# Sequences in Large Spaces 

Stevo Todorcevic<br>C.N.R.S. Paris and University of Toronto

Maresias, 28 August 2014

Outline

## Outline

1. Weakly Null Sequences

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers
3. $w^{*}$-null sequences and the quotient problem

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers
3. $w^{*}$-null sequences and the quotient problem
4. P-ideal Dichotomy

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers
3. $w^{*}$-null sequences and the quotient problem
4. P-ideal Dichotomy
5. Weakly-null sequence on Polish spaces

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers
3. $w^{*}$-null sequences and the quotient problem
4. P-ideal Dichotomy
5. Weakly-null sequence on Polish spaces
6. Ramsey Theory on Trees

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers
3. $w^{*}$-null sequences and the quotient problem
4. P-ideal Dichotomy
5. Weakly-null sequence on Polish spaces
6. Ramsey Theory on Trees
7. Unconditional sequences

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers
3. $w^{*}$-null sequences and the quotient problem
4. P-ideal Dichotomy
5. Weakly-null sequence on Polish spaces
6. Ramsey Theory on Trees
7. Unconditional sequences
8. The Free-Set Property and the Product Ramsey property

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers
3. $w^{*}$-null sequences and the quotient problem
4. P-ideal Dichotomy
5. Weakly-null sequence on Polish spaces
6. Ramsey Theory on Trees
7. Unconditional sequences
8. The Free-Set Property and the Product Ramsey property
9. Long Conditional Weakly-null Sequences

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers
3. $w^{*}$-null sequences and the quotient problem
4. P-ideal Dichotomy
5. Weakly-null sequence on Polish spaces
6. Ramsey Theory on Trees
7. Unconditional sequences
8. The Free-Set Property and the Product Ramsey property
9. Long Conditional Weakly-null Sequences
10. Positional Graphs

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers
3. $w^{*}$-null sequences and the quotient problem
4. P-ideal Dichotomy
5. Weakly-null sequence on Polish spaces
6. Ramsey Theory on Trees
7. Unconditional sequences
8. The Free-Set Property and the Product Ramsey property
9. Long Conditional Weakly-null Sequences
10. Positional Graphs
11. Subsymmetric sequences

## Outline

1. Weakly Null Sequences
2. Ramsey Theory of Fronts and Barriers
3. $w^{*}$-null sequences and the quotient problem
4. P-ideal Dichotomy
5. Weakly-null sequence on Polish spaces
6. Ramsey Theory on Trees
7. Unconditional sequences
8. The Free-Set Property and the Product Ramsey property
9. Long Conditional Weakly-null Sequences
10. Positional Graphs
11. Subsymmetric sequences
12. Compact families on trees

## Structure in weakly null sequences

## Structure in weakly null sequences

Theorem (Bessage-Pelczynski, 1958)
For every $\varepsilon>0$, every normalized weakly null sequence ( $x_{n}$ ) contains an infinite $(1+\varepsilon)$-basic subsequence $\left(x_{n_{i}}\right)$.

## Structure in weakly null sequences

Theorem (Bessage-Pelczynski, 1958)
For every $\varepsilon>0$, every normalized weakly null sequence $\left(x_{n}\right)$ contains an infinite $(1+\varepsilon)$-basic subsequence $\left(x_{n_{i}}\right)$.

Theorem (Maurey-Rosenthal, 1977)
(1) For every $\varepsilon>0$ and every $\alpha<\omega^{\omega}$, every normalized weakly null sequence in $\mathcal{C}(\alpha+1)$ has a $(2+\varepsilon)$-unconditional subsequence.

## Structure in weakly null sequences

Theorem (Bessage-Pelczynski, 1958)
For every $\varepsilon>0$, every normalized weakly null sequence $\left(x_{n}\right)$ contains an infinite $(1+\varepsilon)$-basic subsequence $\left(x_{n_{i}}\right)$.

Theorem (Maurey-Rosenthal, 1977)
(1) For every $\varepsilon>0$ and every $\alpha<\omega^{\omega}$, every normalized weakly null sequence in $\mathcal{C}(\alpha+1)$ has a $(2+\varepsilon)$-unconditional subsequence.
(2) For every $\varepsilon>0$ every normalized weakly null sequence in $\mathcal{C}\left(\omega^{\omega}+1\right)$ has a $(4+\varepsilon)$-unconditional subsequence.

## Structure in weakly null sequences

Theorem (Bessage-Pelczynski, 1958)
For every $\varepsilon>0$, every normalized weakly null sequence $\left(x_{n}\right)$ contains an infinite $(1+\varepsilon)$-basic subsequence $\left(x_{n_{i}}\right)$.

Theorem (Maurey-Rosenthal, 1977)
(1) For every $\varepsilon>0$ and every $\alpha<\omega^{\omega}$, every normalized weakly null sequence in $\mathcal{C}(\alpha+1)$ has a $(2+\varepsilon)$-unconditional subsequence.
(2) For every $\varepsilon>0$ every normalized weakly null sequence in $\mathcal{C}\left(\omega^{\omega}+1\right)$ has a $(4+\varepsilon)$-unconditional subsequence.
(3) There is a normalized weakly null sequence in $\mathcal{C}\left(\omega^{\omega^{2}}+1\right)$ with no unconditional subsequence.

## Finite and partial unconditionality

Theorem (Odell 1993, Dodos-LopezAbad-Todorcevic, 2011)
Let $k$ a positive integer and $\varepsilon>0$. Suppose that for every $i<k$ we are given a normalized weakly null sequence $\left(x_{n}^{i}\right)_{n=0}^{\infty}$ in some Banach space $X$. Then, there exists an infinite set $M$ of integers such that for every $\left\{n_{0}<\cdots<n_{k-1}\right\} \subseteq M$ the $k$-sequence $\left(x_{n_{i}}^{i}\right)_{i<k}$ is $(1+\varepsilon)$-unconditional.

## Finite and partial unconditionality

## Theorem (Odell 1993, Dodos-LopezAbad-Todorcevic, 2011)

Let $k$ a positive integer and $\varepsilon>0$. Suppose that for every $i<k$ we are given a normalized weakly null sequence $\left(x_{n}^{i}\right)_{n=0}^{\infty}$ in some Banach space $X$. Then, there exists an infinite set $M$ of integers such that for every $\left\{n_{0}<\cdots<n_{k-1}\right\} \subseteq M$ the $k$-sequence $\left(x_{n_{i}}^{i}\right)_{i<k}$ is $(1+\varepsilon)$-unconditional.

Theorem (Arvanitakis 2006, Gasparis-Odell-Wahl, 2006 Todorcevic 2005)
Suppose that $\left(x_{n}\right)$ is a normalized weakly-null sequence in $\ell_{\infty}(\Gamma)$ with the property that

$$
\inf \left\{\left|x_{n}(\gamma)\right|: n \in \mathbb{N}, \gamma \in \Gamma\right\}>0
$$

Then $\left(x_{n}\right)$ contains an infinite unconditional basic subsequence.

Theorem (Elton 1978)
For every $0<\varepsilon \leq 1$ there is a constant $C(\varepsilon) \geq 1$ such that every normalized weakly null sequence $\left(x_{n}\right)$ has an infinite subsequence $\left(x_{n_{i}}\right)$ such that

$$
\left\|\sum_{i \in I} a_{i} x_{n_{i}}\right\| \leq C(\varepsilon)\left\|\sum_{j \in J} a_{j} x_{n_{j}}\right\|
$$

for every pair $I \subseteq J$ of subsets of $\mathbb{N}$ and every choice $\left(a_{j}: j \in J\right)$ of scalars such that $\varepsilon \leq\left|a_{j}\right| \leq 1$ for all $j \in J$.

Theorem (Elton 1978)
For every $0<\varepsilon \leq 1$ there is a constant $C(\varepsilon) \geq 1$ such that every normalized weakly null sequence $\left(x_{n}\right)$ has an infinite subsequence $\left(x_{n_{i}}\right)$ such that

$$
\left\|\sum_{i \in I} a_{i} x_{n_{i}}\right\| \leq C(\varepsilon)\left\|\sum_{j \in J} a_{j} x_{n_{j}}\right\|
$$

for every pair $I \subseteq J$ of subsets of $\mathbb{N}$ and every choice $\left(a_{j}: j \in J\right)$ of scalars such that $\varepsilon \leq\left|a_{j}\right| \leq 1$ for all $j \in J$.

Problem (Elton unconditionality constant problem)
Is $\sup _{0<\varepsilon \leq 1} C(\varepsilon)<\infty$ ?

## Nash-Willimas's theory of fronts and barriers

Definition (Nash-Williams 1965)
For a family $\mathcal{F}$ of finite subsets of $\mathbb{N}$ we say that:

## Nash-Willimas's theory of fronts and barriers

Definition (Nash-Williams 1965)
For a family $\mathcal{F}$ of finite subsets of $\mathbb{N}$ we say that:

1. $\mathcal{F}$ is thin whenever $s \nsubseteq t$ for $s \neq t$ in $\mathcal{F}$.

## Nash-Willimas's theory of fronts and barriers

Definition (Nash-Williams 1965)
For a family $\mathcal{F}$ of finite subsets of $\mathbb{N}$ we say that:

1. $\mathcal{F}$ is thin whenever $s \nsubseteq t$ for $s \neq t$ in $\mathcal{F}$.
2. $\mathcal{F}$ is a front if $\mathcal{F}$ is thin and if every infinite subset of $\mathbb{N}$ contains an initial segment in $\mathcal{F}$.

## Nash-Willimas's theory of fronts and barriers

Definition (Nash-Williams 1965)
For a family $\mathcal{F}$ of finite subsets of $\mathbb{N}$ we say that:

1. $\mathcal{F}$ is thin whenever $s \nsubseteq t$ for $s \neq t$ in $\mathcal{F}$.
2. $\mathcal{F}$ is a front if $\mathcal{F}$ is thin and if every infinite subset of $\mathbb{N}$ contains an initial segment in $\mathcal{F}$.
3. $\mathcal{F}$ is a barrier if $\mathcal{F}$ is a front and if $s \nsubseteq t$ for $s \neq t$ in $\mathcal{F}$.

## Nash-Willimas's theory of fronts and barriers

## Definition (Nash-Williams 1965)

For a family $\mathcal{F}$ of finite subsets of $\mathbb{N}$ we say that:

1. $\mathcal{F}$ is thin whenever $s \nsubseteq t$ for $s \neq t$ in $\mathcal{F}$.
2. $\mathcal{F}$ is a front if $\mathcal{F}$ is thin and if every infinite subset of $\mathbb{N}$ contains an initial segment in $\mathcal{F}$.
3. $\mathcal{F}$ is a barrier if $\mathcal{F}$ is a front and if $s \nsubseteq t$ for $s \neq t$ in $\mathcal{F}$.

## Theorem (Nash-Williams 1965)

Suppose $\mathcal{H}=\mathcal{H}_{0} \cup \cdots \cup \mathcal{H}_{1}$ is a finite partition of a thin family $\mathcal{H}$ of finite subsets of $\mathbb{N}$. Then there is an infinite set $M \subseteq \mathbb{N}$ and $i<l$ such that $\mathcal{H} \upharpoonright M \subseteq \mathcal{H}_{i}$, where

$$
\mathcal{H} \upharpoonright M=\{s \in \mathcal{H}: s \subseteq M\} .
$$

Theorem (Pudlak-Rödl 1982)
For every front $\mathcal{B}$ on $\mathbb{N}$ and every mapping $f: \mathcal{B} \rightarrow \mathbb{N}$ there exist an infinite subset $M$ of $\mathbb{N}$ and a mapping $\varphi: \mathcal{B} \upharpoonright M \rightarrow[\mathbb{N}]^{<\infty}$ such that:

Theorem (Pudlak-Rödl 1982)
For every front $\mathcal{B}$ on $\mathbb{N}$ and every mapping $f: \mathcal{B} \rightarrow \mathbb{N}$ there exist an infinite subset $M$ of $\mathbb{N}$ and a mapping $\varphi: \mathcal{B} \upharpoonright M \rightarrow[\mathbb{N}]^{<\infty}$ such that:
(1) $\varphi$ is an internal mapping, i.e., $\varphi(s) \subseteq s$ for all $\in \mathcal{B} \upharpoonright M$,

## Theorem (Pudlak-Rödl 1982)

For every front $\mathcal{B}$ on $\mathbb{N}$ and every mapping $f: \mathcal{B} \rightarrow \mathbb{N}$ there exist an infinite subset $M$ of $\mathbb{N}$ and a mapping $\varphi: \mathcal{B} \upharpoonright M \rightarrow[\mathbb{N}]^{<\infty}$ such that:
(1) $\varphi$ is an internal mapping, i.e., $\varphi(s) \subseteq s$ for all $\in \mathcal{B} \upharpoonright M$,
(2) the range of $\varphi$ is a thin family, i.e., $\varphi(s) \nsubseteq \varphi(t)$ for all
$s, t \in \mathcal{B} \upharpoonright M$ such that $\varphi(s) \neq \varphi(t)$, and

## Theorem (Pudlak-Rödl 1982)

For every front $\mathcal{B}$ on $\mathbb{N}$ and every mapping $f: \mathcal{B} \rightarrow \mathbb{N}$ there exist an infinite subset $M$ of $\mathbb{N}$ and a mapping $\varphi: \mathcal{B} \upharpoonright M \rightarrow[\mathbb{N}]^{<\infty}$ such that:
(1) $\varphi$ is an internal mapping, i.e., $\varphi(s) \subseteq s$ for all $\in \mathcal{B} \upharpoonright M$,
(2) the range of $\varphi$ is a thin family, i.e., $\varphi(s) \nsubseteq \varphi(t)$ for all
$s, t \in \mathcal{B} \upharpoonright M$ such that $\varphi(s) \neq \varphi(t)$, and
(3) for $s, t \in \mathcal{B} \upharpoonright M, f(s)=f(t)$ iff $\varphi(s)=\varphi(t)$.

## Theorem (Pudlak-Rödl 1982)

For every front $\mathcal{B}$ on $\mathbb{N}$ and every mapping $f: \mathcal{B} \rightarrow \mathbb{N}$ there exist an infinite subset $M$ of $\mathbb{N}$ and a mapping $\varphi: \mathcal{B} \upharpoonright M \rightarrow[\mathbb{N}]^{<\infty}$ such that:
(1) $\varphi$ is an internal mapping, i.e., $\varphi(s) \subseteq s$ for all $\in \mathcal{B} \upharpoonright M$,
(2) the range of $\varphi$ is a thin family, i.e., $\varphi(s) \nsubseteq \varphi(t)$ for all
$s, t \in \mathcal{B} \upharpoonright M$ such that $\varphi(s) \neq \varphi(t)$, and
(3) for $s, t \in \mathcal{B} \upharpoonright M, f(s)=f(t)$ iff $\varphi(s)=\varphi(t)$.

## Remark

There can be only one mapping $\varphi: \mathcal{B} \upharpoonright M \rightarrow[\mathbb{N}]^{<\infty}$ satisfying the conditions (1), (2) and (3) from the Theorem on a given infinite subset $M$ of $\mathbb{N}$.

## $w^{*}$-null sequences and the quotient problem

## $w^{*}$-null sequences and the quotient problem

Theorem (Josefson 1975, Nissenzweig 1975)
For every infinite-dimensional normed space $X$ there is a normalized $w^{*}$-null sequence $\left(f_{n}\right)_{n=0}^{\infty}$ in $X^{*}$.

## $w^{*}$-null sequences and the quotient problem

Theorem (Josefson 1975, Nissenzweig 1975)
For every infinite-dimensional normed space $X$ there is a normalized $w^{*}$-null sequence $\left(f_{n}\right)_{n=0}^{\infty}$ in $X^{*}$.

Theorem (Johnson-Rosenthal 1972)
Every separable infinite-dimensional space has an infinite-dimensional quotient with a Schauder basis.

## $w^{*}$-null sequences and the quotient problem

Theorem (Josefson 1975, Nissenzweig 1975)
For every infinite-dimensional normed space $X$ there is a normalized $w^{*}$-null sequence $\left(f_{n}\right)_{n=0}^{\infty}$ in $X^{*}$.

Theorem (Johnson-Rosenthal 1972)
Every separable infinite-dimensional space has an infinite-dimensional quotient with a Schauder basis.

Theorem (Todorcevic 2006)
Suppose that a Banach space $X$ has density $<\mathfrak{m}$ and that its dual $X^{*}$ has an uncountable normalized $w^{*}$-null sequence. Then $X$ has a quotient with a Schauder basis of length $\omega_{1}$.

## $w^{*}$-null sequences and the quotient problem

Theorem (Josefson 1975, Nissenzweig 1975)
For every infinite-dimensional normed space $X$ there is a normalized $w^{*}$-null sequence $\left(f_{n}\right)_{n=0}^{\infty}$ in $X^{*}$.

Theorem (Johnson-Rosenthal 1972)
Every separable infinite-dimensional space has an infinite-dimensional quotient with a Schauder basis.

Theorem (Todorcevic 2006)
Suppose that a Banach space $X$ has density $<\mathfrak{m}$ and that its dual $X^{*}$ has an uncountable normalized $w^{*}$-null sequence. Then $X$ has a quotient with a Schauder basis of length $\omega_{1}$.

## Remark

Recall that $\mathfrak{m}$ is the Baire-category number of the class of compact Hausdorff spaces satisfying the countable chain condition.

P-ideal dichotomy, PID

## P-ideal dichotomy, PID

## Definition

An ideal on an index set $S$ is simply a family $\mathcal{I}$ of subsets of $S$ closed under taking subsets and finite unions of its elements.

## P-ideal dichotomy, PID

## Definition

An ideal on an index set $S$ is simply a family $\mathcal{I}$ of subsets of $S$ closed under taking subsets and finite unions of its elements.

We shall consider only ideals of countable subsets of $S$ and assume that all our ideals include the ideal of all finite subsets of $S$.

## P-ideal dichotomy, PID

## Definition

An ideal on an index set $S$ is simply a family $\mathcal{I}$ of subsets of $S$ closed under taking subsets and finite unions of its elements.

We shall consider only ideals of countable subsets of $S$ and assume that all our ideals include the ideal of all finite subsets of $S$.

We say that such an ideal $\mathcal{I}$ is a $\mathbf{P}$-ideal if for every sequence $\left(x_{n}\right)$ in $\mathcal{I}$ there is $y \in \mathcal{I}$ such that $x_{n} \backslash y$ is finite for all $n$.

## P-ideal dichotomy, PID

## Definition

An ideal on an index set $S$ is simply a family $\mathcal{I}$ of subsets of $S$ closed under taking subsets and finite unions of its elements.

We shall consider only ideals of countable subsets of $S$ and assume that all our ideals include the ideal of all finite subsets of $S$.

We say that such an ideal $\mathcal{I}$ is a $\mathbf{P}$-ideal if for every sequence $\left(x_{n}\right)$ in $\mathcal{I}$ there is $y \in \mathcal{I}$ such that $x_{n} \backslash y$ is finite for all $n$.

## Example

1. The ideal $[S]^{\leq \aleph_{0}}$ of all countable subsets of $S$ is a P-ideal.

## P-ideal dichotomy, PID

## Definition

An ideal on an index set $S$ is simply a family $\mathcal{I}$ of subsets of $S$ closed under taking subsets and finite unions of its elements.

We shall consider only ideals of countable subsets of $S$ and assume that all our ideals include the ideal of all finite subsets of $S$.

We say that such an ideal $\mathcal{I}$ is a $\mathbf{P}$-ideal if for every sequence $\left(x_{n}\right)$ in $\mathcal{I}$ there is $y \in \mathcal{I}$ such that $x_{n} \backslash y$ is finite for all $n$.

## Example

1. The ideal $[S]^{\leq \aleph_{0}}$ of all countable subsets of $S$ is a P-ideal.
2. Given a family $\mathcal{F}$ of cardinality $<\mathfrak{b}$ the ideal

$$
\mathcal{F}^{\perp}=\left\{x \in[S]^{\leq \aleph_{0}}:(\forall Y \in \mathcal{F})|x \cap Y|<\aleph_{0}\right\}
$$

is a P -ideal.

## Definition

The P-ideal dichotomy is the statement that for every P-ideal $\mathcal{I}$ on some index set $S$ either

## Definition

The $\mathbf{P}$-ideal dichotomy is the statement that for every P-ideal $\mathcal{I}$ on some index set $S$ either
(1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_{0}} \subseteq \mathcal{I}$, or

## Definition

The P-ideal dichotomy is the statement that for every P-ideal $\mathcal{I}$ on some index set $S$ either
(1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_{0}} \subseteq \mathcal{I}$, or
(2) there is a countable decomposition $S=\bigcup_{n<\omega} S_{n}$ such that $S_{n} \perp \mathcal{I}$ for all $n$.

## Definition

The $\mathbf{P}$-ideal dichotomy is the statement that for every P-ideal $\mathcal{I}$ on some index set $S$ either
(1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_{0}} \subseteq \mathcal{I}$, or
(2) there is a countable decomposition $S=\bigcup_{n<\omega} S_{n}$ such that $S_{n} \perp \mathcal{I}$ for all $n$.

Remark

1. It is known that PID follows from the strong Baire category principles such as $\mathfrak{m m}>\omega_{1}$.

## Definition

The $\mathbf{P}$-ideal dichotomy is the statement that for every P-ideal $\mathcal{I}$ on some index set $S$ either
(1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_{0}} \subseteq \mathcal{I}$, or
(2) there is a countable decomposition $S=\bigcup_{n<\omega} S_{n}$ such that $S_{n} \perp \mathcal{I}$ for all $n$.

## Remark

1. It is known that PID follows from the strong Baire category principles such as $\mathfrak{m m}>\omega_{1}$.
2. It is also known that PID is consistent with GCH.

## Definition

The $\mathbf{P}$-ideal dichotomy is the statement that for every P-ideal $\mathcal{I}$ on some index set $S$ either
(1) there is uncountable $T \subseteq S$ such that $[T]^{\aleph_{0}} \subseteq \mathcal{I}$, or
(2) there is a countable decomposition $S=\bigcup_{n<\omega} S_{n}$ such that $S_{n} \perp \mathcal{I}$ for all $n$.

## Remark

1. It is known that PID follows from the strong Baire category principles such as $\mathfrak{m m}>\omega_{1}$.
2. It is also known that PID is consistent with GCH.
3. It is known that PID implies, for example, the Souslin Hypothesis.

Theorem (Todorcevic 2006)
Assume PID. Let $X$ be a nonseparable Banach space of density $<\mathfrak{p}$. Then $X^{*}$ has an uncountable normalized $w^{*}$-null sequence.

## Theorem (Todorcevic 2006)

Assume PID. Let $X$ be a nonseparable Banach space of density $<\mathfrak{p}$. Then $X^{*}$ has an uncountable normalized $w^{*}$-null sequence.

## Remark

Recall that $\mathfrak{p}$ is the minimal cardinality of a family $\mathcal{F}$ of infinite subsets of $\mathbb{N}$ such that the intersection of every subfamily of $\mathcal{F}$ is infinite but there is no infinite set $M \subseteq \mathbb{N}$ such that $M \backslash N$ is finite for all $N \in \mathcal{F}$.

## Theorem (Todorcevic 2006)

Assume PID. Let $X$ be a nonseparable Banach space of density $<\mathfrak{p}$. Then $X^{*}$ has an uncountable normalized $w^{*}$-null sequence.

## Remark

Recall that $\mathfrak{p}$ is the minimal cardinality of a family $\mathcal{F}$ of infinite subsets of $\mathbb{N}$ such that the intersection of every subfamily of $\mathcal{F}$ is infinite but there is no infinite set $M \subseteq \mathbb{N}$ such that $M \backslash N$ is finite for all $N \in \mathcal{F}$.

## Corollary (Todorcevic 2006)

Assume PID and $\mathfrak{m}>\omega_{1}$. Then every non-separable Banach space has un uncountable biorthogonal system.

## Theorem (Todorcevic 2006)

Assume PID. Let $X$ be a nonseparable Banach space of density $<\mathfrak{p}$. Then $X^{*}$ has an uncountable normalized $w^{*}$-null sequence.

## Remark

Recall that $\mathfrak{p}$ is the minimal cardinality of a family $\mathcal{F}$ of infinite subsets of $\mathbb{N}$ such that the intersection of every subfamily of $\mathcal{F}$ is infinite but there is no infinite set $M \subseteq \mathbb{N}$ such that $M \backslash N$ is finite for all $N \in \mathcal{F}$.

## Corollary (Todorcevic 2006)

Assume PID and $\mathfrak{m}>\omega_{1}$. Then every non-separable Banach space has un uncountable biorthogonal system.

## Corollary (Todorcevic 2006)

Assume PID and $\mathfrak{m}>\omega_{1}$. Then every non-separable Banach space has closed convex subset supported by all of its points.

## Theorem (Todorcevic 2006)

Assume PID. Let $X$ be a nonseparable Banach space of density $<\mathfrak{p}$. Then $X^{*}$ has an uncountable normalized $w^{*}$-null sequence.

## Remark

Recall that $\mathfrak{p}$ is the minimal cardinality of a family $\mathcal{F}$ of infinite subsets of $\mathbb{N}$ such that the intersection of every subfamily of $\mathcal{F}$ is infinite but there is no infinite set $M \subseteq \mathbb{N}$ such that $M \backslash N$ is finite for all $N \in \mathcal{F}$.

## Corollary (Todorcevic 2006)

Assume PID and $\mathfrak{m}>\omega_{1}$. Then every non-separable Banach space has un uncountable biorthogonal system.

## Corollary (Todorcevic 2006)

Assume PID and $\mathfrak{m}>\omega_{1}$. Then every non-separable Banach space has closed convex subset supported by all of its points.

## PID and Asplund spaces

## Definition

An Asplund space, or a strong differentiability space is a Banach space $X$ with the property that every continuous convex function $f: U \rightarrow \mathbb{R}$ on an open convex domain $U \subseteq X$ is Fréchet differentiable in every point of a dense $G_{\delta}$-subset of $U$.

## PID and Asplund spaces

## Definition

An Asplund space, or a strong differentiability space is a Banach space $X$ with the property that every continuous convex function $f: U \rightarrow \mathbb{R}$ on an open convex domain $U \subseteq X$ is Fréchet differentiable in every point of a dense $G_{\delta}$-subset of $U$.

## Remark

This is a well studied class of spaces with many pleasant properties such as the projectional resolution of the identity of its dual space, the norm-fragmentability of the $w^{*}$-topology of the dual ball, separability of the dual of every separable subspace, etc.

Theorem (Todorcevic 1989)
If $\mathfrak{b}=\omega_{1}$ then there is an Asplund space with no uncountable $\varepsilon$-biorthogonal system for any $0 \leq \varepsilon<1$.

Theorem (Todorcevic 1989)
If $\mathfrak{b}=\omega_{1}$ then there is an Asplund space with no uncountable $\varepsilon$-biorthogonal system for any $0 \leq \varepsilon<1$.

Recall that $\mathfrak{b}$ is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ that is unbounded in the ordering of eventual dominance.

Theorem (Todorcevic 1989)
If $\mathfrak{b}=\omega_{1}$ then there is an Asplund space with no uncountable $\varepsilon$-biorthogonal system for any $0 \leq \varepsilon<1$.

Recall that $\mathfrak{b}$ is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ that is unbounded in the ordering of eventual dominance.

Theorem (Brech-Todorcevic 2012)
Assume PID. Let $X$ be nonseparable Asplund space of density $<\mathfrak{b}$.
Then $X^{*}$ has an uncountable normalized $w^{*}$-null sequence.

Theorem (Todorcevic 1989)
If $\mathfrak{b}=\omega_{1}$ then there is an Asplund space with no uncountable $\varepsilon$-biorthogonal system for any $0 \leq \varepsilon<1$.

Recall that $\mathfrak{b}$ is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ that is unbounded in the ordering of eventual dominance.

## Theorem (Brech-Todorcevic 2012)

Assume PID. Let $X$ be nonseparable Asplund space of density $<\mathfrak{b}$.
Then $X^{*}$ has an uncountable normalized $w^{*}$-null sequence.

## Corollary

Assume PID. The following are equivalent:

1. Every non-separable Asplund space has an uncountable $\varepsilon$-biorthogonal system for every $\varepsilon>0$.

## Theorem (Todorcevic 1989)

If $\mathfrak{b}=\omega_{1}$ then there is an Asplund space with no uncountable $\varepsilon$-biorthogonal system for any $0 \leq \varepsilon<1$.

Recall that $\mathfrak{b}$ is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ that is unbounded in the ordering of eventual dominance.

## Theorem (Brech-Todorcevic 2012)

Assume PID. Let $X$ be nonseparable Asplund space of density $<\mathfrak{b}$.
Then $X^{*}$ has an uncountable normalized $w^{*}$-null sequence.

## Corollary

Assume PID. The following are equivalent:

1. Every non-separable Asplund space has an uncountable $\varepsilon$-biorthogonal system for every $\varepsilon>0$.
2. $\mathfrak{b}=\aleph_{2}$.

## Weakly null sequences on Polish spaces

## Weakly null sequences on Polish spaces

Theorem (Mycielski 1964)
Suppose $M_{n} \subseteq X^{k_{n}}(n=0,1, \ldots)$ is a sequence of subsets of the finite powers of some fixed Polish space $X$ and suppose that $M_{n}$ is a meager subset of $X^{k_{n}}$ for all $n$. Then there is a perfect set $P \subseteq X$ such that $[P]^{k_{n}} \cap M_{n}=\emptyset$ for all $n$.

## Weakly null sequences on Polish spaces

Theorem (Mycielski 1964)
Suppose $M_{n} \subseteq X^{k_{n}}(n=0,1, \ldots)$ is a sequence of subsets of the finite powers of some fixed Polish space $X$ and suppose that $M_{n}$ is a meager subset of $X^{k_{n}}$ for all $n$. Then there is a perfect set $P \subseteq X$ such that $[P]^{k_{n}} \cap M_{n}=\emptyset$ for all $n$.

Theorem (Argyros-Dodos-Kanellopoulos 2008)
Suppose $X$ is a Polish space and that $\left(f_{a}\right)_{a \in 2^{\mathbb{N}}}$ is a bounded sequence in $\ell_{\infty}(X)$ such that $(x, a) \mapsto f_{a}(x)$ is a Borel function from $X \times 2^{\mathbb{N}}$ into $\mathbb{R}$ and that

$$
\left|\left\{a \in 2^{\mathbb{N}}: f_{a}(x) \neq 0\right\}\right| \leq \aleph_{0} \text { for all } x \in X
$$

Then there is a perfect set $P \subseteq 2^{\mathbb{N}}$ such that the sequence $\left(f_{a}\right)_{a \in P}$ is 1-unconditional.

## Ramsey Theory of trees

## Ramsey Theory of trees

## Definition

Fix a rooted finitely branching tree $U$ with no terminal nodes. A subtree $T$ of $U$ will be called a strong subtree if the levels of $T$ are subsets of the levels of $U$ and if for every $t \in T$ every immediate successor of $t$ in $U$ is extended by a unique immediate successor of $t$ in $T$.

## Ramsey Theory of trees

## Definition

Fix a rooted finitely branching tree $U$ with no terminal nodes. A subtree $T$ of $U$ will be called a strong subtree if the levels of $T$ are subsets of the levels of $U$ and if for every $t \in T$ every immediate successor of $t$ in $U$ is extended by a unique immediate successor of $t$ in $T$.

## Theorem (Halpern-Läuchli 1966)

For every sequence $U_{0}, \ldots, U_{d-1}$ of rooted finitelly branching trees with no terminal nodes and for every finite colouring of the level product $U_{0} \otimes \cdots \otimes U_{d-1}$, we can find for each $i<d$ a strong subtree $T_{i}$ of $U_{i}$ such that the $T_{i}$ 's share the same level set and such that the level product $T_{0} \otimes \cdots \otimes T_{d-1}$ is monochromatic.

## Ramsey Theory of trees

## Definition

Fix a rooted finitely branching tree $U$ with no terminal nodes. A subtree $T$ of $U$ will be called a strong subtree if the levels of $T$ are subsets of the levels of $U$ and if for every $t \in T$ every immediate successor of $t$ in $U$ is extended by a unique immediate successor of $t$ in $T$.

## Theorem (Halpern-Läuchli 1966)

For every sequence $U_{0}, \ldots, U_{d-1}$ of rooted finitelly branching trees with no terminal nodes and for every finite colouring of the level product $U_{0} \otimes \cdots \otimes U_{d-1}$, we can find for each $i<d$ a strong subtree $T_{i}$ of $U_{i}$ such that the $T_{i}$ 's share the same level set and such that the level product $T_{0} \otimes \cdots \otimes T_{d-1}$ is monochromatic.
Theorem (Miliken 1981)
For every finite Borel colouring of the space $\mathcal{S}_{\infty}(U)$ of all strong subtrees of $U$ there is a strong subtree $T$ of $U$ such that the set $\mathcal{S}_{\infty}(T)$ of strong subtrees of $T$ is monochromatic.

A parametrized Ramsey theorem for perfect sets

## A parametrized Ramsey theorem for perfect sets

Theorem
For every countable Borel colouring of the product $\left[2^{\mathbb{N}}\right]^{2} \times[\mathbb{N}]^{\infty}$ with colours that are invariant under finite changes on the second coordinate, there is a perfect set $P \subseteq 2^{\mathbb{N}}$ and an infinite set $M \subseteq \mathbb{N}$ such that the product $[P]^{2} \times[M]^{\infty}$ is monochromatic.

## A parametrized Ramsey theorem for perfect sets

Theorem
For every countable Borel colouring of the product $\left[2^{\mathbb{N}}\right]^{2} \times[\mathbb{N}]^{\infty}$ with colours that are invariant under finite changes on the second coordinate, there is a perfect set $P \subseteq 2^{\mathbb{N}}$ and an infinite set $M \subseteq \mathbb{N}$ such that the product $[P]^{2} \times[M]^{\infty}$ is monochromatic.

## Example (Pol 1986)

Pol's compact set of Baire class-1 function is represented as

$$
\mathbb{P}=2^{<\mathbb{N}} \cup 2^{\mathbb{N}} \cup\{\infty\}
$$

where the points of the Cantor tree $2^{<\mathbb{N}}$ are isolated, the nodes of a branch of this tree converge to the corresponding member of $2^{\mathbb{N}}$ and $\infty$ is the point that compactifies the rest of the space.

Theorem (Todorcevic 1999)
Suppose $K$ is a separable compact set of Baire class-1 functions defined on some Polish space $X$. Let $D$ be a countable dense subset of $K$, and let $f$ be a point of $K$ that is not $G_{\delta}$ in $K$. Then there is a homeomorphic embedding

$$
\Phi: \mathbb{P} \rightarrow K
$$

such that $\Phi(\infty)=f$ and $\Phi\left[2^{<\mathbb{N}}\right] \subseteq D$.

## Theorem (Todorcevic 1999)

Suppose $K$ is a separable compact set of Baire class-1 functions defined on some Polish space $X$. Let $D$ be a countable dense subset of $K$, and let $f$ be a point of $K$ that is not $G_{\delta}$ in $K$. Then there is a homeomorphic embedding

$$
\Phi: \mathbb{P} \rightarrow K
$$

such that $\Phi(\infty)=f$ and $\Phi\left[2^{<\mathbb{N}}\right] \subseteq D$.
Theorem (Argyros-Dodos-Kanellopoulos 2008)
Every infinite-dimensional dual Banach space has an infinite-dimensional quotient with a Schauder basis.

## Unconditional sequences

## Unconditional sequences

Theorem (Gowers-Maurey, 1993)
There is a separable reflexive infinite-dimensional space $X$ with no infinite unconditional basic sequence.

## Unconditional sequences

Theorem (Gowers-Maurey, 1993)
There is a separable reflexive infinite-dimensional space $X$ with no infinite unconditional basic sequence.

Theorem (Argyros-LopezAbad-Todorcevic, 2006)
There is also a non-separable reflexive space $X$ with no infinite unconditional basic sequence.

## Unconditional sequences

Theorem (Gowers-Maurey, 1993)
There is a separable reflexive infinite-dimensional space $X$ with no infinite unconditional basic sequence.

Theorem (Argyros-LopezAbad-Todorcevic, 2006)
There is also a non-separable reflexive space $X$ with no infinite unconditional basic sequence.

Problem
Is there a reflexive space of density $>\aleph_{1}$ without an infinite unconditional basic sequence?

## Unconditional sequences

Theorem (Gowers-Maurey, 1993)
There is a separable reflexive infinite-dimensional space $X$ with no infinite unconditional basic sequence.

Theorem (Argyros-LopezAbad-Todorcevic, 2006)
There is also a non-separable reflexive space $X$ with no infinite unconditional basic sequence.

Problem
Is there a reflexive space of density $>\aleph_{1}$ without an infinite unconditional basic sequence?
Theorem (Argyros-Tolias, 2004)
There is a space $X$ of density $2^{\aleph_{0}}$ with no infinite unconditional basic sequence.

## Unconditional sequences

Theorem (Gowers-Maurey, 1993)
There is a separable reflexive infinite-dimensional space $X$ with no infinite unconditional basic sequence.

Theorem (Argyros-LopezAbad-Todorcevic, 2006)
There is also a non-separable reflexive space $X$ with no infinite unconditional basic sequence.

## Problem

Is there a reflexive space of density $>\aleph_{1}$ without an infinite unconditional basic sequence?
Theorem (Argyros-Tolias, 2004)
There is a space $X$ of density $2^{\aleph_{0}}$ with no infinite unconditional basic sequence.

## Problem

Is there a space of density $>2^{\aleph_{0}}$ without an infinite unconditional basic sequence?

The unconditional basic sequence problem, revisited

## The unconditional basic sequence problem, revisited

Problem

1. When does an infinite-dimensional normed space contain an infinite unconditional basic sequence?

## The unconditional basic sequence problem, revisited

## Problem

1. When does an infinite-dimensional normed space contain an infinite unconditional basic sequence?
2. When does an infinite normalized weakly null sequence in some normed space contains an infinite unconditional subsequence?

## The unconditional basic sequence problem, revisited

## Problem

1. When does an infinite-dimensional normed space contain an infinite unconditional basic sequence?
2. When does an infinite normalized weakly null sequence in some normed space contains an infinite unconditional subsequence?

Theorem (Johnson-Rosenthal 1972, Hagler-Johnson 1977) If the dual $X^{*}$ of some Banach space $X$ contains an infinite unconditional basic sequence then $X$ admits a quotient with an unconditional basis.

Free-set Property and Product-Ramsey Property

## Free-set Property and Product-Ramsey Property

## Definition

We say that an index-set $\Gamma$ has the free-set property, and write $\operatorname{FSP}(\Gamma)$, if every algebra $\mathcal{A}$ on $\Gamma$ with no more than countably many operations has an infinite free set, an infinite subset $X$ of $\Gamma$ such that no $x \in X$ is in the sub algebra of $\mathcal{A}$ generated by $X \backslash\{x\}$.

## Free-set Property and Product-Ramsey Property

## Definition

We say that an index-set $\Gamma$ has the free-set property, and write $\operatorname{FSP}(\Gamma)$, if every algebra $\mathcal{A}$ on $\Gamma$ with no more than countably many operations has an infinite free set, an infinite subset $X$ of $\Gamma$ such that no $x \in X$ is in the sub algebra of $\mathcal{A}$ generated by $X \backslash\{x\}$.

## Definition

We say that $\Gamma$ has the product-Ramsey property, and write $\operatorname{PRP}(\Gamma)$, if for every colouring

$$
\chi: \Gamma^{<\omega} \rightarrow 2
$$

of the set of all finite sequences of the index-set $\Gamma$ into 2 colours there exists an infinite sequence $\left(X_{i}\right)$ of 2-element subsets of $\Gamma$ or, equivalently, an infinite sequence $\left(X_{i}\right)$ of infinite subsets of $\Gamma$, such that $\chi$ is constant on $\prod_{i<n} X_{i}$ for all $n$.

Proposition
$\operatorname{PRP}(\Gamma)$ implies $\mathrm{FSP}(\Gamma)$ but not vice versa.

## Proposition

$\operatorname{PRP}(\Gamma)$ implies $\mathrm{FSP}(\Gamma)$ but not vice versa.
Theorem (Erdős-Hajnal 1966)
The free-set property fails for index-sets of cardinalities $<\aleph_{\omega}$.

## Proposition

$\operatorname{PRP}(\Gamma)$ implies FSP $(\Gamma)$ but not vice versa.
Theorem (Erdős-Hajnal 1966)
The free-set property fails for index-sets of cardinalities $<\aleph_{\omega}$.
Theorem (Koepke 1984, DiPrisco-Todorcevic 1999)
The following are equiconsistent:

1. $\operatorname{FSP}\left(\aleph_{\omega}\right)$.
2. $\operatorname{PRP}\left(\aleph_{\omega}\right)$.
3. There is an index set supporting a non-principal countably complete ultrafilter.

## Two-dimensional Product Ramsey Property

## Two-dimensional Product Ramsey Property

## Definition

We say that an index-set $\Gamma$ has the 2-dimensional polarized
Ramsey property) and write $\mathrm{PRP}_{2}(\Gamma)$, if for every colouring

$$
\chi:\left([\Gamma]^{2}\right)^{<\omega} \rightarrow 2
$$

of all finite sequences of 2-element subsets of the index-set $\Gamma$ into 2 colours there exist an infinite sequence $\left(X_{i}\right)$ of infinite subsets of $\Gamma$ such that $\chi$ is constant on $\prod_{i<n}\left[X_{i}\right]^{2}$ for all $n$.

## Two-dimensional Product Ramsey Property

## Definition

We say that an index-set $\Gamma$ has the 2-dimensional polarized Ramsey property) and write $\mathrm{PRP}_{2}(\Gamma)$, if for every colouring

$$
\chi:\left([\Gamma]^{2}\right)^{<\omega} \rightarrow 2
$$

of all finite sequences of 2-element subsets of the index-set $\Gamma$ into 2 colours there exist an infinite sequence $\left(X_{i}\right)$ of infinite subsets of $\Gamma$ such that $\chi$ is constant on $\prod_{i<n}\left[X_{i}\right]^{2}$ for all $n$.

Theorem (Shelah 1980)
$\mathrm{PRP}_{2}\left(\aleph_{\omega}\right)$ is consistent relative to the existence of infinitely many compact cardinals.

## Two-dimensional Product Ramsey Property

## Definition

We say that an index-set $\Gamma$ has the 2-dimensional polarized
Ramsey property) and write $\mathrm{PRP}_{2}(\Gamma)$, if for every colouring

$$
\chi:\left([\Gamma]^{2}\right)^{<\omega} \rightarrow 2
$$

of all finite sequences of 2-element subsets of the index-set $\Gamma$ into 2 colours there exist an infinite sequence $\left(X_{i}\right)$ of infinite subsets of $\Gamma$ such that $\chi$ is constant on $\prod_{i<n}\left[X_{i}\right]^{2}$ for all $n$.

Theorem (Shelah 1980)
$\mathrm{PRP}_{2}\left(\aleph_{\omega}\right)$ is consistent relative to the existence of infinitely many compact cardinals.

Question
What is the equiconsistency result here?

## Long weakly-null sequences

## Long weakly-null sequences

Theorem (Dodos-LopezAbad-Todorcevic 2011)
If a normalized weakly null sequence $\left(x_{i}\right)_{i \in I}$ is indexed by a set I that has the free-set property then it contains an infinite unconditional basic subsequence.

## Long weakly-null sequences

Theorem (Dodos-LopezAbad-Todorcevic 2011)
If a normalized weakly null sequence $\left(x_{i}\right)_{i \in I}$ is indexed by a set I that has the free-set property then it contains an infinite unconditional basic subsequence.

## Theorem (Dodos-LopezAbad-Todorcevic 2011)

Suppose that $\left(x_{\gamma}\right)_{\gamma \in \Gamma}$ is a normalized and separated sequence in some Banach space $X$ containing no $\ell_{1}$. If the index-set $\Gamma$ satisfies $\operatorname{PRP}_{2}(\Gamma)$ then there is an infinite sequence $\left(\beta_{n}, \gamma_{n}\right)$ of pairs of elements of $\Gamma$ such that the semi-normalized sequence $\left(x_{\beta_{n}}-x_{\gamma_{n}}\right)$ is unconditional.

## Corollary

It is consistent relative to the existence of a measurable cardinal that every normalized weakly null sequence of length at least $\aleph_{\omega}$ has an infinite unconditional subsequence.

## Corollary

It is consistent relative to the existence of a measurable cardinal that every normalized weakly null sequence of length at least $\aleph_{\omega}$ has an infinite unconditional subsequence.

Corollary
It is consistent relative to the existence of infinitely many compact cardinals that every Banach space of density at least $\aleph_{\omega}$ has an infinite unconditional basic sequence and an infinite-dimensional quotient with an unconditional basis.

## Corollary

It is consistent relative to the existence of a measurable cardinal that every normalized weakly null sequence of length at least $\aleph_{\omega}$ has an infinite unconditional subsequence.

Corollary
It is consistent relative to the existence of infinitely many compact cardinals that every Banach space of density at least $\aleph_{\omega}$ has an infinite unconditional basic sequence and an infinite-dimensional quotient with an unconditional basis.

Question
Can $\aleph_{\omega}$ be lowered to some $\aleph_{n}$ in both or one of these corollaries?

## Positional graphs and conditional weakly null sequences

## Positional graphs and conditional weakly null sequences

Fix an ordinal $\Gamma$.
For two elements $I$ and $J$ of $[\Gamma]^{<\omega}$, let $I<J$ denote the fact that every ordinal in I is smaller than any ordinal in J.

## Positional graphs and conditional weakly null sequences

Fix an ordinal $\Gamma$.
For two elements $I$ and $J$ of $[\Gamma]^{<\omega}$, let $I<J$ denote the fact that every ordinal in I is smaller than any ordinal in J. Let $I \sqsubseteq J$ denote the fact that $I$ is an initial segment of $J$.

## Positional graphs and conditional weakly null sequences

Fix an ordinal $\Gamma$.
For two elements $I$ and $J$ of $[\Gamma]^{<\omega}$, let $I<J$ denote the fact that every ordinal in I is smaller than any ordinal in J. Let $I \sqsubseteq J$ denote the fact that $I$ is an initial segment of $J$.
Definition
For an integer $n$, we say that two subsets $F$ and $G$ of $\Gamma$ are in $\Delta(n)$-position if there is a decomposition $F \cap G=I \cup J$ such that

## Positional graphs and conditional weakly null sequences

Fix an ordinal $\Gamma$.
For two elements $I$ and $J$ of $[\Gamma]^{<\omega}$, let $I<J$ denote the fact that every ordinal in I is smaller than any ordinal in J. Let $I \sqsubseteq J$ denote the fact that $I$ is an initial segment of $J$.
Definition
For an integer $n$, we say that two subsets $F$ and $G$ of $\Gamma$ are in $\Delta(n)$-position if there is a decomposition $F \cap G=I \cup J$ such that (1) $I \sqsubseteq F$ and $I \sqsubseteq G$,

## Positional graphs and conditional weakly null sequences

Fix an ordinal $\Gamma$.
For two elements $I$ and $J$ of $[\Gamma]^{<\omega}$, let $I<J$ denote the fact that every ordinal in I is smaller than any ordinal in J. Let $I \sqsubseteq J$ denote the fact that $I$ is an initial segment of $J$.
Definition
For an integer $n$, we say that two subsets $F$ and $G$ of $\Gamma$ are in $\Delta(n)$-position if there is a decomposition $F \cap G=I \cup J$ such that
(1) $I \sqsubseteq F$ and $I \sqsubseteq G$,
(2) $I<J$,

## Positional graphs and conditional weakly null sequences

Fix an ordinal $\Gamma$.
For two elements $I$ and $J$ of $[\Gamma]^{<\omega}$, let $I<J$ denote the fact that every ordinal in I is smaller than any ordinal in J. Let $I \sqsubseteq J$ denote the fact that $I$ is an initial segment of $J$.
Definition
For an integer $n$, we say that two subsets $F$ and $G$ of $\Gamma$ are in $\Delta(n)$-position if there is a decomposition $F \cap G=I \cup J$ such that
(1) $I \sqsubseteq F$ and $I \sqsubseteq G$,
(2) $I<J$,
(3) $|J| \leq n$.

## Positional graphs and conditional weakly null sequences

Fix an ordinal $\Gamma$.
For two elements $I$ and $J$ of $[\Gamma]^{<\omega}$, let $I<J$ denote the fact that every ordinal in I is smaller than any ordinal in J. Let $I \sqsubseteq J$ denote the fact that $I$ is an initial segment of $J$.
Definition
For an integer $n$, we say that two subsets $F$ and $G$ of $\Gamma$ are in $\Delta(n)$-position if there is a decomposition $F \cap G=I \cup J$ such that (1) $I \sqsubseteq F$ and $I \sqsubseteq G$,
(2) $I<J$,
(3) $|J| \leq n$.

For a family $\mathbf{V} \subseteq[\Gamma]^{<\omega}$, we associate the corresponding positional graph

$$
\mathcal{G}_{n}(\mathbf{V})=\left(\mathbf{V}, \Delta(n)^{c}\right)
$$

where we put an edge between two finite $F, G \in \mathbf{V}$ if they are not in the $\Delta(n)$-position. Let $\mathcal{G}_{n}(\Gamma)=\left([\Gamma]^{<\omega}, \Delta(n)^{c}\right)$.

## Question

For which $\Gamma$ and $\mathbf{V} \subseteq[\Gamma]^{<\omega}$, the positional graph $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic?

## Question

For which $\Gamma$ and $\mathbf{V} \subseteq[\Gamma]^{<\omega}$, the positional graph $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic?

Proposition
$\mathcal{G}_{0}\left(\omega_{1}\right)$ is countably chromatic but $\mathcal{G}_{0}\left(\omega_{2}\right)$ is not.

## Question

For which $\Gamma$ and $\mathbf{V} \subseteq[\Gamma]^{<\omega}$, the positional graph $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic?

Proposition
$\mathcal{G}_{0}\left(\omega_{1}\right)$ is countably chromatic but $\mathcal{G}_{0}\left(\omega_{2}\right)$ is not.
Definition
We say that a family $\mathbf{V}$ of finite subsets of $\Gamma$ is dense if for every infinite $A \subseteq \Gamma$ there is infinite $B \subseteq A$ such that $[B]^{<\omega} \subseteq \mathbf{V}$.

## Question

For which $\Gamma$ and $\mathbf{V} \subseteq[\Gamma]^{<\omega}$, the positional graph $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic?

Proposition
$\mathcal{G}_{0}\left(\omega_{1}\right)$ is countably chromatic but $\mathcal{G}_{0}\left(\omega_{2}\right)$ is not.
Definition
We say that a family $\mathbf{V}$ of finite subsets of $\Gamma$ is dense if for every infinite $A \subseteq \Gamma$ there is infinite $B \subseteq A$ such that $[B]^{<\omega} \subseteq \mathbf{V}$.

Question
For which $\Gamma$ there exist dense $\mathbf{V} \subseteq[\Gamma]^{<\omega}$ and an integer $n$ such that the corresponding positional graph $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic?

## Lemma (Key Fact 1)

If for some integer $n$ there is a dense family $\mathbf{V} \subseteq[\Gamma]^{<\omega}$ such that $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic, then there is a normalized weakly null sequence indexed by $\Gamma$ without infinite unconditional basic subsequence.

## Lemma (Key Fact 1)

If for some integer $n$ there is a dense family $\mathbf{V} \subseteq[\Gamma]^{<\omega}$ such that $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic, then there is a normalized weakly null sequence indexed by $\Gamma$ without infinite unconditional basic subsequence.

Fix an infinite subset $M$ of $\mathbb{N}$ such that $\min (M) \geq n$ and such that $\sum_{k<l}$ in $M \sqrt{\frac{k}{l}} \leq 1$.

## Lemma (Key Fact 1)

If for some integer $n$ there is a dense family $\mathbf{V} \subseteq[\Gamma]^{<\omega}$ such that $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic, then there is a normalized weakly null sequence indexed by $\Gamma$ without infinite unconditional basic subsequence.

Fix an infinite subset $M$ of $\mathbb{N}$ such that $\min (M) \geq n$ and such that $\sum_{k<l}$ in $M \sqrt{\frac{k}{l}} \leq 1$.
Since $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic, we can fix

$$
c: \mathbf{V} \rightarrow M
$$

such that:

## Lemma (Key Fact 1)

If for some integer $n$ there is a dense family $\mathbf{V} \subseteq[\Gamma]^{<\omega}$ such that $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic, then there is a normalized weakly null sequence indexed by $\Gamma$ without infinite unconditional basic subsequence.

Fix an infinite subset $M$ of $\mathbb{N}$ such that $\min (M) \geq n$ and such that $\sum_{k<l}$ in $M \sqrt{\frac{k}{l}} \leq 1$.
Since $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic, we can fix

$$
c: \mathbf{V} \rightarrow M
$$

such that:
(1) $c(F)=c(G)$ implies that $F$ and $G$ are in $\Delta(n)$-position and

## Lemma (Key Fact 1)

If for some integer $n$ there is a dense family $\mathbf{V} \subseteq[\Gamma]^{<\omega}$ such that $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic, then there is a normalized weakly null sequence indexed by $\Gamma$ without infinite unconditional basic subsequence.

Fix an infinite subset $M$ of $\mathbb{N}$ such that $\min (M) \geq n$ and such that $\sum_{k<1}$ in $M \sqrt{\frac{k}{l}} \leq 1$.
Since $\mathcal{G}_{n}(\mathbf{V})$ is countably chromatic, we can fix

$$
c: \mathbf{V} \rightarrow M
$$

such that:
(1) $c(F)=c(G)$ implies that $F$ and $G$ are in $\Delta(n)$-position and
(2) $c(F)=c(G)$ implies that $|F|=|G|$.

## Definition

We say that a finite block sequence $\left(s_{i}\right)_{i<k}$ of subsets of $\Gamma$ is c-special whenever

## Definition

We say that a finite block sequence $\left(s_{i}\right)_{i<k}$ of subsets of $\Gamma$ is c-special whenever
(a) $\bigcup_{i<j} s_{i} \in \mathbf{V}$ for every $j<k$.

## Definition

We say that a finite block sequence $\left(s_{i}\right)_{i<k}$ of subsets of $\Gamma$ is c-special whenever
(a) $\bigcup_{i<j} s_{i} \in \mathbf{V}$ for every $j<k$.
(b) $\left|s_{j}\right|=c\left(\bigcup_{i<j} s_{i}\right)$ for every $j<k$.

## Definition

We say that a finite block sequence $\left(s_{i}\right)_{i<k}$ of subsets of $\Gamma$ is c-special whenever
(a) $\bigcup_{i<j} s_{i} \in \mathbf{V}$ for every $j<k$.
(b) $\left|s_{j}\right|=c\left(\bigcup_{i<j} s_{i}\right)$ for every $j<k$.

This leads us to the collection of special functionals
$\mathcal{F}=\left\{\sum_{i<k}\left|s_{i}\right|^{-1 / 2} \mathbf{1}_{s_{i}}:\left(s_{i}\right)_{i<k}\right.$ is a finite $c$-special block-sequence $\}$.

## Definition

We say that a finite block sequence $\left(s_{i}\right)_{i<k}$ of subsets of $\Gamma$ is c-special whenever
(a) $\bigcup_{i<j} s_{i} \in \mathbf{V}$ for every $j<k$.
(b) $\left|s_{j}\right|=c\left(\bigcup_{i<j} s_{i}\right)$ for every $j<k$.

This leads us to the collection of special functionals
$\mathcal{F}=\left\{\sum_{i<k}\left|s_{i}\right|^{-1 / 2} \mathbf{1}_{s_{i}}:\left(s_{i}\right)_{i<k}\right.$ is a finite $c$-special block-sequence $\}$.
and the corresponding norm on $\mathrm{c}_{00}(\Gamma)$

$$
\|x\|_{\mathcal{F}}:=\max \left\{\|x\|_{\infty}, \quad \sup _{f \in \mathcal{F}}\langle x, f\rangle\right\}
$$

## Definition

We say that a finite block sequence $\left(s_{i}\right)_{i<k}$ of subsets of $\Gamma$ is c-special whenever
(a) $\bigcup_{i<j} s_{i} \in \mathbf{V}$ for every $j<k$.
(b) $\left|s_{j}\right|=c\left(\bigcup_{i<j} s_{i}\right)$ for every $j<k$.

This leads us to the collection of special functionals
$\mathcal{F}=\left\{\sum_{i<k}\left|s_{i}\right|^{-1 / 2} \mathbf{1}_{s_{i}}:\left(s_{i}\right)_{i<k}\right.$ is a finite $c$-special block-sequence $\}$.
and the corresponding norm on $\mathrm{c}_{00}(\Gamma)$

$$
\|x\|_{\mathcal{F}}:=\max \left\{\|x\|_{\infty}, \quad \sup _{f \in \mathcal{F}}\langle x, f\rangle\right\}
$$

## Lemma

The weakly null sequence $\left(e_{\gamma}\right)_{\gamma \in \Gamma}$ contains no infinite unconditional basic subsequence.

## Countably chromatic positional graphs

## Countably chromatic positional graphs

Fix a positive integer $n$ and for each $1 \leq k \leq n$ fix

$$
\rho^{k}:\left[\omega_{k}\right]^{2} \rightarrow \omega_{k-1}
$$

such that

1. $\rho^{k}\left(\alpha_{0}, \alpha_{2}\right) \neq \rho^{k}\left(\alpha_{1}, \alpha_{2}\right)$,
2. $\rho^{k}\left(\alpha_{0}, \alpha_{1}\right) \neq \rho^{k}\left(\alpha_{1}, \alpha_{2}\right)$,
3. $\rho^{k}\left(\alpha_{0}, \alpha_{2}\right) \leq \max \left\{\rho^{k}\left(\alpha_{0}, \alpha_{1}\right), \rho^{k}\left(\alpha_{1}, \alpha_{2}\right)\right\}$,
4. $\rho^{k}\left(\alpha_{0}, \alpha_{1}\right) \leq \max \left\{\rho^{k}\left(\alpha_{0}, \alpha_{2}\right), \rho^{k}\left(\alpha_{1}, \alpha_{2}\right)\right\}$.

## Countably chromatic positional graphs

Fix a positive integer $n$ and for each $1 \leq k \leq n$ fix

$$
\rho^{k}:\left[\omega_{k}\right]^{2} \rightarrow \omega_{k-1}
$$

such that

1. $\rho^{k}\left(\alpha_{0}, \alpha_{2}\right) \neq \rho^{k}\left(\alpha_{1}, \alpha_{2}\right)$,
2. $\rho^{k}\left(\alpha_{0}, \alpha_{1}\right) \neq \rho^{k}\left(\alpha_{1}, \alpha_{2}\right)$,
3. $\rho^{k}\left(\alpha_{0}, \alpha_{2}\right) \leq \max \left\{\rho^{k}\left(\alpha_{0}, \alpha_{1}\right), \rho^{k}\left(\alpha_{1}, \alpha_{2}\right)\right\}$,
4. $\rho^{k}\left(\alpha_{0}, \alpha_{1}\right) \leq \max \left\{\rho^{k}\left(\alpha_{0}, \alpha_{2}\right), \rho^{k}\left(\alpha_{1}, \alpha_{2}\right)\right\}$.

Now, for each $0 \leq k \leq n$, we define

$$
\varphi_{k}:\left[\omega_{n}\right]^{k+1} \rightarrow \omega_{n-k}
$$

by letting

1. $\varphi_{0}=$ the identity function on $\omega_{n}$,
2. $\varphi_{k}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right)=$

$$
\rho^{n-k+1}\left(\varphi_{k-1}\left(\alpha_{0}, \ldots, \alpha_{k-1}\right), \varphi_{k-1}\left(\alpha_{1}, \ldots, \alpha_{k}\right)\right)
$$

## Definition

Let $\mathbf{V}_{n}$ be the set of all finite subsets $v$ of $\omega_{n}$ such that:

## Definition

Let $\mathbf{V}_{n}$ be the set of all finite subsets $v$ of $\omega_{n}$ such that:
(a) $\varphi_{n} \upharpoonright[v]^{n+1}$ is min-dependent,

## Definition

Let $\mathbf{V}_{n}$ be the set of all finite subsets $v$ of $\omega_{n}$ such that:
(a) $\varphi_{n} \upharpoonright[v]^{n+1}$ is min-dependent,
(b) $\varphi_{i}^{(n)} \upharpoonright[v]^{i+1}$ is shift-increasing for every $i<n$.

## Definition

Let $\mathbf{V}_{n}$ be the set of all finite subsets $v$ of $\omega_{n}$ such that:
(a) $\varphi_{n} \upharpoonright[v]^{n+1}$ is min-dependent,
(b) $\varphi_{i}^{(n)} \upharpoonright[v]^{i+1}$ is shift-increasing for every $i<n$.

Lemma (Key Fact 2)
The graph $\mathcal{G}_{2 n-1}\left(\mathbf{V}_{n}\right)$ is countably chromatic.

## Definition

Let $\mathbf{V}_{n}$ be the set of all finite subsets $v$ of $\omega_{n}$ such that:
(a) $\varphi_{n} \upharpoonright[v]^{n+1}$ is min-dependent,
(b) $\varphi_{i}^{(n)} \upharpoonright[v]^{i+1}$ is shift-increasing for every $i<n$.

Lemma (Key Fact 2)
The graph $\mathcal{G}_{2 n-1}\left(\mathbf{V}_{n}\right)$ is countably chromatic.
Theorem (LopezAbad-Todorcevic 2013)
For every non-negative integer $n$ there is a normalized weakly null sequence $\left(e_{\gamma}\right)_{\gamma<\omega_{n}}$ without infinite unconditional basic subsequence.

## Definition

Let $\mathbf{V}_{n}$ be the set of all finite subsets $v$ of $\omega_{n}$ such that:
(a) $\varphi_{n} \upharpoonright[v]^{n+1}$ is min-dependent,
(b) $\varphi_{i}^{(n)} \upharpoonright[v]^{i+1}$ is shift-increasing for every $i<n$.

Lemma (Key Fact 2)
The graph $\mathcal{G}_{2 n-1}\left(\mathbf{V}_{n}\right)$ is countably chromatic.
Theorem (LopezAbad-Todorcevic 2013)
For every non-negative integer $n$ there is a normalized weakly null sequence $\left(e_{\gamma}\right)_{\gamma<\omega_{n}}$ without infinite unconditional basic subsequence.

## Question

Is there for every non-negative integer $n$ a reflexive space of density $\aleph_{n}$ without infinite unconditional basic sequence?

## Subsymmetric sequences

A sequence $\left(x_{n}\right)(n<\omega)$ in some Banach space $X$ is subsymmetric if there is a constant $C \geq 1$ such that for every pair $F$ and $G$ of finite subsets of $\omega$ of the same cardinality $k$ and every sequence $a_{n}(n<k)$ of scalars,

$$
\frac{1}{C}\left\|\sum_{n<k} a_{n} x_{F(n)}\right\| \leq\left\|\sum_{n<k} a_{n} x_{G(n)}\right\| \leq C\left\|\sum_{n<k} a_{n} x_{F(n)}\right\|
$$

## Subsymmetric sequences

A sequence $\left(x_{n}\right)(n<\omega)$ in some Banach space $X$ is subsymmetric if there is a constant $C \geq 1$ such that for every pair $F$ and $G$ of finite subsets of $\omega$ of the same cardinality $k$ and every sequence $a_{n}(n<k)$ of scalars,

$$
\frac{1}{C}\left\|\sum_{n<k} a_{n} x_{F(n)}\right\| \leq\left\|\sum_{n<k} a_{n} x_{G(n)}\right\| \leq C\left\|\sum_{n<k} a_{n} x_{F(n)}\right\|
$$

Theorem (Schreier, 1930)
There is an infinite weakly null sequence with no infinite subsymmetric subsequence

## Subsymmetric sequences

A sequence $\left(x_{n}\right)(n<\omega)$ in some Banach space $X$ is subsymmetric if there is a constant $C \geq 1$ such that for every pair $F$ and $G$ of finite subsets of $\omega$ of the same cardinality $k$ and every sequence $a_{n}(n<k)$ of scalars,

$$
\frac{1}{C}\left\|\sum_{n<k} a_{n} x_{F(n)}\right\| \leq\left\|\sum_{n<k} a_{n} x_{G(n)}\right\| \leq C\left\|\sum_{n<k} a_{n} x_{F(n)}\right\|
$$

Theorem (Schreier, 1930)
There is an infinite weakly null sequence with no infinite subsymmetric subsequence
Theorem (Tsirelson, 1972)
There is a reflexive infinite-dimensional Banach space $X$ with no infinite subsymmetric sequence.

Theorem (LopezAbad-Todorcevic, 2013)
Let $\Gamma$ be an infinite cardinal. The following are equivalent:
(1) $\Gamma \rightarrow(\omega)_{2}^{<\omega}$.
(2) Every separated normalized sequence $\left(x_{\alpha}\right)(\alpha<\Gamma)$ has a subsymmetric subsequence.
(3) There are no large compact and hereditary families on 「.

## Theorem (LopezAbad-Todorcevic, 2013)

Let $\Gamma$ be an infinite cardinal. The following are equivalent:
(1) $\Gamma \rightarrow(\omega)_{2}^{<\omega}$.
(2) Every separated normalized sequence $\left(x_{\alpha}\right)(\alpha<\Gamma)$ has a subsymmetric subsequence.
(3) There are no large compact and hereditary families on $\Gamma$.

## Remark

Recall that a family $\mathcal{F}$ of subsets of $\Gamma$ is compact if its pointwise closure consists only of finite subsets of $\Gamma$
Recall also that such an $\mathcal{F}$ is hereditary if it is closed under taking subsets.
We say that a family $\mathcal{F}$ of subsets of $\Gamma$ is large if every infinite sunsets of $\Gamma$ contains elements of $\mathcal{F}$ of arbitrary large finite cardinality.

Theorem (Argyros-Motakis, 2014)
There is a Banach space $X$ of density $2^{\aleph_{0}}$ with no infinite subsymmetric sequence.

Theorem (Argyros-Motakis, 2014)
There is a Banach space $X$ of density $2^{\aleph_{0}}$ with no infinite subsymmetric sequence.

Question
Is there a Banach space $X$ of density $>2^{\aleph_{0}}$ with no infinite subsymmetric sequence?

Theorem (Argyros-Motakis, 2014)
There is a Banach space $X$ of density $2^{\aleph_{0}}$ with no infinite subsymmetric sequence.

Question
Is there a Banach space $X$ of density $>2^{\aleph_{0}}$ with no infinite subsymmetric sequence?

Question
What is the minimal cardinal $\Gamma$ with the property that every Banach space $X$ of density at least $\Gamma$ must contain an infinite subsymmetric sequence?

Theorem (Brech-LopezAbad-Todorcevic, 2014)
There is a Banach space $X$ of density bigger than the first $\omega$-Mahlo cardinal with no infinite subsymmetric sequence.

Theorem (Brech-LopezAbad-Todorcevic, 2014)
There is a Banach space $X$ of density bigger than the first $\omega$-Mahlo cardinal with no infinite subsymmetric sequence.

## Definition

Let $\mathcal{B}$ and $\mathcal{C}$ be two families of subsets of some index-set $\Gamma$ and let $\mathcal{H}$ be a family of subsets of $\omega$.
We say that $\mathcal{C}$ is $(\mathcal{B}, \mathcal{H})$-large if every infinite sequence $\left(t_{k}\right)$ of elements of $\mathcal{B}$ has an infinite subsequence $\left(t_{k}\right)_{k \in M}$ such that $\bigcup_{k \in v} t_{k} \in \mathcal{C}$ for all $v \in \mathcal{H} \upharpoonright M$.
We say that $\mathcal{C}$ is $\mathcal{B}$-large if it is $(\mathcal{B}, \mathcal{S})$-large, where $\mathcal{S}$ is the Schreier family on $\omega$.

## Definition

A sequence $\left(\mathcal{F}_{n}\right)(n<\omega)$ of families of subsets of some index set $\Gamma$ is a CL-sequence (sequence of consecutively large families) whenever $\mathcal{F}_{0}=[\Gamma] \leq 1$ and for every $n<\omega$ :

1. $\mathcal{F}_{n}$ is compact and hereditary,
2. $\mathcal{F}_{n} \subseteq \mathcal{F}_{n+1}$,
3. $\mathcal{F}_{n+1}$ is $\mathcal{F}_{n}$-large.

## Definition

A sequence $\left(\mathcal{F}_{n}\right)(n<\omega)$ of families of subsets of some index set $\Gamma$ is a CL-sequence (sequence of consecutively large families) whenever $\mathcal{F}_{0}=[\Gamma] \leq 1$ and for every $n<\omega$ :

1. $\mathcal{F}_{n}$ is compact and hereditary,
2. $\mathcal{F}_{n} \subseteq \mathcal{F}_{n+1}$,
3. $\mathcal{F}_{n+1}$ is $\mathcal{F}_{n}$-large.

Theorem (Brech-LopezAbad-Todorcevic, 2014)
If some cardinal $\Gamma$ supports a CL-sequence then there is a Banach space $X$ of density $\Gamma$ with no infinite subsymmetric sequence.

## Constructing CL-sequences

## Lemma (Key 1)

Suppose $T$ is a tree such that

1. There is a CL-sequence on chains of $T$,
2. There is a CL-sequence on the set of immediate successors of every node of $T$.
Then there is a CL-sequence on $T$.

## Constructing CL-sequences

## Lemma (Key 1)

Suppose $T$ is a tree such that

1. There is a CL-sequence on chains of $T$,
2. There is a CL-sequence on the set of immediate successors of every node of $T$.
Then there is a CL-sequence on $T$.

## Question

For which cardinals $\Gamma$ do we have a tree $T$ of cardinality $\Gamma$ satisfying the two conditions?

## Definition

Recall that a C-sequence on a cardinal $\Gamma$ is a sequence
$\vec{C}=\left(C_{\gamma}: \gamma \in \Gamma\right)$ such that $C_{\gamma}$ is a closed and unbounded subset of $\gamma$ for all $\gamma \in \Gamma$.

## Definition

Recall that a C-sequence on a cardinal $\Gamma$ is a sequence $\vec{C}=\left(C_{\gamma}: \gamma \in \Gamma\right)$ such that $C_{\gamma}$ is a closed and unbounded subset of $\gamma$ for all $\gamma \in \Gamma$.
A subset $C$ of $\Gamma$ is a limit of a subsequence $\left(C_{\gamma_{n}}: n<\omega\right)$ of $\vec{C}$ if every initial segment of $C$ is an initial segment of all but finitely many $C_{\gamma_{n}}$ 's.

## Definition

Recall that a $\mathbf{C}$-sequence on a cardinal $\Gamma$ is a sequence $\vec{C}=\left(C_{\gamma}: \gamma \in \Gamma\right)$ such that $C_{\gamma}$ is a closed and unbounded subset of $\gamma$ for all $\gamma \in \Gamma$.
A subset $C$ of $\Gamma$ is a limit of a subsequence $\left(C_{\gamma_{n}}: n<\omega\right)$ of $\vec{C}$ if every initial segment of $C$ is an initial segment of all but finitely many $C_{\gamma_{n}}$ 's.
A C-sequence $\vec{C}=\left(C_{\gamma}: \gamma \in \Gamma\right)$ is small if there is a function $f: \Gamma \rightarrow \Gamma$ such that for every limit $C$ of a subsequence of $\vec{C}$ we have that $\operatorname{otp}(C)<f(\min (C))$.

## Definition

Recall that a $\mathbf{C}$-sequence on a cardinal $\Gamma$ is a sequence
$\vec{C}=\left(C_{\gamma}: \gamma \in \Gamma\right)$ such that $C_{\gamma}$ is a closed and unbounded subset of $\gamma$ for all $\gamma \in \Gamma$.
A subset $C$ of $\Gamma$ is a limit of a subsequence $\left(C_{\gamma_{n}}: n<\omega\right)$ of $\vec{C}$ if every initial segment of $C$ is an initial segment of all but finitely many $C_{\gamma_{n}}$ 's.
A C-sequence $\vec{C}=\left(C_{\gamma}: \gamma \in \Gamma\right)$ is small if there is a function $f: \Gamma \rightarrow \Gamma$ such that for every limit $C$ of a subsequence of $\vec{C}$ we have that $\operatorname{otp}(C)<f(\min (C))$.
Lemma (Key 2)
Suppose that $\Gamma$ is a regular cardinal with the property that every smaller ordinal supports a CL-sequence.

## Definition

Recall that a $\mathbf{C}$-sequence on a cardinal $\Gamma$ is a sequence
$\vec{C}=\left(C_{\gamma}: \gamma \in \Gamma\right)$ such that $C_{\gamma}$ is a closed and unbounded subset of $\gamma$ for all $\gamma \in \Gamma$.
A subset $C$ of $\Gamma$ is a limit of a subsequence $\left(C_{\gamma_{n}}: n<\omega\right)$ of $\vec{C}$ if every initial segment of $C$ is an initial segment of all but finitely many $C_{\gamma_{n}}$ 's.
A C-sequence $\vec{C}=\left(C_{\gamma}: \gamma \in \Gamma\right)$ is small if there is a function $f: \Gamma \rightarrow \Gamma$ such that for every limit $C$ of a subsequence of $\vec{C}$ we have that $\operatorname{otp}(C)<f(\min (C))$.
Lemma (Key 2)
Suppose that $\Gamma$ is a regular cardinal with the property that every smaller ordinal supports a CL-sequence.
If $\Gamma$ supports a small $C$-sequence then then there is a tree $T$ on $\Gamma$ which has a CL-sequence on its chains.

## Definition

Recall that a $\mathbf{C}$-sequence on a cardinal $\Gamma$ is a sequence
$\vec{C}=\left(C_{\gamma}: \gamma \in \Gamma\right)$ such that $C_{\gamma}$ is a closed and unbounded subset of $\gamma$ for all $\gamma \in \Gamma$.
A subset $C$ of $\Gamma$ is a limit of a subsequence $\left(C_{\gamma_{n}}: n<\omega\right)$ of $\vec{C}$ if every initial segment of $C$ is an initial segment of all but finitely many $C_{\gamma_{n}}$ 's.
A C-sequence $\vec{C}=\left(C_{\gamma}: \gamma \in \Gamma\right)$ is small if there is a function $f: \Gamma \rightarrow \Gamma$ such that for every limit $C$ of a subsequence of $\vec{C}$ we have that $\operatorname{otp}(C)<f(\min (C))$.
Lemma (Key 2)
Suppose that $\Gamma$ is a regular cardinal with the property that every smaller ordinal supports a CL-sequence.
If $\Gamma$ supports a small $C$-sequence then then there is a tree $T$ on $\Gamma$ which has a CL-sequence on its chains.
If moreover, $\Gamma$ is inaccessible then there is a CL-sequence on immediate successors of every node of $T$ and therefore, there is a $C L$-sequence on $\Gamma$.

Define

$$
\rho_{0}:[\Gamma]^{2} \rightarrow \mathcal{P}(\Gamma)^{<\omega}
$$

recursively by

$$
\rho_{0}(\alpha, \beta)=\left\langle C_{\beta} \cap \alpha\right\rangle \frown \rho_{0}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right)
$$

with the initial condition $\rho_{0}(\alpha, \alpha)=\emptyset$.

Define

$$
\rho_{0}:[\Gamma]^{2} \rightarrow \mathcal{P}(\Gamma)^{<\omega}
$$

recursively by

$$
\rho_{0}(\alpha, \beta)=\left\langle C_{\beta} \cap \alpha\right\rangle \frown \rho_{0}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right)
$$

with the initial condition $\rho_{0}(\alpha, \alpha)=\emptyset$.
Definition
To a given C-sequence $C_{\alpha}(\alpha<\Gamma)$ one associates the notion of a walk from an ordinal $\beta<\Gamma$ to a smaller ordinal $\alpha$ :

$$
\beta_{0}(\alpha)=\beta>\beta_{1}(\alpha)>\cdots>\beta_{n}(\alpha)=n,
$$

where $n=\left|\rho_{0}(\alpha, \beta)\right|$ and where

$$
\beta_{i+1}(\alpha)=\min \left(C_{\beta_{i}(\alpha)} \backslash \alpha\right)
$$

## The tree $T\left(\rho_{0}\right)$

Let

$$
T\left(\rho_{0}\right)=\left\{\rho_{0}(\cdot, \beta) \upharpoonright \alpha: \alpha \leq \beta<\Gamma\right\} .
$$

We consider $T\left(\rho_{0}\right)$ as a tree ordered by end-extension.

## The tree $T\left(\rho_{0}\right)$

Let

$$
T\left(\rho_{0}\right)=\left\{\rho_{0}(\cdot, \beta) \upharpoonright \alpha: \alpha \leq \beta<\Gamma\right\} .
$$

We consider $T\left(\rho_{0}\right)$ as a tree ordered by end-extension.

## Lemma

For $\alpha<\beta<\gamma<\Gamma$, we have

1. $\rho_{0}(\alpha, \beta)=\rho_{0}(\alpha, \gamma)$ implies $\rho_{0}(\cdot, \beta) \upharpoonright \alpha=\rho_{0}(\cdot, \gamma) \upharpoonright \alpha$,

## The tree $T\left(\rho_{0}\right)$

Let

$$
T\left(\rho_{0}\right)=\left\{\rho_{0}(\cdot, \beta) \upharpoonright \alpha: \alpha \leq \beta<\Gamma\right\}
$$

We consider $T\left(\rho_{0}\right)$ as a tree ordered by end-extension.

## Lemma

For $\alpha<\beta<\gamma<\Gamma$, we have

1. $\rho_{0}(\alpha, \beta)=\rho_{0}(\alpha, \gamma)$ implies $\rho_{0}(\cdot, \beta) \upharpoonright \alpha=\rho_{0}(\cdot, \gamma) \upharpoonright \alpha$,
2. $\left|\rho_{0}(\alpha, \beta)\right|=\left|\rho_{0}(\alpha, \gamma)\right|=n$ implies $C_{\gamma_{i}(\alpha)} \sqsubset C_{\gamma_{i}(\beta)}$ for some $j<n$,

## The tree $T\left(\rho_{0}\right)$

Let

$$
T\left(\rho_{0}\right)=\left\{\rho_{0}(\cdot, \beta) \upharpoonright \alpha: \alpha \leq \beta<\Gamma\right\}
$$

We consider $T\left(\rho_{0}\right)$ as a tree ordered by end-extension.

## Lemma

For $\alpha<\beta<\gamma<\Gamma$, we have

1. $\rho_{0}(\alpha, \beta)=\rho_{0}(\alpha, \gamma)$ implies $\rho_{0}(\cdot, \beta) \upharpoonright \alpha=\rho_{0}(\cdot, \gamma) \upharpoonright \alpha$,
2. $\left|\rho_{0}(\alpha, \beta)\right|=\left|\rho_{0}(\alpha, \gamma)\right|=n$ implies $C_{\gamma_{i}(\alpha)} \sqsubset C_{\gamma_{i}(\beta)}$ for some $j<n$,
3. there is unique $j$ such that $\gamma_{i}(\alpha)=\gamma_{i}(\beta)$ for all $i \leq j$ and $\alpha \leq \gamma_{j+1}(\alpha)<\beta$.
