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Structure in weakly null sequences

Theorem (Bessage-Pelczynski, 1958)

For every € > 0, every normalized weakly null sequence (x)
contains an infinite (1 + €)-basic subsequence (xp,).

Theorem (Maurey-Rosenthal, 1977)

(1) For every e > 0 and every o < w*, every normalized weakly
null sequence in C(a + 1) has a (2 + €)-unconditional
subsequence.

(2) For every € > 0 every normalized weakly null sequence in
C(w“ + 1) has a (4 + €)-unconditional subsequence.

(3) There is a normalized weakly null sequence in C(w‘*’2 + 1) with
no unconditional subsequence.
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Finite and partial unconditionality

Theorem (Odell 1993, Dodos-LopezAbad-Todorcevic, 2011)

Let k a positive integer and € > 0. Suppose that for every i < k
we are given a normalized weakly null sequence (x;)2, in some
Banach space X. Then, there exists an infinite set M of integers
such that for every {ny < --- < nk_1} C M the k-sequence

(x5 )i<k is (1 + &)-unconditional.

Theorem (Arvanitakis 2006, Gasparis-Odell-Wahl, 2006
Todorcevic 2005)

Suppose that (x,) is a normalized weakly-null sequence in £ (I")
with the property that

inf{|xp(7)] :neN,yeTl} >0.

Then (xp) contains an infinite unconditional basic subsequence.
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For every 0 < ¢ <1 there is a constant C(¢) > 1 such that every
normalized weakly null sequence (x,) has an infinite subsequence
(xn;) such that
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for every pair | C J of subsets of N and every choice (a; : j € J) of
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Theorem (Elton 1978)

For every 0 < ¢ <1 there is a constant C(¢) > 1 such that every
normalized weakly null sequence (x,) has an infinite subsequence
(xn;) such that

1D aixall < CEIY_ ajxnl

i€l Jjed

for every pair | C J of subsets of N and every choice (a; : j € J) of
scalars such that ¢ < |aj| <1 for all j € J.

Problem (Elton unconditionality constant problem)
Is supg..<1 C(g) < 007
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Nash-Willimas's theory of fronts and barriers

Definition (Nash-Williams 1965)
For a family F of finite subsets of N we say that:

1. F is thin whenever s [Z t for s # t in F.

2. Fis a front if F is thin and if every infinite subset of N
contains an initial segment in F.

3. Fis a barrier if Fis afrontand if s Z t for s # tin F.

Theorem (Nash-Williams 1965)

Suppose H = Ho U - - - UH, is a finite partition of a thin family H
of finite subsets of N. Then there is an infinite set M C N and
i < | such that H | M C H;, where

HIM={seH:sC M}
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Theorem (Pudlak-Radl 1982)

For every front B on N and every mapping f : B — N there exist
an infinite subset M of N and a mapping ¢ : B | M — [N]<* such
that:

(1) ¢ is an internal mapping, i.e., p(s) Cs foralle B[ M,

(2) the range of ¢ is a thin family, i.e., p(s) IZ o(t) for all
s,t € B[ M such that ¢(s) # ¢(t), and

(3) fors,t € B[ M, f(s) = f(t) iff o(s) = ¢(t).

Remark

There can be only one mapping ¢ : B | M — [N]<* satisfying the
conditions (1), (2) and (3) from the Theorem on a given infinite
subset M of N.
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w*-null sequences and the quotient problem

Theorem (Josefson 1975, Nissenzweig 1975)

For every infinite-dimensional normed space X there is a
normalized w*-null sequence (f,)°2, in X*.

Theorem (Johnson-Rosenthal 1972)

Every separable infinite-dimensional space has an
infinite-dimensional quotient with a Schauder basis.

Theorem (Todorcevic 2006)

Suppose that a Banach space X has density < m and that its dual
X* has an uncountable normalized w*-null sequence. Then X has
a quotient with a Schauder basis of length w;.

Remark
Recall that m is the Baire-category number of the class of compact
Hausdorff spaces satisfying the countable chain condition.
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P-ideal dichotomy, PID

Definition
An ideal on an index set S is simply a family Z of subsets of S
closed under taking subsets and finite unions of its elements.

We shall consider only ideals of countable subsets of S and
assume that all our ideals include the ideal of all finite subsets of S.

We say that such an ideal Z is a P-ideal if for every sequence (x,)
in Z there is y € 7 such that x, \ y is finite for all n.

Example

1. The ideal [S]=™0 of all countable subsets of S is a P-ideal.
2. Given a family F of cardinality < b the ideal

Fr={xe[S|=N: (VY € F)|xN Y| < Ro}

is a P-ideal.
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Definition

The P-ideal dichotomy is the statement that for every P-ideal Z

on some index set S either

(1) there is uncountable T C S such that [T]M C Z, or

(2) there is a countable decomposition S = | J,,, Sn such that
S, L 7 for all n.

Remark
1. It is known that PID follows from the strong Baire category
principles such as mm > wj.
2. It is also known that PID is consistent with GCH.

3. It is known that PID implies, for example, the Souslin
Hypothesis.
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PID and Asplund spaces

Definition

An Asplund space, or a strong differentiability space is a
Banach space X with the property that every continuous convex
function f : U — R on an open convex domain U C X is Fréchet
differentiable in every point of a dense Gg-subset of U.

Remark

This is a well studied class of spaces with many pleasant properties
such as the projectional resolution of the identity of its dual
space, the norm-fragmentability of the w*-topology of the dual
ball, separability of the dual of every separable subspace, etc.
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Theorem (Todorcevic 1989)

If b = wy then there is an Asplund space with no uncountable
e-biorthogonal system for any 0 < e < 1.

Recall that b is the minimal cardinality of a subset of NN that is
unbounded in the ordering of eventual dominance.

Theorem (Brech-Todorcevic 2012)

Assume PID. Let X be nonseparable Asplund space of density < b.
Then X* has an uncountable normalized w*-null sequence.

Corollary
Assume PID. The following are equivalent:

1. Every non-separable Asplund space has an uncountable
e-biorthogonal system for every € > Q0.

2. b =Ny,
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Weakly null sequences on Polish spaces

Theorem (Mycielski 1964)
Suppose M, C X*»(n=0,1,...) is a sequence of subsets of the
finite powers of some fixed Polish space X and suppose that M, is

a meager subset of X*n for all n. Then there is a perfect set
P C X such that [P]*" N M, = 0 for all n.

Theorem (Argyros-Dodos-Kanellopoulos 2008)

Suppose X is a Polish space and that (f;),con is a bounded
sequence in (o (X) such that (x,a) — f,(x) is a Borel function
from X x 2N into R and that

[{a €2V : f(x) # 0} < Vg for all x € X.

Then there is a perfect set P C 2" such that the sequence (f,).cp
is 1-unconditional.
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Ramsey Theory of trees

Definition

Fix a rooted finitely branching tree U with no terminal nodes. A
subtree T of U will be called a strong subtree if the levels of T
are subsets of the levels of U and if for every t € T every
immediate successor of t in U is extended by a unique immediate
successor of tin T.

Theorem (Halpern-Lauchli 1966)

For every sequence Uy, ..., Uy_1 of rooted finitelly branching trees
with no terminal nodes and for every finite colouring of the level
product Up ® - - - ® Uy_1, we can find for each i < d a strong
subtree T; of U; such that the T;’s share the same level set and
such that the level product Ty ® - - - ® Ty_1 is monochromatic.

Theorem (Miliken 1981)

For every finite Borel colouring of the space S (U) of all strong
subtrees of U there is a strong subtree T of U such that the set
Soo(T) of strong subtrees of T is monochromatic.
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A parametrized Ramsey theorem for perfect sets

Theorem

For every countable Borel colouring of the product [2N]? x [N]*
with colours that are invariant under finite changes on the second
coordinate, there is a perfect set P C 2N and an infinite set M C N
such that the product [P]? x [M]> is monochromatic.

Example (Pol 1986)
Pol’s compact set of Baire class-1 function is represented as

P=2Ny2Nu {0},

where the points of the Cantor tree 2<N 3re isolated, the nodes of
a branch of this tree converge to the corresponding member of 2N
and oo is the point that compactifies the rest of the space.



Theorem (Todorcevic 1999)

Suppose K is a separable compact set of Baire class-1 functions
defined on some Polish space X. Let D be a countable dense
subset of K, and let f be a point of K that is not Gs in K. Then
there is a homeomorphic embedding

o:P— K

such that ®(o0) = f and ®[2<N] C D.
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subset of K, and let f be a point of K that is not Gs in K. Then
there is a homeomorphic embedding
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Theorem (Argyros-Dodos-Kanellopoulos 2008)

Every infinite-dimensional dual Banach space has an
infinite-dimensional quotient with a Schauder basis.
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Unconditional sequences

Theorem (Gowers-Maurey, 1993)

There is a separable reflexive infinite-dimensional space X with no
infinite unconditional basic sequence.

Theorem (Argyros-LopezAbad-Todorcevic, 2006)

There is also a non-separable reflexive space X with no infinite

unconditional basic sequence.

Problem
Is there a reflexive space of density > N1 without an infinite
unconditional basic sequence?

Theorem (Argyros-Tolias, 2004)

There is a space X of density 280 with no infinite unconditional
basic sequence.

Problem
Is there a space of density > 2% without an infinite unconditional
basic sequence?
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The unconditional basic sequence problem, revisited

Problem

1. When does an infinite-dimensional normed space contain an
infinite unconditional basic sequence?

2. When does an infinite normalized weakly null sequence in
some normed space contains an infinite unconditional
subsequence?

Theorem (Johnson-Rosenthal 1972, Hagler-Johnson 1977)

If the dual X* of some Banach space X contains an infinite
unconditional basic sequence then X admits a quotient with an
unconditional basis.
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Free-set Property and Product-Ramsey Property

Definition

We say that an index-set [ has the free-set property, and write
EFSP(I), if every algebra A on I' with no more than countably
many operations has an infinite free set, an infinite subset X of I'
such that no x € X is in the sub algebra of A generated by

X\ {x}.

Definition
We say that [ has the product-Ramsey property, and write
PRP(I), if for every colouring

x:r<v —2

of the set of all finite sequences of the index-set I into 2 colours
there exists an infinite sequence (X;) of 2-element subsets of I" or,
equivalently, an infinite sequence (X;) of infinite subsets of I, such
that x is constant on [];_, X; for all n.
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Proposition
PRP(I') implies FSP(I') but not vice versa.

Theorem (Erdés-Hajnal 1966)

The free-set property fails for index-sets of cardinalities < X,,.

Theorem (Koepke 1984, DiPrisco-Todorcevic 1999)
The following are equiconsistent:

1. FSP(X,).

2. PRP(R,).

3. There is an index set supporting a non-principal countably
complete ultrafilter.
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Two-dimensional Product Ramsey Property

Definition
We say that an index-set [ has the 2-dimensional polarized
Ramsey property) and write PRP,(I), if for every colouring

xe (P =2

of all finite sequences of 2-element subsets of the index-set I into
2 colours there exist an infinite sequence (X;) of infinite subsets of
[ such that y is constant on [];_,[X;]? for all n.

Theorem (Shelah 1980)

PRP2(R,,) is consistent relative to the existence of infinitely many
compact cardinals.

i<n

Question
What is the equiconsistency result here?
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Theorem (Dodos-LopezAbad-Todorcevic 2011)

If a normalized weakly null sequence (x;)ic; is indexed by a set |
that has the free-set property then it contains an infinite
unconditional basic subsequence.



Long weakly-null sequences

Theorem (Dodos-LopezAbad-Todorcevic 2011)

If a normalized weakly null sequence (x;)ic; is indexed by a set |
that has the free-set property then it contains an infinite
unconditional basic subsequence.

Theorem (Dodos-LopezAbad-Todorcevic 2011)

Suppose that (x,),cr is a normalized and separated sequence in
some Banach space X containing no £1. If the index-set I satisfies
PRPy(I") then there is an infinite sequence (Sn,vn) of pairs of
elements of [ such that the semi-normalized sequence (xg, — x,)
is unconditional.



Corollary

It is consistent relative to the existence of a measurable cardinal
that every normalized weakly null sequence of length at least N,
has an infinite unconditional subsequence.
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Corollary

It is consistent relative to the existence of a measurable cardinal
that every normalized weakly null sequence of length at least N,
has an infinite unconditional subsequence.

Corollary

It is consistent relative to the existence of infinitely many compact
cardinals that every Banach space of density at least N, has an
infinite unconditional basic sequence and an infinite-dimensional
quotient with an unconditional basis.

Question
Can N, be lowered to some X, in both or one of these corollaries?
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Positional graphs and conditional weakly null sequences

Fix an ordinal T.

For two elements / and J of [[]<%, let | < J denote the fact that
every ordinal in [ is smaller than any ordinal in J.

Let / C J denote the fact that / is an initial segment of J.

Definition
For an integer n, we say that two subsets F and G of I are in
A(n)-position if there is a decomposition F N G =/ U J such that

(1) IEFand I CG,
(2) 1 < J,
(3) [J] < n.



Positional graphs and conditional weakly null sequences

Fix an ordinal T.
For two elements / and J of [[]<%, let | < J denote the fact that
every ordinal in [ is smaller than any ordinal in J.
Let / C J denote the fact that / is an initial segment of J.
Definition
For an integer n, we say that two subsets F and G of I are in
A(n)-position if there is a decomposition F N G =/ U J such that
(1) ICFand | C G,
(2) I <J,
(3) Ml <n.
For a family V C [[']<“, we associate the corresponding positional
graph

gn(v) = (Va A(n)c)7
where we put an edge between two finite F, G € V if they are not
in the A(n)-position. Let G,(I") = ([[]<¥, A(n)°).



Question
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Question
For which T and V C [[<%, the positional graph G,(V) is
countably chromatic?

Proposition

Go(w1) is countably chromatic but Go(wz) is not.

Definition

We say that a family V of finite subsets of ' is dense if for every
infinite A C T there is infinite B C A such that [B]<* C V.

Question
For which T there exist dense V C [[]<“ and an integer n such that
the corresponding positional graph G,(V) is countably chromatic?
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Lemma (Key Fact 1)

If for some integer n there is a dense family V. C [[|<% such that
Gn(V) is countably chromatic, then there is a normalized weakly
null sequence indexed by I without infinite unconditional basic
subsequence.

Fix an infinite subset M of N such that min(M) > n and such that

K
2 k<l in M\/;S L

Since Gn(V) is countably chromatic, we can fix
c:V—-M

such that:
(1) ¢(F) = c(G) implies that F and G are in A(n)-position and
(2) ¢(F) = c(G) implies that |F| = |G]|.
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Definition
We say that a finite block sequence (s;);<x of subsets of T is
c-special whenever

(@) Uicjsi €V for every j < k.
(b) Isjl = c(U;; si) for every j < k.

This leads us to the collection of special functionals

F = {Z |si| 721, : (si)i<k is a finite c-special block-sequence}.
i<k

and the corresponding norm on cyo(I")

X7 == max{|[x]loc; sup (x,f)}.
feF

Lemma
The weakly null sequence (ey)~cr contains no infinite
unconditional basic subsequence.
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Countably chromatic positional graphs
Fix a positive integer n and for each 1 < k < n fix

pk : [wk]2 — Wk_1

such that
1.p (ozo,ozz #£p (al,az)
k ag, 1) # pFlag, az),

)
2. p( )
3. k(ao,a2) < max{p* (a0, 1), p* (a1, a2)},
4. pK(ao, 1) < max{p*(ag, az), p*(a1, a2)}.



Countably chromatic positional graphs
Fix a positive integer n and for each 1 < k < n fix

pk : [wk]2 — Wk_1

such that
) # (a1, @2),
2. p (040,041) 7P (041,042)
3. pk(ao, az) < max{p*(ag, ar), p¥(a1, a2)},
4. pk(ao,al) < max{p* (e, @), pX(a1, az)}.
Now, for each 0 < k < n, we define

1. pM(ag, az

]k+1

Pk - [wn — Wn—k

by letting
1. ¢o = the identity function on wp,

2. o(ag, a1, ..., k) =
P (pr—1(@os oy k1), Pr—1 (0, -y k).



Definition
Let V,, be the set of all finite subsets v of w, such that:



Definition
Let V,, be the set of all finite subsets v of w, such that:

(a) @n [ [v]™*! is min-dependent,



Definition
Let V,, be the set of all finite subsets v of w, such that:
(a) @n [ [v]™*! is min-dependent,

(b) gog") I [v]"*! is shift-increasing for every i < n.



Definition
Let V,, be the set of all finite subsets v of w, such that:
(a) @n [ [v]™*! is min-dependent,

(b) goE") I [v]"*! is shift-increasing for every i < n.

Lemma (Key Fact 2)
The graph Gon—1(Vy) is countably chromatic.



Definition
Let V,, be the set of all finite subsets v of w, such that:
(a) @n [ [v]™*! is min-dependent,

(b) goE") I [v]"*! is shift-increasing for every i < n.

Lemma (Key Fact 2)
The graph Gon—1(Vy) is countably chromatic.

Theorem (LopezAbad-Todorcevic 2013)

For every non-negative integer n there is a normalized weakly null
sequence (ey)~<w, Without infinite unconditional basic
subsequence.



Definition
Let V,, be the set of all finite subsets v of w, such that:
(a) @n [ [v]™*! is min-dependent,

(b) goE") I [v]"*! is shift-increasing for every i < n.

Lemma (Key Fact 2)
The graph Gon—1(Vy) is countably chromatic.

Theorem (LopezAbad-Todorcevic 2013)

For every non-negative integer n there is a normalized weakly null
sequence (ey)~<w, Without infinite unconditional basic
subsequence.

Question
Is there for every non-negative integer n a reflexive space of density
R, without infinite unconditional basic sequence?
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Subsymmetric sequences

A sequence (x,) (n < w) in some Banach space X is
subsymmetric if there is a constant C > 1 such that for every pair
F and G of finite subsets of w of the same cardinality k and every
sequence a, (n < k) of scalars,

= H > anxe(e) 1Y anxe(ny IS C 1Y anxen) |l -

n<k n<k n<k

Theorem (Schreier, 1930)

There is an infinite weakly null sequence with no infinite
subsymmetric subsequence

Theorem (Tsirelson, 1972)

There is a reflexive infinite-dimensional Banach space X with no
infinite subsymmetric sequence.
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Let I be an infinite cardinal. The following are equivalent:

(1) T = (w)3*

(2) Every separated normalized sequence (x,) (o < T) has a
subsymmetric subsequence.

(3) There are no large compact and hereditary families on T .



Theorem (LopezAbad-Todorcevic, 2013)

Let I' be an infinite cardinal. The following are equivalent:

(1) T = (w)3*.

(2) Every separated normalized sequence (x,) (o < T) has a
subsymmetric subsequence.

(3) There are no large compact and hereditary families on T .

Remark
Recall that a family F of subsets of I' is compact if its pointwise

closure consists only of finite subsets of I
Recall also that such an F is hereditary if it is closed under taking

subsets.
We say that a family F of subsets of I is large if every infinite
sunsets of [ contains elements of F of arbitrary large finite

cardinality.
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Theorem (Argyros-Motakis, 2014)

There is a Banach space X of density 280 with no infinite
subsymmetric sequence.

Question
Is there a Banach space X of density > 2% with no infinite
subsymmetric sequence?

Question

What is the minimal cardinal I with the property that every
Banach space X of density at least [ must contain an infinite
subsymmetric sequence?
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Theorem (Brech-LopezAbad-Todorcevic, 2014)

There is a Banach space X of density bigger than the first
w-Mahlo cardinal with no infinite subsymmetric sequence.

Definition

Let B and C be two families of subsets of some index-set I" and let
‘H be a family of subsets of w.

We say that C is (B, H)-large if every infinite sequence (tx) of
elements of B has an infinite subsequence (tx)xem such that
Ukev tk €C forall v e H [ M.

We say that C is B-large if it is (B, S)-large, where S is the
Schreier family on w.
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A sequence (F,) (n < w) of families of subsets of some index set I
is a CL-sequence (sequence of consecutively large families)
whenever Fy = [[]<! and for every n < w :

1. F, is compact and hereditary,

2. ]:n g -7:n+17

3. Fny1 is Fp-large.



Definition

A sequence (Fp) (n < w) of families of subsets of some index set I
is a CL-sequence (sequence of consecutively large families)
whenever Fy = [[]<! and for every n < w :

1. F, is compact and hereditary,
2. ]:n g -7:n+17
3. Fny1 is Fp-large.

Theorem (Brech-LopezAbad-Todorcevic, 2014)

If some cardinal T supports a CL-sequence then there is a Banach
space X of density ' with no infinite subsymmetric sequence.
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2. There is a CL-sequence on the set of immediate successors of
every node of T.

Then there is a CL-sequence on T.



Constructing CL-sequences

Lemma (Key 1)
Suppose T is a tree such that
1. There is a CL-sequence on chains of T,
2. There is a CL-sequence on the set of immediate successors of
every node of T.
Then there is a CL-sequence on T.

Question
For which cardinals I do we have a tree T of cardinality I'
satisfying the two conditions?
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Definition
Recall that a C-sequence on a cardinal [ is a sequence

= (C, : v €T) such that C, is a closed and unbounded subset
of v forall y €T.
A subset C of I is a limit of a subsequence (C,, : n < w) of Cif
every initial segment of C is an initial segment of all but finitely
many C,,'s.
A C-sequence C = (C, : v €T) is small if there is a function

f : I — T such that for every limit C of a subsequence of ? we
have that otp(C) < f(min(C)).

Lemma (Key 2)

Suppose that I is a regular cardinal with the property that every
smaller ordinal supports a CL-sequence.

If I supports a small C-sequence then then there is a tree T on I
which has a CL-sequence on its chains.

If moreover, I is inaccessible then there is a CL-sequence on
immediate successors of every node of T and therefore, there is a
ClL-sequence on T.



Define
po : [P — P(M)<

recursively by

polc, ) = (Cs M)~ po(er, min(Cy \ )

with the initial condition po(c, ) = 0.



Define
po : [P — P(M)<

recursively by
po(a, B) = (Cg N )™ po(er, min(Cs \ @)
with the initial condition po(c, ) = 0.

Definition
To a given C-sequence C, (a < I') one associates the notion of a
walk from an ordinal 5 < I to a smaller ordinal « :

Bo(a) =B > Bi(a) > -+ > Ba(a) = n,

where n = |po(c, )| and where

Bit1(a) = min(Cg (o) \ ).
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The tree T(po)

Let

T(po) ={po(-B) [a:a<B<T}
We consider T(pg) as a tree ordered by end-extension.

Lemma
Fora < 8 <y <T, we have
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J<n,



The tree T(po)

Let

T(po) ={po(-B) [a:a<B<T}
We consider T(pg) as a tree ordered by end-extension.

Lemma
Fora < 8 <y <T, we have
L. po(, B) = po(a, ) implies po(-,B) | a = po(-,7) |
2. |po(a, B)| = |po(c, )| = n implies C,, (o) T Cy,(g) for some
J<n,
3. there is unique j such that v;(«) = () for all i < j and
a < yjp1(a) < 8.



