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Background Boundaries

Boundaries
Definition
A boundary of a Banach space X is a subset B ⊆ BX∗ , such that whenever
x ∈ X , there exists f ∈ B satisfying f (x) = ‖x‖.

Remarks
By the Hahn-Banach Theorem, SX∗ is a boundary.
By (the proof of) the Krein-Milman Theorem, ext BX∗ is a boundary.
B = {±e∗n ∈ `1 : n ∈ N} is a countable boundary of (c0, ‖·‖∞).
Boundaries can be highly irregular.
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Background Polyhedral and LFC norms

Polyhedral and LFC norms
Definition (Klee 60)
A norm ‖·‖ is polyhedral if, given any finite-dimensional subspace Y ⊆ X ,
there exist f1, . . . , fn ∈ S(X∗,‖·‖) such that

‖y‖ = maxn
i=1fi(y) for all y ∈ Y .

Definition (Pechanec, Whitfield and Zizler 81)
1 A norm ‖·‖ depends locally on finitely many coordinates (LFC) if, given

x ∈ SX , there exist open U 3 x and ‘coordinates’ f1, . . . , fn ∈ X ∗, such that

‖y‖ = ‖z‖ whenever y , z ∈ U and fi(y) = fi(z), 1 6 i 6 n.

2 If all the coordinates come from H ⊆ X ∗ then ‖·‖ is LFC-H.

Example
The natural norm on c0 is both polyhedral and LFC-(e∗n)n∈N.
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Background The benefits of small boundaries

The benefits of small boundaries
Theorem (Fonf 89, Hájek 95)
Let X be separable. Then the following are equivalent.

1 X has a countable boundary.

2 X has a norm σ-compact boundary.
3 X has a polyhedral norm (i.e. X is isomorphically polyhedral).
4 X has a polyhedral LFC norm.
5 X has a LFC norm.
6 X has a LFC norm that is C∞-smooth on X \ {0}.

Corollaries (Fonf)
If X has a norm σ-compact boundary, then. . .

X ∗ is separable.
X is c0-saturated.
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Separable spaces A characterisation of polyhedrality in separable spaces

A characterisation of polyhedrality in separable spaces
Theorem (Fonf, S, Troyanski 1?)
Let X be separable. The following are equivalent.

1 X has a boundary B and a bounded linear operator T : X → c0, such that
T ∗(c∗0 ) ⊇ B.

2 X has a boundary B and a bounded linear operator T : X → Y into a
polyhedral space Y , such that T ∗(Y ∗) ⊇ B.

3 X is isomorphically polyhedral.
4 X admits a norm having boundary B, which is summable with respect

to a normalized M-basis (xn)n∈N having uniformly bounded biorthogonal
sequence (x∗n ).

Definition
A ⊆ X ∗ is summable (with respect to (xn)n∈N) if

∑∞
n=1 |f (xn)| <∞ for all f ∈ A.
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Sufficient conditions w∗ -LRC sets

Subsets of X ∗ that are still small, but a bit larger
Definition (Fonf, Pallares, S, Troyanski 2014)

E ⊆ X ∗ is w∗-locally relatively norm compact (w∗-LRC) if, given x ∈ E ,
there exists w∗-open U 3 x such that E ∩ U is relatively norm compact.

E is σ-w∗-LRC if E =
⋃∞

n=1 En, where each En is w∗-LRC.

Remarks
If E is relatively norm compact then it is w∗-LRC: set U = X ∗.
If E is relatively w∗-discrete then it is w∗-LRC.
In particular, if (xγ)γ∈Γ is a M-basis, then (x∗γ ) is w∗-LRC.
By Baire Category, if Y ⊆ X ∗ is any inf-dim subspace, then SY is never
σ-w∗-LRC.
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Sufficient conditions Happiness

Happiness
A definition of happiness
If E ⊆ X ∗ is both σ-w∗-LRC and σ-w∗-compact, we will call it ‘happy’.

Proposition
If E is happy then so is span(E).

Theorems
If span(E) ∩ BX∗ is a boundary of X , where E is happy, then X admits. . .

a polyhedral LFC norm (FPST 14).
a LFC norm that is C∞-smooth on X \ {0} (Bible 1?).

Corollary
If X has a LFC-H norm, where H is happy, then X admits norms as above.
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Sufficient conditions Happiness

Happiness
Examples
Spaces satisfying the above include. . .

Spaces having σ-compact boundaries (Fonf, Hájek).

(C(K ), ‖·‖∞), where K is σ-discrete (Hájek, Haydon 07).
Certain spaces having a M-basis (some Orlicz ‘sequence’ spaces and pre-
duals of Lorentz ‘sequence’ spaces d(w ,1,A)).
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Necessary conditions Necessary conditions

Necessary conditions
To what extent is this happiness necessary for polyhedral and LFC norms?

Theorem
If X has a happy boundary then X admits a norm having locally uniformly
rotund (LUR) dual norm. In particular, if X = C(K ) then K is σ-discrete.

Example
C[0, ω1] admits both a polyhedral norm and a C∞-smooth LFC norm. However,
it admits no norm having LUR dual norm, so no boundary of C[0, ω1] (in any
norm) is happy.
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Necessary conditions A characterisation of isomorphic polyhedrality?

A characterisation of isomorphic polyhedrality?
Theorem (Fonf 1981)
Let (X , ‖·‖) be a polyhedral Banach space. Then the set

B = {f ∈ BX∗ : f is w∗-strongly exposed}

is a minimal boundary of X , and |B| = dens(X ).

Theorem
Let (X , ‖·‖) be a weakly Lindelöf determined (WLD) polyhedral Banach space.
Then the minimal boundary B can be written as

B =
∞⋃

n=1

Bn,

where each Bn is relatively norm- (equivalently w∗-) discrete. In particular, B is
σ-w∗-LRC.
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A new characterisation of isomorphic polyhedrality?
Theorem
Let (X , ‖·‖) be a weakly Lindelöf determined (WLD) polyhedral Banach space.
Then the minimal boundary B can be written as

B =
∞⋃

n=1

Bn,

where each Bn is relatively norm- (equivalently w∗-) discrete. In particular, B is
σ-w∗-LRC.

Questions
Does the above result apply in full generality?
Is B contained in a happy set? If so, then given X WLD, X is isomorphically
polyhedral if and only if it admits a norm having a boundary contained in a
happy set.
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