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Theorem (Zippin, 1988)

Every Banach space with separable dual, embeds into a space Z
with shrinking basis (e;), i.e. the biorthogonal sequence (e}) is a
basis for Z*.
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In 1964 Aleksander Petczynski asked the following question:
Does a separable reflexive Banach space embed into a reflexive
Banach space with a basis ?

Zippin, solved that problem positively in 1988 by proving:

Theorem (Zippin, 1988)

Every Banach space with separable dual, embeds into a space Z
with shrinking basis (e;), i.e. the biorthogonal sequence (e}) is a
basis for Z*.

and then applying

Theorem (Davis, Figiel, Johnson, and Petczyriski, 1974)

A weakly compact operator from a Banach space X into a Banach
space Z, which has a shrinking basis, factors through a reflexive
space with a basis.
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Universality Problems

Assume (P) is a property of (separable) Banach spaces.

Is there a separable Banach space X, having property (P), (or
some slightly weaker property (P’)) which is universal for all

Banach spaces with property (P), i.e. every separable Banach
space X with property (P) embeds (isomorphically) into X,?

Often it is easier to solve a universality problem within the class of
Banach spaces with (Schauder) bases, or with FDDs.

In that case a Universality Problem becomes an Embedding
Problem.

Embedding Problems

Assume (P) is a property of (separable) Banach spaces.
Does every Banach space X with property (P) embed into a
Banach space Z with property (P) having a (certain) basis/FDD ?
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e (Banach) C[0,1] is universal for all separable Banach spaces.

o (Szlenk, 1968) There is no separable reflexive space universal
for all separable reflexive spaces.

Idea: define Sz(X) € (0,w1] for separable X, so that:
Sz(X) <wy <= X* separable,
Sz(x) monotone with respect to isomorphic embeddings,
Va<wp 3X separable & reflexive with 5z(X) > a.

o (Odell & S, 2002) Characterization of subspaces of (©72; Fp)y,,

@ (Odell & S, 2006) Existence of a separable reflexive space
universal for all separable super reflexive (uniform convex)
spaces,

@ (Dodos & Ferenczi, 2007) Existence of spaces with separable
dual, universal for spaces spaces with Szlenk index below a
given countable ordinal «,

@ (Johnson & Zheng 2008, 2011) Characterization of subspaces
of spaces having an unconditional basis.
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Problem (Petczyniski, 2005)

Assume X has Szlenk index Sz(X) = w®, o < wy.

e Does X embed into a space Z with a basis having the same
Szlenk index?

e [f X is reflexive, can Z be chosen to be reflexive, with
Sz(Z*) = Sz(X*)?

e Does the class of spaces X, for which Sz(X) < w®, admit a
universal space X, for which Sz(X,) = w®*1?

e Does the class of reflexive separable spaces X, for which
S5z(X),S5z(X*) < w® , admit a universal space X,, which is
reflexive and for which Sz(X,), Sz(X}) = w*t1?

Answers:
Odell, Zsak & S (2007) and Freeman, Odell, Zsak & S (2009), yes
to all questions if o = fw,
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Quantified Versions of Zippin's Theorem

Problem (Petczyniski, 2005)

Assume X has Szlenk index Sz(X) = w®, o < wy.

e Does X embed into a space Z with a basis having the same
Szlenk index?

e [f X is reflexive, can Z be chosen to be reflexive, with
Sz(Z*) = Sz(X*)?

e Does the class of spaces X, for which Sz(X) < w®, admit a
universal space X, for which Sz(X,) = w®*1?

e Does the class of reflexive separable spaces X, for which
S5z(X),S5z(X*) < w® , admit a universal space X,, which is
reflexive and for which Sz(X,), Sz(X}) = w*t1?

Answers:

Odell, Zsak & S (2007) and Freeman, Odell, Zsak & S (2009), yes
to all questions if o = fw,

Causey (2013 and 2014), yes (for all & < wy) but for Szlenk index
of Z in embedding problem we have: Sz(Z) = w**!, resp.
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The proofs of these embedding results start by using Zippin's
Theorem and embed our given space X into a space Y with
shrinking basis, respectively, in the reflexive case, with shrinking
and boundedly complete basis.
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Remark

The proofs of these embedding results start by using Zippin's
Theorem and embed our given space X into a space Y with
shrinking basis, respectively, in the reflexive case, with shrinking
and boundedly complete basis.

Then, using the special assumptions on X, renorm the space Y,
not necessarily in an equivalent way, but so that on the subspace
of Y which is isomorphic to X, the norm stays equivalent to the
original one.

Our goal:

A new proof of Zippin's Embedding Theorem, in which for a given
space X, with X* separable, or X separable and reflexive, the
space Y, in which X embeds, inherits as many properties from X
as possible.
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Remark

All known proofs of Zippin's Theorem (Zippin's original proof and
a proof by Ghoussoub, Maurey, and Schachermayer, as well as
proof by Bossard) start by embedding X into Z = C(A),

A =Cantor set (which has a basis), and then modifying Z until the
modification has a shrinking basis but still contains X.
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RENELS

All known proofs of Zippin's Theorem (Zippin's original proof and
a proof by Ghoussoub, Maurey, and Schachermayer, as well as
proof by Bossard) start by embedding X into Z = C(A),

A =Cantor set (which has a basis), and then modifying Z until the
modification has a shrinking basis but still contains X.
Disadvantage of that approach:

Not much else is really known about the space Z.

Our approach will be different:

We start with a Markushevich basis (e;) of X (every separable
space has such a basis) or more generally, a Finite Dimensional
Markushevich Decomposition (FMD), and augment it just enough
to produce a space Z with a shrinking Finite Dimensional
Decomposition (FDD), which contains X.

Then we use a construction of Lindenstrauss and Tzafriri to embed
Z in a space W with a shrinking basis.

As we will see, several properties of X will be automatically
inherited by Z and W .
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Main Result

Assume that X is a Banach space with separable dual. Then X
embeds into a space W with a shrinking basis (w;), so that

a) Sz(W) = Sz(X), where Sz(X) is the Szlenk index of X,
b) if X is reflexive then W is reflexive and Sz(X*) = Sz(W*),

c) if X* has the w*-Unconditional Tree Property then (w;) is
unconditional, and

d) if X is reflexive and has the w-Unconditional Tree Property
then (w;) is unconditional.

w*-Unconditional Tree Property (Johnson-Zheng):
Every w*-null tree in Sx-, (inf. countably branching, inf.
countable height) has a branch which is unconditional.
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FDD version of the Main result

We first prove the following FDD version of our main result, and
then apply a construction of Lindenstrauss and Tzafriri, in order to
get from FDD's to bases.
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FDD version of the Main result

We first prove the following FDD version of our main result, and
then apply a construction of Lindenstrauss and Tzafriri, in order to
get from FDD's to bases.

Theorem

Assume that X is a Banach space with separable dual. Then X
embeds into a space Z with a shrinking FDD (Z;) so that

a) Sz(Z) = Sz(X),
b) if X is reflexive then Z is reflexive and Sz(X*) = Sz(Z*), and

c) if X* has an skipped unconditional FMD then (Z;) is
unconditional.

Th. Schlumprecht A new Proof of Zippin's Embedding Theorem and Applications



Finite Dimensional Markushevich Decompositions

Assume X is a separable Banach space. A sequence (E,) of finite
dimensional subspaces of X is called Finite Dimensional
Markushevich Decomposition (FMD) of X if
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Assume X is a separable Banach space. A sequence (E,) of finite
dimensional subspaces of X is called Finite Dimensional
Markushevich Decomposition (FMD) of X if

@ (Ex)is fundamental: X =span(E;:j € N),

@ (Ex)is minimal: Ex Nspan(E; : j € N\ {k}) = {0}, k e N.
In that case we call (F;), with

- L * * * —
Fk:span(Ej:jeN\{k}) :{X e X X‘W:O}

the biorthogonal sequence of (Ek), and

@ (Eg)is total:
Vxe X (VkeN,x*eF, x*(x)=0)=x=0
(i.e. span(Fy : keN) is w*-dense in X*).
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Finite Dimensional Markushevich Decompositions

Assume X is a separable Banach space. A sequence (E,) of finite
dimensional subspaces of X is called Finite Dimensional
Markushevich Decomposition (FMD) of X if

@ (Ex)is fundamental: X =span(E;:j € N),

@ (Ex)is minimal: Ex Nspan(E; : j € N\ {k}) = {0}, k e N.
In that case we call (F;), with

- L * * * —
Fk:span(Ej:jeN\{k}) :{X e X X‘W:O}

the biorthogonal sequence of (Ek), and
@ (Eg)is total:
Vxe X (VkeN,x*eF, x*(x)=0)=x=0
(i.e. span(Fy : keN) is w*-dense in X*).
If dim(Ex) =1, for all k € N, say Ex = span(ex), then (ex) is
called a Markushevich basis.
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A finite dimensional Markushevich decomposition is called
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A finite dimensional Markushevich decomposition is called
@ c-norming, for 0 < c <1, if

sup IX*(x)| > c||x]|.
x*€span(F:keN),[|x*|| <1
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A finite dimensional Markushevich decomposition is called
@ c-norming, for 0 < c <1, if

sup IX*(x)| > c||x]|.
x*€span(F:keN),[|x*|| <1

@ shrinking if span(Fx : k€N) is norm dense in X* and, thus
(Fk) is an FMD for X* (The sequence (Fg) is always an FMD
of its closed linear span with (Ey) being its biorthogonals).

Th. Schlumprecht A new Proof of Zippin's Embedding Theorem and Applications



A finite dimensional Markushevich decomposition is called
@ c-norming, for 0 < c <1, if

sup IX*(x)| > c||x]|.
x*€span(F:keN),[|x*|| <1

@ shrinking if span(Fk : k€N) is norm dense in X* and, thus

(Fk) is an FMD for X* (The sequence (Fg) is always an FMD
of its closed linear span with (Ey) being its biorthogonals).

Theorem

Markushevich, 1943: Every separable Banach space has a
1-norming Markushevich basis (ej), which can be chosen to be
shrinking if X* is separable.

v
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A finite dimensional Markushevich decomposition is called
@ c-norming, for 0 < c <1, if

sup IX*(x)| > c||x]|.
x*€span(F:keN),[|x*|| <1

@ shrinking if span(Fk : k€N) is norm dense in X* and, thus
(Fk) is an FMD for X* (The sequence (Fg) is always an FMD
of its closed linear span with (Ey) being its biorthogonals).

Theorem

Markushevich, 1943: Every separable Banach space has a
1-norming Markushevich basis (ej), which can be chosen to be
shrinking if X* is separable.

Ovsepian & Pefczyriski, 1975: (ej) can be chosen to be bounded,
i.e. sup;j_y ||| - lef || < ¢, ¢ universal.

v
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A finite dimensional Markushevich decomposition is called
@ c-norming, for 0 < c <1, if

sup IX*(x)| > c||x]|.
x*€span(F:keN),[|x*|| <1

@ shrinking if span(Fk : k€N) is norm dense in X* and, thus
(Fk) is an FMD for X* (The sequence (Fg) is always an FMD
of its closed linear span with (Ey) being its biorthogonals).

Theorem

Markushevich, 1943: Every separable Banach space has a
1-norming Markushevich basis (ej), which can be chosen to be
shrinking if X* is separable.

Ovsepian & Pefczyriski, 1975: (ej) can be chosen to be bounded,
i.e. sup;j_y ||| - lef || < ¢, ¢ universal.

Petczynski, 1976: For € > 0, (ej) can be chosen so that,

sup;y lgjl - el < 1+¢.

v
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Assume (E;) is an FMD of X with biorthogonals (F;).

Th. Schlumprecht A new Proof of Zippin's Embedding Theorem and Applications



Assume (E;) is an FMD of X with biorthogonals (F;).
By minimality: X = Ex @ span(E; : j # k), for k € N, and let

PE X =E,®span(Ej:j #k) = Ex,  x1+x > x

which is a bounded (but not necessarily uniformly in k € N)
projection.
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Assume (E;) is an FMD of X with biorthogonals (F;).
By minimality: X = Ex @ span(E; : j # k), for k € N, and let

PE X =E,®span(Ej:j #k) = Ex,  x1+x > x

which is a bounded (but not necessarily uniformly in k € N)
projection. For A C N finite we put

E
Pi=Y Piand Pia=1d =) Pr.
neA neA
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Assume (E;) is an FMD of X with biorthogonals (F;).
By minimality: X = Ex @ span(E; : j # k), for k € N, and let

PE X =E,®span(Ej:j #k) = Ex,  x1+x > x

which is a bounded (but not necessarily uniformly in k € N)
projection. For A C N finite we put

E
Pi=Y Piand Pia=1d =) Pr.
neA neA

For x € X and x* € X*:
suppg(x) = {JEN: PF(x) # 0} = {jeN: x|g, # 0} and
suppg(x*) = {J€N: x*[g, # 0}
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Assume (E;) is an FMD of X with biorthogonals (F;).
By minimality: X = Ex @ span(E; : j # k), for k € N, and let

PE X =E,®span(Ej:j #k) = Ex,  x1+x > x

which is a bounded (but not necessarily uniformly in k € N)
projection. For A C N finite we put

Pi=Y Piand Pia=1d =) Pr.
neA neA
For x € X and x* € X™:
suppg(x) = {jEN: PF(x) # 0} = {j €N : x|g, # 0} and
suppg(x*) = {/ €N : x*[g # 0}
rge(x), rge(x*) = smallest interval containing suppg(x), resp.
suppge(x”).
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Finite Dimensional Decompositions

An FMD (E,) is called a Finite Dimensional Decomposition of X
(FDD) if every x € X can be uniquely written as
o0

X = Zx,,, with x, € E,, for n € N,
n=1
or, equivalently, if b = sup,,<, HPf11 n]H < oo (Projection
Constant),

Th. Schlumprecht A new Proof of Zippin's Embedding Theorem and Applications



Finite Dimensional Decompositions

An FMD (E,) is called a Finite Dimensional Decomposition of X
(FDD) if every x € X can be uniquely written as
o0

X = Zx,,, with x, € E,, for n € N,
n=1
or, equivalently, if b = sup,,<, HP[ﬁw]H < oo (Projection
Constant),
and an FDD (E,) is called unconditional if above representation of
every x € X converges unconditional, or, equivalently, if
U = SUPACN, finite HPEH < 00.
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Two simple, but Key Arguments

Assume that X* is separable and that (E/) is a shrinking Finite
Dimensional Markushevich Decomposition. (F/) its biorthogonal
sequence.

Lemma

(E!) can be blocked to (E,) (i.e. En = span(E] : in—1 < i < ip), for
some i, /* ©0), so that
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Two simple, but Key Arguments

Assume that X* is separable and that (E/) is a shrinking Finite
Dimensional Markushevich Decomposition. (F/) its biorthogonal
sequence.

Lemma

(E!) can be blocked to (E,) (i.e. En = span(E] : in—1 < i < ip), for
some i, /* ©0), so that

@ every, with respect to (E;j), skipped block sequence (x,) in X
(max rge(xn—1) < min rge(x,) — 1) is basic with projection
constant at most 3.
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Two simple, but Key Arguments

Assume that X* is separable and that (E/) is a shrinking Finite
Dimensional Markushevich Decomposition. (F/) its biorthogonal
sequence.

Lemma

(E!) can be blocked to (E,) (i.e. En = span(E] : in—1 < i < ip), for
some i, /* ©0), so that

@ every, with respect to (E;j), skipped block sequence (x,) in X
(max rge(xn—1) < min rge(x,) — 1) is basic with projection
constant at most 3.

e every, with respect to (F;), skipped block sequence (x}) in X*

n
(Fn = span(F! : in—1 < i < iy)) is basic with projection
constant at most 3.

Th. Schlumprecht A new Proof of Zippin's Embedding Theorem and Applications



Two simple, but Key Arguments

Assume that X* is separable and that (E/) is a shrinking Finite
Dimensional Markushevich Decomposition. (F/) its biorthogonal
sequence.

Lemma

(E!) can be blocked to (E,) (i.e. En = span(E] : in—1 < i < ip), for
some i, /* ©0), so that

@ every, with respect to (E;j), skipped block sequence (x,) in X
(max rge(xn—1) < min rge(x,) — 1) is basic with projection
constant at most 3.

e every, with respect to (F;), skipped block sequence (x}) in X*
(Fn = span(F! : in—1 < i < iy)) is basic with projection
constant at most 3.

@ and, if X* has the unconditional tree property for some
constant C, every skipped block sequence (x;;) in X* with

n
respect to F,, is 2C-unconditional.
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Lemma (Johnson, 1977)

Let (ex) C (0,1). There exists a strictly increasing (ny) CN with:
For every x* € Bx» there exists (jk) € [1oeq{mk, nk +1,... nks1}
with ||X*|EJ/<”EJT< < gk, for k € N.
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Lemma (Johnson, 1977)

Let (ex) C (0,1). There exists a strictly increasing (ny) CN with:
For every x* € Bx» there exists (jk) € [1oeq{mk, nk +1,... nks1}
with ||X*|EJ/<”EJT< < gk, for k € N.

Follows from iterating the following:
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Lemma (Johnson, 1977)

Let (ex) C (0,1). There exists a strictly increasing (ny) CN with:
For every x* € Bx» there exists (jk) € [1oeq{mk, nk +1,... nks1}
with ||X*|EJ/<”EJT< < gk, for k € N.

Follows from iterating the following:

Given m € N and € > 0 there is an n > m so that for all x* € Bx-,
there is a j € [m, n], with ||x*[g | <e.
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Lemma (Johnson, 1977)

Let (ex) C (0,1). There exists a strictly increasing (nyx) CN with:
For every x* € Bx» there exists (jk) € [1oeq{mk, nk +1,... nks1}
with ||X*|EJ/<||EJT< < gk, for k € N.

Follows from iterating the following:

Given m € N and € > 0 there is an n > m so that for all x* € Bx-,
there is a j € [m, n], with ||x*[g | <e.

Since (E,) not necessarily FDD it could be that
Ix*[e,llgz << [IP7 (")l x+-
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Let (e4) C (0,1) so that >5° 1 ek < 15.
Apply Johnson's lemma to get the sequence (ny).
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Let (e4) C (0,1) so that >5° 1 ek < 15.

Apply Johnson's lemma to get the sequence (ny).

Let x* € SX*.

Choose ji € [[xZ1{nk, nk +1,... nk41}, so that [[x*|g, HEJ-’; < k.
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Let (e4) C (0,1) so that >5° 1 ek < 15.

Apply Johnson's lemma to get the sequence (ny).

Let x* € SX*.

Choose ji € [[xZ1{nk, nk +1,... nk41}, so that [[x*|g, HEJ-’; < k.
Use Hahn Banach to extend x*|g, to y; € X* with [y]| < ex.
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Let (e4) C (0,1) so that >5° 1 ek < 15.

Apply Johnson's lemma to get the sequence (ny).

Let x* € SX*.

Choose ji € [[xZ1{nk, nk +1,... nk41}, so that [[x*|g, HEJ-’; < k.
Use Hahn Banach to extend x*|g, to y; € X* with [y]| < ex.
Then take X* = x* — > "}2, yi.

Th. Schlumprecht A new Proof of Zippin's Embedding Theorem and Applications



Let (e4) C (0,1) so that >5° 1 ek < 15.

Apply Johnson's lemma to get the sequence (ny).

Let x* € SX*.

Choose jk € [[xZ1{nk, nk +1,... nk41}, so that [[x*|g, |
Use Hahn Banach to extend x*|g, to y; € X* with [y]| < ex.
Then take X* = x* — > "}2, yi.

Note: ||X* — x*[| <1/10 and X*[g, =0, for k =1,2....

Ex < Ek.
Jk
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Let (e4) C (0,1) so that >5° 1 ek < 15.

Apply Johnson's lemma to get the sequence (ny).

Let x* € SX*.

Choose jk € [[xZ1{nk, nk +1,... nk41}, so that [[x*|g, |
Use Hahn Banach to extend x*|g, to y; € X* with [y]| < ex.
Then take X* = x* — > "}2, yi.

Note: [%* —x*[| <1/10 and X*[g, =0, for k =1,2....
Conclusion: the set

Ex < Ek.
Jk

B* = {X* c BX* : 3 (‘/k) € Hiil{nlﬂnk + 17 nk—l—l}}7

x*g, =0, k=1,2,...

is %-norming the space X, so without loss of generality:

x|l = sup [x*(x)].
x*eB*
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We define
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We define

* * El(jk)EHC;ofl{nkank_Fla'--ank-i-l} }
B=<(x)CX": . = .
{( ) rge(x¢) C Uk-1,Jk), k € N, and || X702 x| <1

Th. Schlumprecht A new Proof of Zippin's Embedding Theorem and Applications



We define
* * 30k) € TTezi{me, ne+1, ... niega } }
B=<(x)CcX": N . 3 0 _x .
{( DEXT o (x0) © Geori) k€N, and | 55 xg < 1

Thus: B*:{Zx;‘:(x,’:)elﬁ%*}.
k=1
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We define

A0) € TTo2a{mes me+1,.. . nega} }
B = X* CX* : . .71 ) 9 9 )
{( J rge(Xi) C Uk—1,Jk)s k €N, and || 3202, x| < 1

Thus: B*:{Zx;:(XZ)EB*}.
k=1

The point of our construction will be that B will become the
norming set of our space Z, with FDD (Zy).
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We define

A0) € TTo2a{mes me+1,.. . nega} }
B = X* CX* : . .71 ) 9 9 )
{( J rge(Xi) C Uk—1,Jk)s k €N, and || 3202, x| < 1

Thus: B*:{Zx;:(XZ)EB*}.
k=1

The point of our construction will be that B will become the
norming set of our space Z, with FDD (Zy).

We define: Zx = @ji:lkii+1Ej (note the overlap!)
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We define

A0) € TTo2a{mes me+1,.. . nega} }
B = X* CX* : . .71 ) 9 9 )
{( J rge(Xi) C Uk—1,Jk)s k €N, and || 3202, x| < 1

Thus: B*:{Zx;:(XZ)EB*}.
k=1

The point of our construction will be that B will become the
norming set of our space Z, with FDD (Zy).
We define: Zx = @ji:lkii+1Ej (note the overlap!)
For (zx) € Coo( DY, Zk) put:

(e = sup |3 itz

(xx)eB ' 4

Z is then the completion of coo( 524 Zk) with respect to || - ||.
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Properties of Z
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Properties of Z

1) The map
X —2Z, xw— (Pﬁkihnkﬂ)(x) . k €N)

is an isometric embedding:
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Properties of Z

1) The map
X —2Z, xw— (Pﬁkihnkﬂ)(x) . k €N)

is an isometric embedding: Indeed, for x € X

1O = sup D" X (PE, ()
(XZ)EBk:I
= sup ) xi(x)
(XZ)EB;
= sup_ (D0x)(x) = sup Ix*(x)] = [IxIl
x*€B

(x)eB 5
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Q>



2) (Zx) is a Finite Dimensional Decomposition for Z, with
projection constant not larger than 3.



2) (Zk) is a Finite Dimensional Decomposition for Z, with
projection constant not larger than 3.
For z = (zx) € coo( D324 Zk), and m < n we have

n

[Pln@ll = sup | 3 xi(z0)

(XZ)EB k=m
< sup || (6iem| N2z
(x¢)eB z
n
< sup || S x| Dl
(x¢)eB k=m X

[ZyZGB* = (yi) €B, thus H(X*)Z:m|

n
2 <12
Jj=m

!

<3|z|

[(X,f) is a skipped block with respect to (FJ)}
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3) The set B (seen as subset of Bz+) is 1-norming Z, w*
compact, and the map

V:B— B, (x) Zxk,

is norm preserving, onto, and W*—continuous (but not
injective).
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3) The set B (seen as subset of Bz+) is 1-norming Z, w*
compact, and the map

V:B— B, (x) Zxk,

is norm preserving, onto, and w*-continuous (but not
injective).
4) For j = (k) € [Toe1{nk, nk +1,... nks1}, define
* * * koL Uk —
U =U"={x" e X" :x"|g, =0,keN}.
Then U* is w* closed and the map
& U — 7%, X" (Pl y(x") sk eN),

is a well defined isometric embedding, which is w* continuous.
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3) The set B (seen as subset of Bz+) is 1-norming Z, w*
compact, and the map

V:B— B, (x) Zxk,

is norm preserving, onto, and w*-continuous (but not
injective).
4) For j = (k) € [Toe1{nk, nk +1,... nks1}, define
Uf =U" = {x* € X" :x"[g, =0,k € N}.
Then U* is w* closed and the map
& U — 7%, X" (Pl y(x") sk eN),
is a well defined isometric embedding, which is w* continuous.
5) For every skipped block (z;) in B (with respect to (Z}")),
(W(z;)) is an isometrically equivalent to a skipped block in
X* with respect to (Fx). And for every skipped block (x) in
B with respect to Fj, (ij.(x;)) is an isometrically equivalent
skipped block in B with respect to (Z*)

Th. Schlumprecht A new Proof of Zippin's Embedding Theorem and Applications



Th. Schlumprecht A new Proof of Zippin's Embedding Theorem and Applications



6) Y Banach space, NeN, Ty :Y — Z, for k=1,2,...N.
We want to find an expression of the norm of
T:Y—2Z, y—(Tuly):k=1,...N).
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6) Y Banach space, NeN, Ty :Y — Z, for k=1,2,...N.
We want to find an expression of the norm of
T:Y—2Z, y—(Tuly):k=1,...N).
Example: PZ :Z — Z, (zj: jeN) — (z;: j€A), ACN fin.
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6) Y Banach space, NeN, Ty :Y — Z, for k=1,2,...N.
We want to find an expression of the norm of
T:Y—2Z, y—(Tuly):k=1,...N).
Example: PZ :Z — Z, (zj: jeN) — (z;: j€A), ACN fin.
Define

By ={(x;) €B:xj 1 =Xyyo=-..=0}

* * El(Jk) EHLV—l{nk)nk—i_la"'unk—‘rl}
= ()R C X KT k=t :
{ N rge(x*) C U1, k), k€N, || 20, Xl <1
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6) Y Banach space, NeN, Ty :Y — Z, for k=1,2,...N.
We want to find an expression of the norm of
T:Y—2Z, y—(Tuly):k=1,...N).
Example: PZ :Z — Z, (z: j€N) — (z;: j€A), ACN fin.
Define
By ={(x;) €B:xj 1 =Xyyo=-..=0}
- N
_ (X;)LV:I X EI(J:) € szl.{nk, ne+1, .. ¥ nk+*1}
rgE(X )C(Jk—l7./k)7 k€N, || Zk:l Xk” <1
For x* = (x;)N_, € By, let

Tx+ :span(x; : 1 < k < N) Zakxk — ZakaOTk
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6) Y Banach space, NeN, Ty :Y — Z, for k=1,2,...N.
We want to find an expression of the norm of
T:Y—2Z, y—(Tuly):k=1,...N).
Example: PZ :Z — Z, (z: j€N) — (z;: j€A), ACN fin.
Define
By ={(x;) €B:xj 1 =Xyyo=-..=0}
- N
— )N X EI(J:) € szl.{nk, ne+1,.. ¥ nk+*1}
rgE(X )C(Jk—l7./k)7 k€N, || Zk:l Xk” <1
For x* = (x;)N_, € By, let
Tx+ :span(x; : 1 < k < N) Zakxk — ZakaOTk

Then || Tl[L(y,z) = suPx-cp, |l T;*H-
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6) Y Banach space, NeN, Ty :Y — Z, for k=1,2,...N.
We want to find an expression of the norm of
T:Y—2Z, y—(Tuly):k=1,...N).
Example: PZ :Z — Z, (z: j€N) — (z;: j€A), ACN fin.
Define
By ={(x;) €B:xj 1 =Xyyo=-..=0}
* * El(Jk) EHLV—l{nk)nk—i_la"'unk—‘rl}
= (xR cXx*: ) P k=1 .
{ k=L rgE(X )C(./k—la./k)7k€N7||Z£I:1Xk”§1
For x* = (x;)N_, € By, let
Tx+ :span(x; : 1 < k < N) Zakxk — ZakaOTk

Then || Tl (y,z) = supxz=cp, | Ty*H-
If T = PZ, and thus T, = PkZ, ifkeA and T, =0
otherwise. Then

= sup I Z

Al —supHZ

keA keA
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Open Problems
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Open Problems

Problem

Does every separable super reflexive space X embed into a super
reflexive space with basis?
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Open Problems

Problem

Does every separable super reflexive space X embed into a super
reflexive space with basis?

This problem has two parts.
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Open Problems

Problem

Does every separable super reflexive space X embed into a super
reflexive space with basis?

This problem has two parts.

Problem (Infinite Dimensional Part)

Does every separable super reflexive space X embed into a super
reflexive space with an FDD?
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Open Problems

Problem

Does every separable super reflexive space X embed into a super
reflexive space with basis?

This problem has two parts.

Problem (Infinite Dimensional Part)

Does every separable super reflexive space X embed into a super
reflexive space with an FDD?

Problem (Finite Dimensional Part)

Assume that E is a finite dimensional space whose modulus of
uniform convexity is w(-). Is there a constant C (could depend on
w(-) but not on anything else) so that E is C-isomorphic to a
subspace of finite dimensional space F whose modulus of uniform
convexity is also w(-) (or a function v(r) only depending on w(-)),
so that F has a basis whose constant is at most C?7
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