fix a positive integer *n* and for each $1 \le k \le n$ fix

$$\rho^k: [\omega_k]^2 \to \omega_{k-1}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

such that

1.
$$\rho^{k}(\alpha_{0}, \alpha_{2}) \neq \rho^{k}(\alpha_{1}, \alpha_{2}),$$

2. $\rho^{k}(\alpha_{0}, \alpha_{1}) \neq \rho^{k}(\alpha_{1}, \alpha_{2}),$
3. $\rho^{k}(\alpha_{0}, \alpha_{2}) \leq \max\{\rho^{k}(\alpha_{0}, \alpha_{1}), \rho^{k}(\alpha_{1}, \alpha_{2})\},$
4. $\rho^{k}(\alpha_{0}, \alpha_{1}) \leq \max\{\rho^{k}(\alpha_{0}, \alpha_{2}), \rho^{k}(\alpha_{1}, \alpha_{2})\}.$

Countably chromatic positional graphs

Fix a positive integer *n* and for each $1 \le k \le n$ fix

$$\rho^k : [\omega_k]^2 \to \omega_{k-1}$$

such that

1.
$$\rho^{k}(\alpha_{0}, \alpha_{2}) \neq \rho^{k}(\alpha_{1}, \alpha_{2}),$$

2. $\rho^{k}(\alpha_{0}, \alpha_{1}) \neq \rho^{k}(\alpha_{1}, \alpha_{2}),$
3. $\rho^{k}(\alpha_{0}, \alpha_{2}) \leq \max\{\rho^{k}(\alpha_{0}, \alpha_{1}), \rho^{k}(\alpha_{1}, \alpha_{2})\},$
4. $\rho^{k}(\alpha_{0}, \alpha_{1}) \leq \max\{\rho^{k}(\alpha_{0}, \alpha_{2}), \rho^{k}(\alpha_{1}, \alpha_{2})\}.$
Now, for each $0 \leq k \leq n$, we define

$$\varphi_k : [\omega_n]^{k+1} \to \omega_{n-k}$$

by letting

1.
$$\varphi_0 =$$
 the identity function on ω_n ,

2.
$$\varphi_k(\alpha_0, \alpha_1, ..., \alpha_k) = \rho^{n-k+1}(\varphi_{k-1}(\alpha_0, ..., \alpha_{k-1}), \varphi_{k-1}(\alpha_1, ..., \alpha_k)).$$

Let \mathbf{V}_n be the set of all finite subsets v of ω_n such that:

Let \mathbf{V}_n be the set of all finite subsets v of ω_n such that: (a) $\varphi_n \upharpoonright [v]^{n+1}$ is **min-dependent**,

Let V_n be the set of all finite subsets v of ω_n such that:
(a) φ_n ↾ [v]ⁿ⁺¹ is min-dependent,
(b) φ_i⁽ⁿ⁾ ↾ [v]ⁱ⁺¹ is shift-increasing for every i < n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let V_n be the set of all finite subsets v of ω_n such that:
(a) φ_n ↾ [v]ⁿ⁺¹ is min-dependent,
(b) φ_i⁽ⁿ⁾ ↾ [v]ⁱ⁺¹ is shift-increasing for every i < n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma (Key Fact 2)

The graph $\mathcal{G}_{2n-1}(\mathbf{V}_n)$ is countably chromatic.

Let V_n be the set of all finite subsets v of ω_n such that:
(a) φ_n ↾ [v]ⁿ⁺¹ is min-dependent,
(b) φ_i⁽ⁿ⁾ ↾ [v]ⁱ⁺¹ is shift-increasing for every i < n.

Lemma (Key Fact 2)

The graph $\mathcal{G}_{2n-1}(\mathbf{V}_n)$ is countably chromatic.

Theorem (LopezAbad-Todorcevic 2013)

For every non-negative integer n there is a normalized weakly null sequence $(e_{\gamma})_{\gamma < \omega_n}$ without infinite unconditional basic subsequence.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let V_n be the set of all finite subsets v of ω_n such that:
(a) φ_n ↾ [v]ⁿ⁺¹ is min-dependent,
(b) φ_i⁽ⁿ⁾ ↾ [v]ⁱ⁺¹ is shift-increasing for every i < n.

Lemma (Key Fact 2)

The graph $\mathcal{G}_{2n-1}(\mathbf{V}_n)$ is countably chromatic.

Theorem (LopezAbad-Todorcevic 2013)

For every non-negative integer n there is a normalized weakly null sequence $(e_{\gamma})_{\gamma < \omega_n}$ without infinite unconditional basic subsequence.

Question

Is there for every non-negative integer n a reflexive space of density \aleph_n without infinite unconditional basic sequence?

Subsymmetric sequences

A sequence (x_n) $(n < \omega)$ in some Banach space X is **subsymmetric** if there is a constant $C \ge 1$ such that for every pair F and G of finite subsets of ω of the same cardinality k and every sequence a_n (n < k) of scalars,

$$\frac{1}{C} \parallel \sum_{n < k} \mathsf{a}_n \mathsf{x}_{\mathsf{F}(n)} \parallel \leq \parallel \sum_{n < k} \mathsf{a}_n \mathsf{x}_{\mathsf{G}(n)} \parallel \leq C \parallel \sum_{n < k} \mathsf{a}_n \mathsf{x}_{\mathsf{F}(n)} \parallel.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Subsymmetric sequences

A sequence (x_n) $(n < \omega)$ in some Banach space X is **subsymmetric** if there is a constant $C \ge 1$ such that for every pair F and G of finite subsets of ω of the same cardinality k and every sequence a_n (n < k) of scalars,

$$\frac{1}{C} \parallel \sum_{n < k} \mathsf{a}_n \mathsf{x}_{\mathsf{F}(n)} \parallel \leq \parallel \sum_{n < k} \mathsf{a}_n \mathsf{x}_{\mathsf{G}(n)} \parallel \leq C \parallel \sum_{n < k} \mathsf{a}_n \mathsf{x}_{\mathsf{F}(n)} \parallel.$$

Theorem (Schreier, 1930)

There is an infinite weakly null sequence with no infinite subsymmetric subsequence

Subsymmetric sequences

A sequence (x_n) $(n < \omega)$ in some Banach space X is **subsymmetric** if there is a constant $C \ge 1$ such that for every pair F and G of finite subsets of ω of the same cardinality k and every sequence a_n (n < k) of scalars,

$$\frac{1}{C} \parallel \sum_{n < k} \mathsf{a}_n \mathsf{x}_{\mathsf{F}(n)} \parallel \leq \parallel \sum_{n < k} \mathsf{a}_n \mathsf{x}_{\mathsf{G}(n)} \parallel \leq C \parallel \sum_{n < k} \mathsf{a}_n \mathsf{x}_{\mathsf{F}(n)} \parallel.$$

Theorem (Schreier, 1930)

There is an infinite weakly null sequence with no infinite subsymmetric subsequence

Theorem (Tsirelson, 1972)

There is a reflexive infinite-dimensional Banach space X with no infinite subsymmetric sequence.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Theorem (LopezAbad-Todorcevic, 2013)
- Let Γ be an infinite cardinal. The following are equivalent:
- (1) $\Gamma \to (\omega)_2^{<\omega}$.
- Every separated normalized sequence (x_α) (α < Γ) has a subsymmetric subsequence.
- (3) There are no large compact and hereditary families on Γ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (LopezAbad-Todorcevic, 2013)

Let Γ be an infinite cardinal. The following are equivalent:

(1)
$$\Gamma \to (\omega)_2^{<\omega}$$
.

- (2) Every separated normalized sequence (x_α) (α < Γ) has a subsymmetric subsequence.
- (3) There are no large compact and hereditary families on Γ .

Remark

Recall that a family ${\cal F}$ of subsets of Γ is compact if its pointwise closure consists only of finite subsets of Γ

Recall also that such an \mathcal{F} is **hereditary** if it is closed under taking subsets.

We say that a family \mathcal{F} of subsets of Γ is **large** if every infinite sunsets of Γ contains elements of \mathcal{F} of arbitrary large finite cardinality.

Theorem (Argyros-Motakis, 2014)

There is a Banach space X of density 2^{\aleph_0} with no infinite subsymmetric sequence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Argyros-Motakis, 2014)

There is a Banach space X of density 2^{\aleph_0} with no infinite subsymmetric sequence.

Question

Is there a Banach space X of density $> 2^{\aleph_0}$ with no infinite subsymmetric sequence?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Argyros-Motakis, 2014)

There is a Banach space X of density 2^{\aleph_0} with no infinite subsymmetric sequence.

Question

Is there a Banach space X of density $> 2^{\aleph_0}$ with no infinite subsymmetric sequence?

Question

What is the minimal cardinal Γ with the property that every Banach space X of density at least Γ must contain an infinite subsymmetric sequence?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Brech-LopezAbad-Todorcevic, 2014)

There is a Banach space X of density bigger than the first ω -Mahlo cardinal with no infinite subsymmetric sequence.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Brech-LopezAbad-Todorcevic, 2014)

There is a Banach space X of density bigger than the first ω -Mahlo cardinal with no infinite subsymmetric sequence.

Definition

Let \mathcal{B} and \mathcal{C} be two families of subsets of some index-set Γ and let \mathcal{H} be a family of subsets of ω .

We say that C is $(\mathcal{B}, \mathcal{H})$ -large if every infinite sequence (t_k) of elements of \mathcal{B} has an infinite subsequence $(t_k)_{k \in M}$ such that $\bigcup_{k \in v} t_k \in C$ for all $v \in \mathcal{H} \upharpoonright M$. We say that C is \mathcal{B} -large if it is $(\mathcal{B}, \mathcal{S})$ -large, where \mathcal{S} is the **Schreier family** on ω .

A sequence (\mathcal{F}_n) $(n < \omega)$ of families of subsets of some index set Γ is a **CL-sequence** (sequence of **consecutively large** families) whenever $\mathcal{F}_0 = [\Gamma]^{\leq 1}$ and for every $n < \omega$:

- 1. \mathcal{F}_n is compact and hereditary,
- 2. $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$,
- 3. \mathcal{F}_{n+1} is \mathcal{F}_n -large.

A sequence (\mathcal{F}_n) $(n < \omega)$ of families of subsets of some index set Γ is a **CL-sequence** (sequence of **consecutively large** families) whenever $\mathcal{F}_0 = [\Gamma]^{\leq 1}$ and for every $n < \omega$:

- 1. \mathcal{F}_n is compact and hereditary,
- 2. $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$,
- 3. \mathcal{F}_{n+1} is \mathcal{F}_n -large.

Theorem (Brech-LopezAbad-Todorcevic, 2014)

If some cardinal Γ supports a CL-sequence then there is a Banach space X of density Γ with no infinite subsymmetric sequence.
Constructing CL-sequences

Lemma (Key 1)

Suppose T is a tree such that

- 1. There is a CL-sequence on chains of T,
- 2. There is a CL-sequence on the set of immediate successors of every node of T.

Then there is a CL-sequence on T.

Constructing CL-sequences

Lemma (Key 1)

Suppose T is a tree such that

- 1. There is a CL-sequence on chains of T,
- 2. There is a CL-sequence on the set of immediate successors of every node of T.

Then there is a CL-sequence on T.

Question

For which cardinals Γ do we have a tree T of cardinality Γ satisfying the two conditions?

Recall that a **C**-sequence on a cardinal Γ is a sequence $\overrightarrow{C} = (C_{\gamma} : \gamma \in \Gamma)$ such that C_{γ} is a closed and unbounded subset of γ for all $\gamma \in \Gamma$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recall that a **C-sequence** on a cardinal Γ is a sequence

 $\overrightarrow{C} = (C_{\gamma} : \gamma \in \Gamma)$ such that C_{γ} is a closed and unbounded subset of γ for all $\gamma \in \Gamma$.

A subset *C* of Γ is a **limit** of a subsequence $(C_{\gamma_n} : n < \omega)$ of \overrightarrow{C} if every initial segment of *C* is an initial segment of all but finitely many C_{γ_n} 's.

Recall that a **C-sequence** on a cardinal Γ is a sequence $\overrightarrow{C} = (C_{\gamma} : \gamma \in \Gamma)$ such that C_{γ} is a closed and unbounded subset

of γ for all $\gamma \in \Gamma$. A subset C of Γ is a **limit** of a subsequence $(C_{\gamma_n} : n < \omega)$ of \overrightarrow{C} if every initial segment of C is an initial segment of all but finitely many C_{γ_n} 's.

A C-sequence $\overrightarrow{C} = (C_{\gamma} : \gamma \in \Gamma)$ is small if there is a function $f : \Gamma \to \Gamma$ such that for every limit C of a subsequence of \overrightarrow{C} we have that otp(C) < f(min(C)).

Recall that a C-sequence on a cardinal Γ is a sequence

 $\overrightarrow{C} = (C_{\gamma} : \gamma \in \Gamma)$ such that C_{γ} is a closed and unbounded subset of γ for all $\gamma \in \Gamma$.

A subset C of Γ is a **limit** of a subsequence $(C_{\gamma_n} : n < \omega)$ of \overrightarrow{C} if every initial segment of C is an initial segment of all but finitely many C_{γ_n} 's.

A C-sequence $\overrightarrow{C} = (C_{\gamma} : \gamma \in \Gamma)$ is **small** if there is a function $f : \Gamma \to \Gamma$ such that for every limit *C* of a subsequence of \overrightarrow{C} we have that otp(C) < f(min(C)).

Lemma (Key 2)

Suppose that Γ is a regular cardinal with the property that every smaller ordinal supports a CL-sequence.

Recall that a **C**-sequence on a cardinal Γ is a sequence

 $\overrightarrow{C} = (C_{\gamma} : \gamma \in \Gamma)$ such that C_{γ} is a closed and unbounded subset of γ for all $\gamma \in \Gamma$.

A subset *C* of Γ is a **limit** of a subsequence $(C_{\gamma_n} : n < \omega)$ of \overrightarrow{C} if every initial segment of *C* is an initial segment of all but finitely many C_{γ_n} 's.

A C-sequence $\overrightarrow{C} = (C_{\gamma} : \gamma \in \Gamma)$ is **small** if there is a function $f : \Gamma \to \Gamma$ such that for every limit *C* of a subsequence of \overrightarrow{C} we have that otp(C) < f(min(C)).

Lemma (Key 2)

Suppose that Γ is a regular cardinal with the property that every smaller ordinal supports a CL-sequence.

If Γ supports a small C-sequence then then there is a tree T on Γ which has a CL-sequence on its chains.

Recall that a **C-sequence** on a cardinal Γ is a sequence

 $\overrightarrow{C} = (C_{\gamma} : \gamma \in \Gamma)$ such that C_{γ} is a closed and unbounded subset of γ for all $\gamma \in \Gamma$.

A subset C of Γ is a **limit** of a subsequence $(C_{\gamma_n} : n < \omega)$ of \overrightarrow{C} if every initial segment of C is an initial segment of all but finitely many C_{γ_n} 's.

A C-sequence $\overrightarrow{C} = (C_{\gamma} : \gamma \in \Gamma)$ is **small** if there is a function $f : \Gamma \to \Gamma$ such that for every limit *C* of a subsequence of \overrightarrow{C} we have that otp(C) < f(min(C)).

Lemma (Key 2)

Suppose that Γ is a regular cardinal with the property that every smaller ordinal supports a CL-sequence.

If Γ supports a small C-sequence then then there is a tree T on Γ which has a CL-sequence on its chains.

If moreover, Γ is inaccessible then there is a CL-sequence on immediate successors of every node of T and therefore, there is a CL-sequence on Γ .

Define

$$\rho_0: [\Gamma]^2 \to \mathcal{P}(\Gamma)^{<\omega}$$

recursively by

$$\rho_{0}(\alpha,\beta) = \langle C_{\beta} \cap \alpha \rangle^{\frown} \rho_{0}(\alpha,\min(C_{\beta} \setminus \alpha))$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

with the initial condition $\rho_0(\alpha, \alpha) = \emptyset$.

Define

$$\rho_0: [\Gamma]^2 \to \mathcal{P}(\Gamma)^{<\omega}$$

recursively by

$$\rho_{0}(\alpha,\beta) = \langle C_{\beta} \cap \alpha \rangle^{\frown} \rho_{0}(\alpha,\min(C_{\beta} \setminus \alpha))$$

with the initial condition $\rho_0(\alpha, \alpha) = \emptyset$.

Definition

To a given C-sequence C_{α} ($\alpha < \Gamma$) one associates the notion of a **walk** from an ordinal $\beta < \Gamma$ to a smaller ordinal α :

$$\beta_0(\alpha) = \beta > \beta_1(\alpha) > \cdots > \beta_n(\alpha) = n,$$

where $n = |\rho_0(\alpha, \beta)|$ and where

$$\beta_{i+1}(\alpha) = \min(C_{\beta_i(\alpha)} \setminus \alpha).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let

$$T(\rho_0) = \{ \rho_0(\cdot, \beta) \upharpoonright \alpha : \alpha \le \beta < \mathsf{\Gamma} \}.$$

We consider $T(\rho_0)$ as a tree ordered by end-extension.

Let

$$T(\rho_0) = \{\rho_0(\cdot,\beta) \upharpoonright \alpha : \alpha \leq \beta < \mathsf{\Gamma}\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We consider $T(\rho_0)$ as a tree ordered by end-extension.

Lemma

For $\alpha < \beta < \gamma < \Gamma$, we have

1. $\rho_0(\alpha, \beta) = \rho_0(\alpha, \gamma)$ implies $\rho_0(\cdot, \beta) \upharpoonright \alpha = \rho_0(\cdot, \gamma) \upharpoonright \alpha$,

Let

$$T(\rho_0) = \{\rho_0(\cdot,\beta) \upharpoonright \alpha : \alpha \leq \beta < \mathsf{\Gamma}\}.$$

We consider $T(\rho_0)$ as a tree ordered by end-extension.

Lemma

For $\alpha < \beta < \gamma < \Gamma$, we have 1. $\rho_0(\alpha, \beta) = \rho_0(\alpha, \gamma)$ implies $\rho_0(\cdot, \beta) \upharpoonright \alpha = \rho_0(\cdot, \gamma) \upharpoonright \alpha$, 2. $|\rho_0(\alpha, \beta)| = |\rho_0(\alpha, \gamma)| = n$ implies $C_{\gamma_i(\alpha)} \sqsubset C_{\gamma_i(\beta)}$ for some j < n,

Let

$$T(\rho_0) = \{\rho_0(\cdot,\beta) \upharpoonright \alpha : \alpha \leq \beta < \mathsf{\Gamma}\}.$$

We consider $T(\rho_0)$ as a tree ordered by end-extension.

Lemma

For $\alpha < \beta < \gamma < \Gamma$, we have

- 1. $\rho_0(\alpha, \beta) = \rho_0(\alpha, \gamma)$ implies $\rho_0(\cdot, \beta) \upharpoonright \alpha = \rho_0(\cdot, \gamma) \upharpoonright \alpha$,
- 2. $|\rho_0(\alpha, \beta)| = |\rho_0(\alpha, \gamma)| = n$ implies $C_{\gamma_i(\alpha)} \sqsubset C_{\gamma_i(\beta)}$ for some j < n,
- 3. there is unique j such that $\gamma_i(\alpha) = \gamma_i(\beta)$ for all $i \leq j$ and $\alpha \leq \gamma_{j+1}(\alpha) < \beta$.