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Structure in weakly null sequences

Theorem (Bessage-Pelczynski, 1958)

For every ε > 0, every normalized weakly null sequence (xn)
contains an infinite (1 + ε)-basic subsequence (xni ).

Theorem (Maurey-Rosenthal, 1977)

(1) For every ε > 0 and every α < ωω, every normalized weakly
null sequence in C(α + 1) has a (2 + ε)-unconditional
subsequence.

(2) For every ε > 0 every normalized weakly null sequence in
C(ωω + 1) has a (4 + ε)-unconditional subsequence.

(3) There is a normalized weakly null sequence in C(ωω
2

+ 1) with
no unconditional subsequence.
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Finite and partial unconditionality

Theorem (Odell 1993, Dodos-LopezAbad-Todorcevic, 2011)

Let k a positive integer and ε > 0. Suppose that for every i < k
we are given a normalized weakly null sequence (x i

n)∞n=0 in some
Banach space X . Then, there exists an infinite set M of integers
such that for every {n0 < · · · < nk−1} ⊆ M the k-sequence
(x i

ni
)i<k is (1 + ε)-unconditional.

Theorem (Arvanitakis 2006, Gasparis-Odell-Wahl, 2006
Todorcevic 2005)

Suppose that (xn) is a normalized weakly-null sequence in `∞(Γ)
with the property that

inf{|xn(γ)| : n ∈ N, γ ∈ Γ} > 0.

Then (xn) contains an infinite unconditional basic subsequence.
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Theorem (Elton 1978)

For every 0 < ε ≤ 1 there is a constant C (ε) ≥ 1 such that every
normalized weakly null sequence (xn) has an infinite subsequence
(xni ) such that

‖
∑
i∈I

aixni‖ ≤ C (ε)‖
∑
j∈J

ajxnj‖

for every pair I ⊆ J of subsets of N and every choice (aj : j ∈ J) of
scalars such that ε ≤ |aj | ≤ 1 for all j ∈ J.

Problem (Elton unconditionality constant problem)

Is sup0<ε≤1 C (ε) <∞?
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Nash-Willimas’s theory of fronts and barriers

Definition (Nash-Williams 1965)

For a family F of finite subsets of N we say that:

1. F is thin whenever s 6v t for s 6= t in F .
2. F is a front if F is thin and if every infinite subset of N

contains an initial segment in F .
3. F is a barrier if F is a front and if s 6⊆ t for s 6= t in F .

Theorem (Nash-Williams 1965)

Suppose H = H0 ∪ · · · ∪ Hl is a finite partition of a thin family H
of finite subsets of N. Then there is an infinite set M ⊆ N and
i < l such that H � M ⊆ Hi , where

H � M = {s ∈ H : s ⊆ M}.
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Theorem (Pudlak-Rödl 1982)

For every front B on N and every mapping f : B → N there exist
an infinite subset M of N and a mapping ϕ : B � M → [N]<∞ such
that:

(1) ϕ is an internal mapping, i.e., ϕ(s) ⊆ s for all ∈ B � M,

(2) the range of ϕ is a thin family, i.e., ϕ(s) 6v ϕ(t) for all
s, t ∈ B � M such that ϕ(s) 6= ϕ(t), and

(3) for s, t ∈ B � M, f (s) = f (t) iff ϕ(s) = ϕ(t).

Remark
There can be only one mapping ϕ : B � M → [N]<∞ satisfying the
conditions (1), (2) and (3) from the Theorem on a given infinite
subset M of N.
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w ∗-null sequences and the quotient problem

Theorem (Josefson 1975, Nissenzweig 1975)

For every infinite-dimensional normed space X there is a
normalized w∗-null sequence (fn)∞n=0 in X ∗.

Theorem (Johnson-Rosenthal 1972)

Every separable infinite-dimensional space has an
infinite-dimensional quotient with a Schauder basis.

Theorem (Todorcevic 2006)

Suppose that a Banach space X has density < m and that its dual
X ∗ has an uncountable normalized w∗-null sequence. Then X has
a quotient with a Schauder basis of length ω1.

Remark
Recall that m is the Baire-category number of the class of compact
Hausdorff spaces satisfying the countable chain condition.
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P-ideal dichotomy, PID

Definition
An ideal on an index set S is simply a family I of subsets of S
closed under taking subsets and finite unions of its elements.

We shall consider only ideals of countable subsets of S and
assume that all our ideals include the ideal of all finite subsets of S .

We say that such an ideal I is a P-ideal if for every sequence (xn)
in I there is y ∈ I such that xn \ y is finite for all n.

Example

1. The ideal [S ]≤ℵ0 of all countable subsets of S is a P-ideal.

2. Given a family F of cardinality < b the ideal

F⊥ = {x ∈ [S ]≤ℵ0 : (∀Y ∈ F)|x ∩ Y | < ℵ0}

is a P-ideal.
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Definition
The P-ideal dichotomy is the statement that for every P-ideal I
on some index set S either

(1) there is uncountable T ⊆ S such that [T ]ℵ0 ⊆ I, or

(2) there is a countable decomposition S =
⋃

n<ω Sn such that
Sn ⊥ I for all n.

Remark

1. It is known that PID follows from the strong Baire category
principles such as mm > ω1.

2. It is also known that PID is consistent with GCH.

3. It is known that PID implies, for example, the Souslin
Hypothesis.
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Theorem (Todorcevic 2006)

Assume PID. Let X be a nonseparable Banach space of density
< p. Then X ∗ has an uncountable normalized w∗-null sequence.

Remark
Recall that p is the minimal cardinality of a family F of infinite
subsets of N such that the intersection of every subfamily of F is
infinite but there is no infinite set M ⊆ N such that M \ N is finite
for all N ∈ F .

Corollary (Todorcevic 2006)

Assume PID and m > ω1. Then every non-separable Banach space
has un uncountable biorthogonal system.

Corollary (Todorcevic 2006)

Assume PID and m > ω1. Then every non-separable Banach space
has closed convex subset supported by all of its points.
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PID and Asplund spaces

Definition
An Asplund space, or a strong differentiability space is a
Banach space X with the property that every continuous convex
function f : U → R on an open convex domain U ⊆ X is Fréchet
differentiable in every point of a dense Gδ-subset of U.

Remark
This is a well studied class of spaces with many pleasant properties
such as the projectional resolution of the identity of its dual
space, the norm-fragmentability of the w∗-topology of the dual
ball, separability of the dual of every separable subspace, etc.
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Theorem (Todorcevic 1989)

If b = ω1 then there is an Asplund space with no uncountable
ε-biorthogonal system for any 0 ≤ ε < 1.

Recall that b is the minimal cardinality of a subset of NN that is
unbounded in the ordering of eventual dominance.

Theorem (Brech-Todorcevic 2012)

Assume PID. Let X be nonseparable Asplund space of density < b.
Then X ∗ has an uncountable normalized w∗-null sequence.

Corollary

Assume PID. The following are equivalent:

1. Every non-separable Asplund space has an uncountable
ε-biorthogonal system for every ε > 0.

2. b = ℵ2.
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Weakly null sequences on Polish spaces

Theorem (Mycielski 1964)

Suppose Mn ⊆ X kn(n = 0, 1, . . .) is a sequence of subsets of the
finite powers of some fixed Polish space X and suppose that Mn is
a meager subset of X kn for all n. Then there is a perfect set
P ⊆ X such that [P]kn ∩Mn = ∅ for all n.

Theorem (Argyros-Dodos-Kanellopoulos 2008)

Suppose X is a Polish space and that (fa)a∈2N is a bounded
sequence in `∞(X ) such that (x , a) 7→ fa(x) is a Borel function
from X × 2N into R and that

|{a ∈ 2N : fa(x) 6= 0}| ≤ ℵ0 for all x ∈ X .

Then there is a perfect set P ⊆ 2N such that the sequence (fa)a∈P
is 1-unconditional.
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Ramsey Theory of trees

Definition
Fix a rooted finitely branching tree U with no terminal nodes. A
subtree T of U will be called a strong subtree if the levels of T
are subsets of the levels of U and if for every t ∈ T every
immediate successor of t in U is extended by a unique immediate
successor of t in T .

Theorem (Halpern-Läuchli 1966)

For every sequence U0, ...,Ud−1 of rooted finitelly branching trees
with no terminal nodes and for every finite colouring of the level
product U0 ⊗ · · · ⊗ Ud−1, we can find for each i < d a strong
subtree Ti of Ui such that the Ti ’s share the same level set and
such that the level product T0 ⊗ · · · ⊗ Td−1 is monochromatic.

Theorem (Miliken 1981)

For every finite Borel colouring of the space S∞(U) of all strong
subtrees of U there is a strong subtree T of U such that the set
S∞(T ) of strong subtrees of T is monochromatic.
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A parametrized Ramsey theorem for perfect sets

Theorem
For every countable Borel colouring of the product [2N]2 × [N]∞

with colours that are invariant under finite changes on the second
coordinate, there is a perfect set P ⊆ 2N and an infinite set M ⊆ N
such that the product [P]2 × [M]∞ is monochromatic.

Example (Pol 1986)

Pol’s compact set of Baire class-1 function is represented as

P = 2<N ∪ 2N ∪ {∞},

where the points of the Cantor tree 2<N are isolated, the nodes of
a branch of this tree converge to the corresponding member of 2N

and ∞ is the point that compactifies the rest of the space.
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Theorem (Todorcevic 1999)

Suppose K is a separable compact set of Baire class-1 functions
defined on some Polish space X . Let D be a countable dense
subset of K , and let f be a point of K that is not Gδ in K . Then
there is a homeomorphic embedding

Φ : P→ K

such that Φ(∞) = f and Φ[2<N] ⊆ D.

Theorem (Argyros-Dodos-Kanellopoulos 2008)

Every infinite-dimensional dual Banach space has an
infinite-dimensional quotient with a Schauder basis.
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Unconditional sequences

Theorem (Gowers-Maurey, 1993)

There is a separable reflexive infinite-dimensional space X with no
infinite unconditional basic sequence.

Theorem (Argyros-LopezAbad-Todorcevic, 2006)

There is also a non-separable reflexive space X with no infinite
unconditional basic sequence.

Problem
Is there a reflexive space of density > ℵ1 without an infinite
unconditional basic sequence?

Theorem (Argyros-Tolias, 2004)

There is a space X of density 2ℵ0 with no infinite unconditional
basic sequence.

Problem
Is there a space of density > 2ℵ0 without an infinite unconditional
basic sequence?
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The unconditional basic sequence problem, revisited

Problem

1. When does an infinite-dimensional normed space contain an
infinite unconditional basic sequence?

2. When does an infinite normalized weakly null sequence in
some normed space contains an infinite unconditional
subsequence?

Theorem (Johnson-Rosenthal 1972, Hagler-Johnson 1977)

If the dual X ∗ of some Banach space X contains an infinite
unconditional basic sequence then X admits a quotient with an
unconditional basis.
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Free-set Property and Product-Ramsey Property

Definition
We say that an index-set Γ has the free-set property, and write
FSP(Γ), if every algebra A on Γ with no more than countably
many operations has an infinite free set, an infinite subset X of Γ
such that no x ∈ X is in the sub algebra of A generated by
X \ {x}.

Definition
We say that Γ has the product-Ramsey property, and write
PRP(Γ), if for every colouring

χ : Γ<ω → 2

of the set of all finite sequences of the index-set Γ into 2 colours
there exists an infinite sequence (Xi ) of 2-element subsets of Γ or,
equivalently, an infinite sequence (Xi ) of infinite subsets of Γ, such
that χ is constant on

∏
i<n Xi for all n.
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Proposition

PRP(Γ) implies FSP(Γ) but not vice versa.

Theorem (Erdős-Hajnal 1966)

The free-set property fails for index-sets of cardinalities < ℵω.

Theorem (Koepke 1984, DiPrisco-Todorcevic 1999)

The following are equiconsistent:

1. FSP(ℵω).

2. PRP(ℵω).

3. There is an index set supporting a non-principal countably
complete ultrafilter.
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Two-dimensional Product Ramsey Property

Definition
We say that an index-set Γ has the 2-dimensional polarized
Ramsey property) and write PRP2(Γ), if for every colouring

χ : ([Γ]2)<ω → 2

of all finite sequences of 2-element subsets of the index-set Γ into
2 colours there exist an infinite sequence (Xi ) of infinite subsets of
Γ such that χ is constant on

∏
i<n[Xi ]

2 for all n.

Theorem (Shelah 1980)

PRP2(ℵω) is consistent relative to the existence of infinitely many
compact cardinals.

Question
What is the equiconsistency result here?
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Long weakly-null sequences

Theorem (Dodos-LopezAbad-Todorcevic 2011)

If a normalized weakly null sequence (xi )i∈I is indexed by a set I
that has the free-set property then it contains an infinite
unconditional basic subsequence.

Theorem (Dodos-LopezAbad-Todorcevic 2011)

Suppose that (xγ)γ∈Γ is a normalized and separated sequence in
some Banach space X containing no `1. If the index-set Γ satisfies
PRP2(Γ) then there is an infinite sequence (βn, γn) of pairs of
elements of Γ such that the semi-normalized sequence (xβn − xγn)
is unconditional.
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Corollary

It is consistent relative to the existence of a measurable cardinal
that every normalized weakly null sequence of length at least ℵω
has an infinite unconditional subsequence.

Corollary

It is consistent relative to the existence of infinitely many compact
cardinals that every Banach space of density at least ℵω has an
infinite unconditional basic sequence and an infinite-dimensional
quotient with an unconditional basis.

Question
Can ℵω be lowered to some ℵn in both or one of these corollaries?
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Positional graphs and conditional weakly null sequences

Fix an ordinal Γ.
For two elements I and J of [Γ]<ω, let I < J denote the fact that
every ordinal in I is smaller than any ordinal in J.
Let I v J denote the fact that I is an initial segment of J.

Definition
For an integer n, we say that two subsets F and G of Γ are in
∆(n)-position if there is a decomposition F ∩ G = I ∪ J such that

(1) I v F and I v G ,

(2) I < J,

(3) |J| ≤ n.

For a family V ⊆ [Γ]<ω, we associate the corresponding positional
graph

Gn(V) = (V, ∆(n)c),

where we put an edge between two finite F ,G ∈ V if they are not
in the ∆(n)-position. Let Gn(Γ) = ([Γ]<ω, ∆(n)c).
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Question
For which Γ and V ⊆ [Γ]<ω, the positional graph Gn(V) is
countably chromatic?

Proposition

G0(ω1) is countably chromatic but G0(ω2) is not.

Definition
We say that a family V of finite subsets of Γ is dense if for every
infinite A ⊆ Γ there is infinite B ⊆ A such that [B]<ω ⊆ V.

Question
For which Γ there exist dense V ⊆ [Γ]<ω and an integer n such that
the corresponding positional graph Gn(V) is countably chromatic?
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Lemma (Key Fact 1)

If for some integer n there is a dense family V ⊆ [Γ]<ω such that
Gn(V) is countably chromatic, then there is a normalized weakly
null sequence indexed by Γ without infinite unconditional basic
subsequence.

Fix an infinite subset M of N such that min(M) ≥ n and such that∑
k<l in M

√
k
l ≤ 1.

Since Gn(V) is countably chromatic, we can fix

c : V→ M

such that:

(1) c(F ) = c(G ) implies that F and G are in ∆(n)-position and

(2) c(F ) = c(G ) implies that |F | = |G |.
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Definition
We say that a finite block sequence (si )i<k of subsets of Γ is
c-special whenever

(a)
⋃

i<j si ∈ V for every j < k .

(b) |sj | = c(
⋃

i<j si ) for every j < k .

This leads us to the collection of special functionals

F = {
∑
i<k

|si |−1/21si : (si )i<k is a finite c-special block-sequence}.

and the corresponding norm on c00(Γ)

‖x‖F := max{‖x‖∞, sup
f ∈F
〈x , f 〉}.

Lemma
The weakly null sequence (eγ)γ∈Γ contains no infinite
unconditional basic subsequence.
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Countably chromatic positional graphs

Fix a positive integer n and for each 1 ≤ k ≤ n fix

ρk : [ωk ]2 → ωk−1

such that

1. ρk(α0, α2) 6= ρk(α1, α2),

2. ρk(α0, α1) 6= ρk(α1, α2),

3. ρk(α0, α2) ≤ max{ρk(α0, α1), ρk(α1, α2)},
4. ρk(α0, α1) ≤ max{ρk(α0, α2), ρk(α1, α2)}.

Now, for each 0 ≤ k ≤ n, we define

ϕk : [ωn]k+1 → ωn−k

by letting

1. ϕ0 = the identity function on ωn,

2. ϕk(α0, α1, ..., αk) =
ρn−k+1(ϕk−1(α0, ..., αk−1), ϕk−1(α1, ..., αk)).
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Definition
Let Vn be the set of all finite subsets v of ωn such that:

(a) ϕn � [v ]n+1 is min-dependent,

(b) ϕ
(n)
i � [v ]i+1 is shift-increasing for every i < n.

Lemma (Key Fact 2)

The graph G2n−1(Vn) is countably chromatic.

Theorem (LopezAbad-Todorcevic 2013)

For every non-negative integer n there is a normalized weakly null
sequence (eγ)γ<ωn without infinite unconditional basic
subsequence.

Question
Is there for every non-negative integer n a reflexive space of density
ℵn without infinite unconditional basic sequence?
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ℵn without infinite unconditional basic sequence?



Subsymmetric sequences

A sequence (xn) (n < ω) in some Banach space X is
subsymmetric if there is a constant C ≥ 1 such that for every pair
F and G of finite subsets of ω of the same cardinality k and every
sequence an (n < k) of scalars,

1

C
‖
∑
n<k

anxF (n) ‖≤‖
∑
n<k

anxG(n) ‖≤ C ‖
∑
n<k

anxF (n) ‖ .

Theorem (Schreier, 1930)

There is an infinite weakly null sequence with no infinite
subsymmetric subsequence

Theorem (Tsirelson, 1972)

There is a reflexive infinite-dimensional Banach space X with no
infinite subsymmetric sequence.
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Theorem (LopezAbad-Todorcevic, 2013)

Let Γ be an infinite cardinal. The following are equivalent:

(1) Γ→ (ω)<ω2 .

(2) Every separated normalized sequence (xα) (α < Γ) has a
subsymmetric subsequence.

(3) There are no large compact and hereditary families on Γ.

Remark
Recall that a family F of subsets of Γ is compact if its pointwise
closure consists only of finite subsets of Γ
Recall also that such an F is hereditary if it is closed under taking
subsets.
We say that a family F of subsets of Γ is large if every infinite
sunsets of Γ contains elements of F of arbitrary large finite
cardinality.
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Theorem (Argyros-Motakis, 2014)

There is a Banach space X of density 2ℵ0 with no infinite
subsymmetric sequence.

Question
Is there a Banach space X of density > 2ℵ0 with no infinite
subsymmetric sequence?

Question
What is the minimal cardinal Γ with the property that every
Banach space X of density at least Γ must contain an infinite
subsymmetric sequence?
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Theorem (Brech-LopezAbad-Todorcevic, 2014)

There is a Banach space X of density bigger than the first
ω-Mahlo cardinal with no infinite subsymmetric sequence.

Definition
Let B and C be two families of subsets of some index-set Γ and let
H be a family of subsets of ω.
We say that C is (B,H)-large if every infinite sequence (tk) of
elements of B has an infinite subsequence (tk)k∈M such that⋃

k∈v tk ∈ C for all v ∈ H � M.
We say that C is B-large if it is (B,S)-large, where S is the
Schreier family on ω.
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Definition
A sequence (Fn) (n < ω) of families of subsets of some index set Γ
is a CL-sequence (sequence of consecutively large families)
whenever F0 = [Γ]≤1 and for every n < ω :

1. Fn is compact and hereditary,

2. Fn ⊆ Fn+1,

3. Fn+1 is Fn-large.

Theorem (Brech-LopezAbad-Todorcevic, 2014)

If some cardinal Γ supports a CL-sequence then there is a Banach
space X of density Γ with no infinite subsymmetric sequence.
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Constructing CL-sequences

Lemma (Key 1)

Suppose T is a tree such that

1. There is a CL-sequence on chains of T ,

2. There is a CL-sequence on the set of immediate successors of
every node of T .

Then there is a CL-sequence on T .

Question
For which cardinals Γ do we have a tree T of cardinality Γ
satisfying the two conditions?
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Definition
Recall that a C-sequence on a cardinal Γ is a sequence−→
C = (Cγ : γ ∈ Γ) such that Cγ is a closed and unbounded subset
of γ for all γ ∈ Γ.

A subset C of Γ is a limit of a subsequence (Cγn : n < ω) of
−→
C if

every initial segment of C is an initial segment of all but finitely
many Cγn ’s.

A C-sequence
−→
C = (Cγ : γ ∈ Γ) is small if there is a function

f : Γ→ Γ such that for every limit C of a subsequence of
−→
C we

have that otp(C ) < f (min(C )).

Lemma (Key 2)

Suppose that Γ is a regular cardinal with the property that every
smaller ordinal supports a CL-sequence.
If Γ supports a small C-sequence then then there is a tree T on Γ
which has a CL-sequence on its chains.
If moreover, Γ is inaccessible then there is a CL-sequence on
immediate successors of every node of T and therefore, there is a
CL-sequence on Γ.
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Define
ρ0 : [Γ]2 → P(Γ)<ω

recursively by

ρ0(α, β) = 〈Cβ ∩ α〉_ρ0(α,min(Cβ \ α))

with the initial condition ρ0(α, α) = ∅.

Definition
To a given C-sequence Cα (α < Γ) one associates the notion of a
walk from an ordinal β < Γ to a smaller ordinal α :

β0(α) = β > β1(α) > · · · > βn(α) = n,

where n = |ρ0(α, β)| and where

βi+1(α) = min(Cβi (α) \ α).
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The tree T (ρ0)

Let

T (ρ0) = {ρ0(·, β) � α : α ≤ β < Γ}.

We consider T (ρ0) as a tree ordered by end-extension.

Lemma
For α < β < γ < Γ, we have

1. ρ0(α, β) = ρ0(α, γ) implies ρ0(·, β) � α = ρ0(·, γ) � α,

2. |ρ0(α, β)| = |ρ0(α, γ)| = n implies Cγi (α) @ Cγi (β) for some
j < n,

3. there is unique j such that γi (α) = γi (β) for all i ≤ j and
α ≤ γj+1(α) < β.
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