Extracting bimonotone basic sequences from long weakly null sequences

First Brazilian Workshop in Geometry of Banach Spaces August 2014, Maresias

Jarno Talponen
University of Eastern Finland
talponen@iki.fi

August 28, 2014

Abstract

This talk involves the following problem. Given a long weakly null normalized sequence of vectors in a Banach space, when can one find a long subsequence which is a bimonotone basic sequence? Some geometric technical tools to address the above problem are discussed. This in an on-going work.

Weakly null sequences

- A family of vectors indexed by an ordinal $\mu>\omega$

$$
\left\{x_{\alpha}\right\}_{\alpha<\mu} \subset \mathrm{X}
$$

is called a transfinite (or long) sequence.

Weakly null sequences

- A family of vectors indexed by an ordinal $\mu>\omega$

$$
\left\{x_{\alpha}\right\}_{\alpha<\mu} \subset \mathrm{X}
$$

is called a transfinite (or long) sequence.

- It is normalized if $\left\|x_{\alpha}\right\|=1$ for each α.

Weakly null sequences

- A family of vectors indexed by an ordinal $\mu>\omega$

$$
\left\{x_{\alpha}\right\}_{\alpha<\mu} \subset \mathrm{X}
$$

is called a transfinite (or long) sequence.

- It is normalized if $\left\|x_{\alpha}\right\|=1$ for each α.
- It is weakly null if $f\left(x_{\alpha}\right) \rightarrow 0$ as $\alpha \rightarrow \mu$ for each $f \in \mathrm{X}^{*}$.

Weakly null sequences

- A family of vectors indexed by an ordinal $\mu>\omega$

$$
\left\{x_{\alpha}\right\}_{\alpha<\mu} \subset \mathrm{X}
$$

is called a transfinite (or long) sequence.

- It is normalized if $\left\|x_{\alpha}\right\|=1$ for each α.
- It is weakly null if $f\left(x_{\alpha}\right) \rightarrow 0$ as $\alpha \rightarrow \mu$ for each $f \in \mathrm{X}^{*}$.
- In the typical case where $\mu=\kappa$, an uncountable regular cardinal (or merely having uncountable cofinality), the above can be rephrased as follows: there is $\beta<\kappa$ such that

$$
f\left(x_{\alpha}\right)=0, \quad \text { for } \beta<\alpha<\kappa
$$

Unconditional sequences

- Since a weakly null sequence is 'dispersed', or far way from being constant in some sense, it is tempting to ask whether one can refine it to get a 'maximally dispersed', or orthogonal sequence in metric terms.

Unconditional sequences

- Since a weakly null sequence is 'dispersed', or far way from being constant in some sense, it is tempting to ask whether one can refine it to get a 'maximally dispersed', or orthogonal sequence in metric terms.
- That is, a subsequence $y_{\gamma}=x_{\alpha_{\gamma}}, 0 \leq \gamma<\kappa$, which is 1-unconditional:

$$
\left\|\sum_{\gamma \in \Gamma} a_{\gamma} y_{\gamma}\right\| \leq\left\|\sum_{\gamma \in \Lambda} a_{\gamma} y_{\gamma}\right\|
$$

for $\Gamma \subset \Lambda \subset \kappa$ with Λ finite.

Unconditional sequences

- Since a weakly null sequence is 'dispersed', or far way from being constant in some sense, it is tempting to ask whether one can refine it to get a 'maximally dispersed', or orthogonal sequence in metric terms.
- That is, a subsequence $y_{\gamma}=x_{\alpha_{\gamma}}, 0 \leq \gamma<\kappa$, which is 1-unconditional:

$$
\left\|\sum_{\gamma \in \Gamma} a_{\gamma} y_{\gamma}\right\| \leq\left\|\sum_{\gamma \in \Lambda} a_{\gamma} y_{\gamma}\right\|
$$

for $\Gamma \subset \Lambda \subset \kappa$ with Λ finite.

- The existence of such a subsequence (in different cases) is a long-standing problem.
- The existence of such a transfinite subsequence depends on things such as the specific choice of the cardinal κ, combinatorial axioms and specific structure of the Banach space.
- The existence of such a transfinite subsequence depends on things such as the specific choice of the cardinal κ, combinatorial axioms and specific structure of the Banach space.
- Argyros, Lopez-Abad and Todorcevic (2003) provided an example of non-separable relexive Banach spaces with a long Schauder basis but without any infnite unconditional basic sequence.
- The existence of such a transfinite subsequence depends on things such as the specific choice of the cardinal κ, combinatorial axioms and specific structure of the Banach space.
- Argyros, Lopez-Abad and Todorcevic (2003) provided an example of non-separable relexive Banach spaces with a long Schauder basis but without any infnite unconditional basic sequence.
- Here the density can even be ω_{1} which is often nice in constructions.
- The existence of such a transfinite subsequence depends on things such as the specific choice of the cardinal κ, combinatorial axioms and specific structure of the Banach space.
- Argyros, Lopez-Abad and Todorcevic (2003) provided an example of non-separable relexive Banach spaces with a long Schauder basis but without any infnite unconditional basic sequence.
- Here the density can even be ω_{1} which is often nice in constructions.
- On the other hand, it is known that under rather general assumptions a weakly null normalized long sequence admits a long subsequence which serves as a monotone basic sequence.
- The existence of such a transfinite subsequence depends on things such as the specific choice of the cardinal κ, combinatorial axioms and specific structure of the Banach space.
- Argyros, Lopez-Abad and Todorcevic (2003) provided an example of non-separable relexive Banach spaces with a long Schauder basis but without any infnite unconditional basic sequence.
- Here the density can even be ω_{1} which is often nice in constructions.
- On the other hand, it is known that under rather general assumptions a weakly null normalized long sequence admits a long subsequence which serves as a monotone basic sequence.
- Recall: Monotone means that the basis projections are norm-1.
- The existence of such a transfinite subsequence depends on things such as the specific choice of the cardinal κ, combinatorial axioms and specific structure of the Banach space.
- Argyros, Lopez-Abad and Todorcevic (2003) provided an example of non-separable relexive Banach spaces with a long Schauder basis but without any infnite unconditional basic sequence.
- Here the density can even be ω_{1} which is often nice in constructions.
- On the other hand, it is known that under rather general assumptions a weakly null normalized long sequence admits a long subsequence which serves as a monotone basic sequence.
- Recall: Monotone means that the basis projections are norm-1.
- Therefore it is natural to ask if one can find subsequences having a property between monotonicity and unconditionality.

Bimonotone sequences

- Note that in the definition of unconditionality it is clear that the norm of the basis projection P_{α} and its coprojection $Q_{\alpha}=I-P_{\alpha}$ given by

$$
\sum_{\gamma<\kappa} a_{\gamma} e_{\gamma} \mapsto \sum_{\gamma<\alpha} a_{\gamma} e_{\gamma}, \quad \sum_{\gamma<\kappa} a_{\gamma} e_{\gamma} \mapsto \sum_{\alpha \leq \gamma<\kappa} a_{\gamma} e_{\gamma}
$$

have operator norm 1.

Bimonotone sequences

- Note that in the definition of unconditionality it is clear that the norm of the basis projection P_{α} and its coprojection $Q_{\alpha}=I-P_{\alpha}$ given by

$$
\sum_{\gamma<\kappa} a_{\gamma} e_{\gamma} \mapsto \sum_{\gamma<\alpha} a_{\gamma} e_{\gamma}, \quad \sum_{\gamma<\kappa} a_{\gamma} e_{\gamma} \mapsto \sum_{\alpha \leq \gamma<\kappa} a_{\gamma} e_{\gamma}
$$

have operator norm 1.

- This is the definition of a bimonotonicity of a basic sequence.

Bimonotone sequences

- Note that in the definition of unconditionality it is clear that the norm of the basis projection P_{α} and its coprojection $Q_{\alpha}=I-P_{\alpha}$ given by

$$
\sum_{\gamma<\kappa} a_{\gamma} e_{\gamma} \mapsto \sum_{\gamma<\alpha} a_{\gamma} e_{\gamma}, \quad \sum_{\gamma<\kappa} a_{\gamma} e_{\gamma} \mapsto \sum_{\alpha \leq \gamma<\kappa} a_{\gamma} e_{\gamma}
$$

have operator norm 1.

- This is the definition of a bimonotonicity of a basic sequence.
- Note that in the 1 -unconditional basis case there are vastly more canonical bimonotone projections (2^{ω}), compared to the bimonotone basis case (ω). Thus bimonotonicity is heuristically much closer to monotonicity than to unconditionality.

The aim

The aim

Theorem

Let X be a Banach space satisfying... (a strong Asplund type property). Suppose that $\left\{x_{\alpha}\right\}_{\alpha<\omega_{1}} \subset \mathrm{X}$ is a weakly null normalized transfinite sequence. Then there exists a subsequence $\left\{\alpha_{\gamma}\right\}_{\gamma<\omega_{1}}$ such that $\left\{x_{\alpha_{\gamma}}\right\}_{\gamma<\omega_{1}}$ forms a bimonotone basic sequence.

The aim

Theorem

Let X be a Banach space satisfying... (a strong Asplund type property). Suppose that $\left\{x_{\alpha}\right\}_{\alpha<\omega_{1}} \subset \mathrm{X}$ is a weakly null normalized transfinite sequence. Then there exists a subsequence $\left\{\alpha_{\gamma}\right\}_{\gamma<\omega_{1}}$ such that $\left\{x_{\alpha_{\gamma}}\right\}_{\gamma<\omega_{1}}$ forms a bimonotone basic sequence.

- Also reasonable to ask whether less dispersed (than weakly null) sequence admits a bimonotone block basis:

The aim

Theorem

Let X be a Banach space satisfying... (a strong Asplund type property). Suppose that $\left\{x_{\alpha}\right\}_{\alpha<\omega_{1}} \subset \mathrm{X}$ is a weakly null normalized transfinite sequence. Then there exists a subsequence $\left\{\alpha_{\gamma}\right\}_{\gamma<\omega_{1}}$ such that $\left\{x_{\alpha_{\gamma}}\right\}_{\gamma<\omega_{1}}$ forms a bimonotone basic sequence.

- Also reasonable to ask whether less dispersed (than weakly null) sequence admits a bimonotone block basis:
i.e. ω_{1}-many countable successive blocks of ordinals,

$$
\left\{\beta_{\theta}^{(\gamma)}\right\}_{\theta<\eta(\gamma)} \subset \omega_{1}, \quad 0 \leq \gamma<\omega_{1}
$$

and a bimonotone basic sequence $\left\{z_{\gamma}\right\}_{\gamma<\omega_{1}} \subset \mathrm{X}$ such that

$$
z_{\gamma}=\sum_{\theta<\eta(\gamma)} a_{\theta}^{(\gamma)} x_{\beta_{\theta}^{(\gamma)}}, \quad 0 \leq \gamma<\omega_{1} .
$$

Philosophical preparations

- If $\mathrm{Y} \subset \mathrm{X}$ are Banach spaces and X / Y is separable, let us say that Y is coseparable (in X).

Philosophical preparations

- If $\mathrm{Y} \subset \mathrm{X}$ are Banach spaces and X / Y is separable, let us say that Y is coseparable (in X).
- In the context of non-separable spaces separable subspaces and quotients seem small or 'negligible'.

Philosophical preparations

- If $\mathrm{Y} \subset \mathrm{X}$ are Banach spaces and X / Y is separable, let us say that Y is coseparable (in X).
- In the context of non-separable spaces separable subspaces and quotients seem small or 'negligible'.
- Therefore, in the spirit of Baire spaces we declare $\mathrm{X} \in(\sigma)$ if coseparable subspaces of X are preserved in countable intersections.

Philosophical preparations

- If $\mathrm{Y} \subset \mathrm{X}$ are Banach spaces and X / Y is separable, let us say that Y is coseparable (in X).
- In the context of non-separable spaces separable subspaces and quotients seem small or 'negligible'.
- Therefore, in the spirit of Baire spaces we declare $\mathrm{X} \in(\sigma)$ if coseparable subspaces of X are preserved in countable intersections.
- In the context of Banach spaces this approach can be taken further:

Philosophical preparations

- If $\mathrm{Y} \subset \mathrm{X}$ are Banach spaces and X / Y is separable, let us say that Y is coseparable (in X).
- In the context of non-separable spaces separable subspaces and quotients seem small or 'negligible'.
- Therefore, in the spirit of Baire spaces we declare $\mathrm{X} \in(\sigma)$ if coseparable subspaces of X are preserved in countable intersections.
- In the context of Banach spaces this approach can be taken further:
- For instance, one could ask if for a separable $\mathrm{Z} \subset \mathrm{X}$ the annihilator Z^{\perp} 1-norms a coseparable subspace Y (a kind of reverse 1-SCP).

Philosophical preparations

- If $\mathrm{Y} \subset \mathrm{X}$ are Banach spaces and X / Y is separable, let us say that Y is coseparable (in X).
- In the context of non-separable spaces separable subspaces and quotients seem small or 'negligible'.
- Therefore, in the spirit of Baire spaces we declare $\mathrm{X} \in(\sigma)$ if coseparable subspaces of X are preserved in countable intersections.
- In the context of Banach spaces this approach can be taken further:
- For instance, one could ask if for a separable $\mathrm{Z} \subset \mathrm{X}$ the annihilator Z^{\perp} 1-norms a coseparable subspace Y (a kind of reverse 1-SCP).
- Refinement: If for a separable $\mathrm{Z} \subset \mathrm{X}$ the annihilator $\mathrm{Z}^{\perp} 1$-norms a separable space $E \subset \mathrm{X}$, does there exist a coseparable $\mathrm{Y} \subset \mathrm{X}$ such that $E \subset \mathrm{Y}$ and $\mathrm{Z}^{\perp} 1$-norms Y ?

Lemma

- The proof of the above Theorem boils down to the questions above.

Lemma

- The proof of the above Theorem boils down to the questions above.

Lemma

- The proof of the above Theorem boils down to the questions above.

Lemma
Let X be a Banach space, $\operatorname{dens}(\mathrm{X})=\omega_{1}$, and:

Let $A \subset \mathrm{X}$ be a separable subspace. Let $\mathrm{Z} \subset \mathrm{X}$ be any coseparable subspace. Then there exists a coseparable subspace $\mathrm{Z}_{0} \subset \mathrm{Z}$ such that A^{\perp} 1-norms Z_{0}.

Lemma

- The proof of the above Theorem boils down to the questions above.

Lemma

Let X be a Banach space, $\operatorname{dens}(\mathrm{X})=\omega_{1}$, and:
(i) X is WLD and Asplund.

Let $A \subset \mathrm{X}$ be a separable subspace. Let $\mathrm{Z} \subset \mathrm{X}$ be any coseparable subspace. Then there exists a coseparable subspace $\mathrm{Z}_{0} \subset \mathrm{Z}$ such that A^{\perp} 1-norms Z_{0}.

Lemma

- The proof of the above Theorem boils down to the questions above.

Lemma

Let X be a Banach space, $\operatorname{dens}(\mathrm{X})=\omega_{1}$, and:
(i) X is WLD and Asplund.
(ii) $\mathrm{X}^{* *}$ is WLD.

Let $A \subset \mathrm{X}$ be a separable subspace. Let $\mathrm{Z} \subset \mathrm{X}$ be any coseparable subspace. Then there exists a coseparable subspace $\mathrm{Z}_{0} \subset \mathrm{Z}$ such that A^{\perp} 1-norms Z_{0}.

On the strong Asplund type condition

On the strong Asplund type condition

Proposition

Let X be a WLD Banach space. The following are equivalent:

On the strong Asplund type condition

Proposition

Let X be a WLD Banach space. The following are equivalent:
(1) For each coseparable (resp. separable) subspace $\mathrm{Y} \subset \mathrm{X}$ it holds that $\mathrm{Y}^{\perp \perp} \subset \mathrm{X}^{* *}$ is coseparable (resp. separable) as well;

On the strong Asplund type condition

Proposition

Let X be a WLD Banach space. The following are equivalent:
(1) For each coseparable (resp. separable) subspace $\mathrm{Y} \subset \mathrm{X}$ it holds that $\mathrm{Y}^{\perp \perp} \subset \mathrm{X}^{* *}$ is coseparable (resp. separable) as well;
(2) There is a shrinking M-basis $\left\{\left(x_{\alpha}, f_{\alpha}\right)\right\}_{\alpha}$ on X such that $\overline{\left[x_{\alpha}: \alpha \in \Lambda\right]^{\omega^{*}}} \subset \mathrm{X}^{* *}$ is norm-separable for any countable subset Λ of indices.

On the strong Asplund type condition

Proposition

Let X be a WLD Banach space. The following are equivalent:
(1) For each coseparable (resp. separable) subspace $\mathrm{Y} \subset \mathrm{X}$ it holds that $\mathrm{Y}^{\perp \perp} \subset \mathrm{X}^{* *}$ is coseparable (resp. separable) as well;
(2) There is a shrinking M-basis $\left\{\left(x_{\alpha}, f_{\alpha}\right)\right\}_{\alpha}$ on X such that

(3) Both X and X^{*} are Asplund.

WLD

- Recall that a Banach space X is weakly Lindelöf determined (WLD) if there is an M-basis, i.e. a biorthogonal system $\left\{\left(x_{\alpha}, x_{\alpha}^{*}\right)\right\}_{\alpha<\mu} \subset \mathrm{X} \times \mathrm{X}^{*}$ such that

WLD

- Recall that a Banach space X is weakly Lindelöf determined (WLD) if there is an M-basis, i.e. a biorthogonal system $\left\{\left(x_{\alpha}, x_{\alpha}^{*}\right)\right\}_{\alpha<\mu} \subset \mathrm{X} \times \mathrm{X}^{*}$ such that

$$
x_{\beta}^{*}\left(x_{\alpha}\right)=\delta_{\alpha, \beta},
$$

WLD

- Recall that a Banach space X is weakly Lindelöf determined (WLD) if there is an M -basis, i.e. a biorthogonal system $\left\{\left(x_{\alpha}, x_{\alpha}^{*}\right)\right\}_{\alpha<\mu} \subset \mathrm{X} \times \mathrm{X}^{*}$ such that

$$
\begin{gathered}
x_{\beta}^{*}\left(x_{\alpha}\right)=\delta_{\alpha, \beta}, \\
{\left[x_{\alpha}: \alpha\right]=\mathrm{X}}
\end{gathered}
$$

- Recall that a Banach space X is weakly Lindelöf determined (WLD) if there is an M-basis, i.e. a biorthogonal system $\left\{\left(x_{\alpha}, x_{\alpha}^{*}\right)\right\}_{\alpha<\mu} \subset \mathrm{X} \times \mathrm{X}^{*}$ such that

$$
\begin{gathered}
x_{\beta}^{*}\left(x_{\alpha}\right)=\delta_{\alpha, \beta}, \\
{\left[x_{\alpha}: \alpha\right]=\mathrm{X},} \\
{\overline{\left[x_{\alpha}^{*}: \alpha\right]}}^{*}=\mathrm{X}^{*},
\end{gathered}
$$

- Recall that a Banach space X is weakly Lindelöf determined (WLD) if there is an M-basis, i.e. a biorthogonal system $\left\{\left(x_{\alpha}, x_{\alpha}^{*}\right)\right\}_{\alpha<\mu} \subset \mathrm{X} \times \mathrm{X}^{*}$ such that

$$
\begin{gathered}
x_{\beta}^{*}\left(x_{\alpha}\right)=\delta_{\alpha, \beta}, \\
{\left[x_{\alpha}: \alpha\right]=\mathrm{X},} \\
{\overline{\left[x_{\alpha}^{*}: \alpha\right]}}^{*}=\mathrm{X}^{*},
\end{gathered}
$$

such that additionally for each $f \in \mathrm{X}^{*}$

$$
\left|\left\{\alpha: f\left(x_{\alpha}\right) \neq 0\right\}\right| \leq \aleph_{0} .
$$

Sketch of the proof of Lemma $1 / 4$

- Let $\left\{\left(a_{n}, a_{n}^{*}\right)\right\}_{n<\omega}, a_{n}^{*} \in \mathrm{X}^{*}$, be an M-basis on A.

Sketch of the proof of Lemma $1 / 4$

- Let $\left\{\left(a_{n}, a_{n}^{*}\right)\right\}_{n<\omega}, a_{n}^{*} \in \mathrm{X}^{*}$, be an M-basis on A.
- Clearly $\left[a_{n}: n \leq k\right]^{\perp} \subset \mathrm{X}^{*}$ is finite-codimensional. By putting

$$
\left\|\|x\|_{k, \varepsilon}^{2}=\right\| x \|^{2}+\varepsilon \sum_{n=0}^{k}\left(a_{n}^{*}(x)\right)^{2}, \quad \varepsilon>0
$$

we have equivalent norms converging to $\|\cdot\|$ uniformly on bounded sets for fixed k as $\varepsilon \rightarrow 0^{+}$.

Sketch of the proof of Lemma $1 / 4$

- Let $\left\{\left(a_{n}, a_{n}^{*}\right)\right\}_{n<\omega}, a_{n}^{*} \in \mathrm{X}^{*}$, be an M-basis on A.
- Clearly $\left[a_{n}: n \leq k\right]^{\perp} \subset \mathrm{X}^{*}$ is finite-codimensional. By putting

$$
\left\|\|x\|_{k, \varepsilon}^{2}=\right\| x \|^{2}+\varepsilon \sum_{n=0}^{k}\left(a_{n}^{*}(x)\right)^{2}, \quad \varepsilon>0
$$

we have equivalent norms converging to $\|\cdot\|$ uniformly on bounded sets for fixed k as $\varepsilon \rightarrow 0^{+}$.

- These perturbed norms enjoy the property that in their dual norms $\left\|\|x\|_{k, \varepsilon}^{*}\right.$ the corresponding finite-codimensional subspace $\left[a_{n}: n \leq k\right]^{\perp} \subset \mathrm{X}^{*}$ is Hahn-Banach smooth.

Sketch of the proof of Lemma $1 / 4$

- Let $\left\{\left(a_{n}, a_{n}^{*}\right)\right\}_{n<\omega}, a_{n}^{*} \in \mathrm{X}^{*}$, be an M-basis on A.
- Clearly $\left[a_{n}: n \leq k\right]^{\perp} \subset \mathrm{X}^{*}$ is finite-codimensional. By putting

$$
\|\mid\| x\left\|_{k, \varepsilon}^{2}=\right\| x \|^{2}+\varepsilon \sum_{n=0}^{k}\left(a_{n}^{*}(x)\right)^{2}, \quad \varepsilon>0
$$

we have equivalent norms converging to $\|\cdot\|$ uniformly on bounded sets for fixed k as $\varepsilon \rightarrow 0^{+}$.

- These perturbed norms enjoy the property that in their dual norms $\left\|\|x\|_{k, \varepsilon}^{*}\right.$ the corresponding finite-codimensional subspace $\left[a_{n}: n \leq k\right]^{\perp} \subset \mathrm{X}^{*}$ is Hahn-Banach smooth.
- That is, the Hahn-Banach extensions

$$
H B_{k, \varepsilon}:\left(\left[a_{n}: n \leq k\right]^{\perp}\right)^{*} \rightarrow \mathrm{X}^{* *}, H B_{k, \varepsilon}:\left.x^{* *}\right|_{\left[a_{n}: n \leq k\right]^{\perp}} \mapsto x^{* *},
$$

with

$$
\left\|x^{* *}\right\|_{\mathrm{X}^{* *}}=\left\|\left.x^{* *}\right|_{\left[a_{n}: 1 \leq n \leq k\right]^{\perp}}\right\|_{\left(\left[a_{n}: 1 \leq n \leq k\right]^{\perp}\right)^{*}},
$$

both under respective renorming $\|\|\cdot\|\|_{k, \varepsilon}$, are uniquely defined.

Sketch of the proof of Lemma 2/4

- Therefore $H B_{k, \varepsilon}$ becomes a linear isometry $\left(\left[a_{n}: 1 \leq n \leq k\right]^{\perp}\right)^{*} \rightarrow \mathrm{X}^{* *}$ (under the given equivalent norm). Its image is finite-codimensional.

Sketch of the proof of Lemma 2/4

- Therefore $H B_{k, \varepsilon}$ becomes a linear isometry $\left(\left[a_{n}: 1 \leq n \leq k\right]^{\perp}\right)^{*} \rightarrow \mathrm{X}^{* *}$ (under the given equivalent norm). Its image is finite-codimensional.
- By the definition of the $H B$ extension any Hahn-Banach smooth subspace $E \subset \mathrm{X}^{*}$ 1-norms the subspace

$$
H B_{E}\left(\left\{\left.x^{* *}\right|_{E}: x^{* *} \in \mathrm{X}^{* *}\right\}\right) \subset \mathrm{X}^{* *} .
$$

Sketch of the proof of Lemma 2/4

- Therefore $H B_{k, \varepsilon}$ becomes a linear isometry $\left(\left[a_{n}: 1 \leq n \leq k\right]^{\perp}\right)^{*} \rightarrow \mathrm{X}^{* *}$ (under the given equivalent norm). Its image is finite-codimensional.
- By the definition of the $H B$ extension any Hahn-Banach smooth subspace $E \subset \mathrm{X}^{*}$ 1-norms the subspace

$$
H B_{E}\left(\left\{\left.x^{* *}\right|_{E}: x^{* *} \in \mathrm{X}^{* *}\right\}\right) \subset \mathrm{X}^{* *} .
$$

- Put

$$
W:=\bigcap_{k<\omega} \bigcap_{m<\omega} H B_{k, 1 / m}\left(\left\{\left.x^{* *}\right|_{\left[a_{n}: 1 \leq n \leq k\right]^{\perp}}: x^{* *} \in X^{* *}\right\}\right) \subset X^{* *} .
$$

Sketch of the proof of Lemma 2/4

- Therefore $H B_{k, \varepsilon}$ becomes a linear isometry $\left(\left[a_{n}: 1 \leq n \leq k\right]^{\perp}\right)^{*} \rightarrow \mathrm{X}^{* *}$ (under the given equivalent norm). Its image is finite-codimensional.
- By the definition of the $H B$ extension any Hahn-Banach smooth subspace $E \subset \mathrm{X}^{*} 1$-norms the subspace

$$
H B_{E}\left(\left\{\left.x^{* *}\right|_{E}: x^{* *} \in \mathrm{X}^{* *}\right\}\right) \subset \mathrm{X}^{* *} .
$$

- Put

$$
W:=\bigcap_{k<\omega} \bigcap_{m<\omega} H B_{k, 1 / m}\left(\left\{\left.x^{* *}\right|_{\left[a_{n}: 1 \leq n \leq k\right]^{\perp}}: x^{* *} \in \mathrm{X}^{* *}\right\}\right) \subset \mathrm{X}^{* *} .
$$

- A moments reflection with $\varepsilon=1 / m \searrow 0$ and the Hahn-Banach Thm yields that $A^{\perp} 1$-norms W.

Sketch of the proof of Lemma 3/4

- Since $\mathrm{X}^{* *}$ is WLD it satisfies (σ) and thus the above intersection is a coseparable subspace.

Sketch of the proof of Lemma 3/4

- Since $\mathrm{X}^{* *}$ is WLD it satisfies (σ) and thus the above intersection is a coseparable subspace.
- By using the coseparability of W, let $\left(f_{n}\right)_{n<\omega} \subset X^{* * *}$ be a sequence such that $\bigcap_{n} \operatorname{ker} f_{n}=W$.

Sketch of the proof of Lemma 4/4

- Since X is WLD and Asplund it has a shrinking M-basis $\left\{\left(x_{\alpha}, x_{\alpha}^{*}\right)\right\}_{\alpha<\omega_{1}}$. Thus ${\overline{\left[x_{\alpha}^{*}: \alpha\right]}}^{\omega^{*}}=\mathrm{X}^{* * *}$.

Sketch of the proof of Lemma 4/4

- Since X is WLD and Asplund it has a shrinking M-basis $\left\{\left(x_{\alpha}, x_{\alpha}^{*}\right)\right\}_{\alpha<\omega_{1}}$. Thus ${\overline{\left[x_{\alpha}^{*}: \alpha\right]}}^{\omega^{*}}=\mathrm{X}^{* * *}$.
- As $\mathrm{X}^{* *}$ is WLD, it has property (C), and an application of this yields a countable set Λ such that

$$
\left(f_{n}\right)_{n<\omega} \subset{\overline{\left[x_{\lambda}^{*}: \lambda \in \Lambda\right]}}^{\omega^{*}} \subset \mathrm{X}^{* * *} .
$$

Sketch of the proof of Lemma 4/4

- Since X is WLD and Asplund it has a shrinking M-basis $\left\{\left(x_{\alpha}, x_{\alpha}^{*}\right)\right\}_{\alpha<\omega_{1}}$. Thus ${\overline{\left[x_{\alpha}^{*}: \alpha\right]}}^{\omega^{*}}=\mathrm{X}^{* * *}$.
- As $\mathrm{X}^{* *}$ is WLD, it has property (C), and an application of this yields a countable set Λ such that

$$
\left(f_{n}\right)_{n<\omega} \subset{\overline{\left[x_{\lambda}^{*}: \lambda \in \Lambda\right]}}^{\omega^{*}} \subset \mathrm{X}^{* * *} .
$$

- By a separation argument, this means that $\left[f_{n}: n<\omega\right] \subset\left[x_{\alpha}\right]^{\perp} \subset \mathrm{X}^{* * *}$ for each $\alpha \in \kappa \backslash \Lambda$ and consequently

$$
\left[x_{\alpha}: \alpha \in \kappa \backslash \Lambda\right] \subset W
$$

Sketch of the proof of Lemma 4/4

- Since X is WLD and Asplund it has a shrinking M-basis $\left\{\left(x_{\alpha}, x_{\alpha}^{*}\right)\right\}_{\alpha<\omega_{1}}$. Thus ${\overline{\left[x_{\alpha}^{*}: \alpha\right]}}^{\omega^{*}}=\mathrm{X}^{* * *}$.
- As $\mathrm{X}^{* *}$ is WLD, it has property (C), and an application of this yields a countable set Λ such that

$$
\left(f_{n}\right)_{n<\omega} \subset{\overline{\left[x_{\lambda}^{*}: \lambda \in \Lambda\right]}}^{\omega^{*}} \subset \mathrm{X}^{* * *} .
$$

- By a separation argument, this means that $\left[f_{n}: n<\omega\right] \subset\left[x_{\alpha}\right]^{\perp} \subset \mathrm{X}^{* * *}$ for each $\alpha \in \kappa \backslash \Lambda$ and consequently

$$
\left[x_{\alpha}: \alpha \in \kappa \backslash \Lambda\right] \subset W
$$

- The rest of the argument follows from condition (σ) of X .

Thank you!

