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In 1964 Aleksander Pe lczyński asked the following question:

Does a separable reflexive Banach space embed into a reflexive
Banach space with a basis ?
Zippin, solved that problem positively in 1988 by proving:

Theorem (Zippin, 1988)

Every Banach space with separable dual, embeds into a space Z
with shrinking basis (ej), i.e. the biorthogonal sequence (e∗j ) is a
basis for Z ∗.

and then applying

Theorem (Davis, Figiel, Johnson, and Pe lczyński, 1974)

A weakly compact operator from a Banach space X into a Banach
space Z , which has a shrinking basis, factors through a reflexive
space with a basis.
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Universality and Embedding Problems

Universality Problems

Assume (P) is a property of (separable) Banach spaces.

Is there a separable Banach space Xu having property (P), (or
some slightly weaker property (P’)) which is universal for all
Banach spaces with property (P), i.e. every separable Banach
space X with property (P) embeds (isomorphically) into Xu?

Often it is easier to solve a universality problem within the class of
Banach spaces with (Schauder) bases, or with FDDs.
In that case a Universality Problem becomes an Embedding
Problem.

Embedding Problems

Assume (P) is a property of (separable) Banach spaces.

Does every Banach space X with property (P) embed into a
Banach space Z with property (P) having a (certain) basis/FDD ?
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Examples Universality and Embedding Results

(Banach) C [0, 1] is universal for all separable Banach spaces.

(Szlenk, 1968) There is no separable reflexive space universal
for all separable reflexive spaces.

Idea: define Sz(X ) ∈ (0, ω1] for separable X , so that:
Sz(X ) < ω1 ⇐⇒ X ∗ separable,
Sz(x) monotone with respect to isomorphic embeddings,
∀α<ω1 ∃X separable & reflexive with Sz(X ) > α.

(Odell & S, 2002) Characterization of subspaces of (⊕∞n=1Fn)`p ,

(Odell & S, 2006) Existence of a separable reflexive space
universal for all separable super reflexive (uniform convex)
spaces,

(Dodos & Ferenczi, 2007) Existence of spaces with separable
dual, universal for spaces spaces with Szlenk index below a
given countable ordinal α,

(Johnson & Zheng 2008, 2011) Characterization of subspaces
of spaces having an unconditional basis.
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Quantified Versions of Zippin’s Theorem

Problem (Pe lczyński, 2005)

Assume X has Szlenk index Sz(X ) = ωα, α < ω1.
• Does X embed into a space Z with a basis having the same
Szlenk index?
• If X is reflexive, can Z be chosen to be reflexive, with
Sz(Z ∗) = Sz(X ∗)?
• Does the class of spaces X , for which Sz(X ) ≤ ωα, admit a
universal space Xα, for which Sz(Xα) = ωα+1?
• Does the class of reflexive separable spaces X , for which
Sz(X ),Sz(X ∗) ≤ ωα , admit a universal space Xα, which is
reflexive and for which Sz(Xα),Sz(X ∗α) = ωα+1?

Answers:
Odell, Zsak & S (2007) and Freeman, Odell, Zsak & S (2009), yes
to all questions if α = βω,
Causey (2013 and 2014), yes (for all α < ω1) but for Szlenk index
of Z in embedding problem we have: Sz(Z ) = ωα+1, resp.
Sz(Z ) = ωα+1.
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Remark

The proofs of these embedding results start by using Zippin’s
Theorem and embed our given space X into a space Y with
shrinking basis, respectively, in the reflexive case, with shrinking
and boundedly complete basis.

Then, using the special assumptions on X , renorm the space Y ,
not necessarily in an equivalent way, but so that on the subspace
of Y which is isomorphic to X , the norm stays equivalent to the
original one.

Our goal:
A new proof of Zippin’s Embedding Theorem, in which for a given
space X , with X ∗ separable, or X separable and reflexive, the
space Y , in which X embeds, inherits as many properties from X
as possible.
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Remark

All known proofs of Zippin’s Theorem (Zippin’s original proof and
a proof by Ghoussoub, Maurey, and Schachermayer, as well as
proof by Bossard) start by embedding X into Z = C (∆),
∆ =Cantor set (which has a basis), and then modifying Z until the
modification has a shrinking basis but still contains X .

Disadvantage of that approach:
Not much else is really known about the space Z .
Our approach will be different:
We start with a Markushevich basis (ei ) of X (every separable
space has such a basis) or more generally, a Finite Dimensional
Markushevich Decomposition (FMD), and augment it just enough
to produce a space Z with a shrinking Finite Dimensional
Decomposition (FDD), which contains X .
Then we use a construction of Lindenstrauss and Tzafriri to embed
Z in a space W with a shrinking basis.
As we will see, several properties of X will be automatically
inherited by Z and W .
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Main Result

Theorem

Assume that X is a Banach space with separable dual. Then X
embeds into a space W with a shrinking basis (wi ), so that

a) Sz(W ) = Sz(X ), where Sz(X ) is the Szlenk index of X ,

b) if X is reflexive then W is reflexive and Sz(X ∗) = Sz(W ∗),

c) if X ∗ has the w∗-Unconditional Tree Property then (wi ) is
unconditional, and

d) if X is reflexive and has the w-Unconditional Tree Property
then (wi ) is unconditional.

w∗-Unconditional Tree Property (Johnson-Zheng):
Every w∗-null tree in SX∗ , (inf. countably branching, inf.
countable height) has a branch which is unconditional.
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FDD version of the Main result

We first prove the following FDD version of our main result, and
then apply a construction of Lindenstrauss and Tzafriri, in order to
get from FDD’s to bases.

Theorem

Assume that X is a Banach space with separable dual. Then X
embeds into a space Z with a shrinking FDD (Zi ) so that

a) Sz(Z ) = Sz(X ),

b) if X is reflexive then Z is reflexive and Sz(X ∗) = Sz(Z ∗), and

c) if X ∗ has an skipped unconditional FMD then (Zi ) is
unconditional.
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Finite Dimensional Markushevich Decompositions

Assume X is a separable Banach space. A sequence (En) of finite
dimensional subspaces of X is called Finite Dimensional
Markushevich Decomposition (FMD) of X if

1 (Ek) is fundamental: X = span(Ej : j ∈ N),

2 (Ek) is minimal: Ek ∩ span(Ej : j ∈ N \ {k}) = {0}, k ∈ N.
In that case we call (Fj), with

Fk = span(Ej : j ∈ N \ {k})⊥ = {x∗ ∈ X ∗ : x∗|span(Ej :j∈N\{k}) ≡ 0}

the biorthogonal sequence of (Ek), and

3 (Ek) is total:
∀x ∈ X (∀k ∈ N, x∗ ∈ Fk x∗(x) = 0)⇒ x = 0
(i.e. span(Fk : k∈N) is w∗-dense in X ∗).

If dim(Ek) = 1, for all k ∈ N, say Ek = span(ek), then (ek) is
called a Markushevich basis.
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A finite dimensional Markushevich decomposition is called

1 c- norming, for 0 < c ≤ 1, if

sup
x∗∈span(Fk :k∈N),‖x∗‖≤1

|x∗(x)| ≥ c‖x‖.

2 shrinking if span(Fk : k∈N) is norm dense in X ∗ and, thus
(Fk) is an FMD for X ∗ (The sequence (Fk) is always an FMD
of its closed linear span with (EK ) being its biorthogonals).

Theorem

Markushevich, 1943: Every separable Banach space has a
1-norming Markushevich basis (ej), which can be chosen to be
shrinking if X ∗ is separable.

Ovsepian & Pe lczyński, 1975: (ej) can be chosen to be bounded,
i.e. supj=1 ‖ej‖ · ‖e∗j ‖ < c, c universal.
Pe lczyński, 1976: For ε > 0, (ej) can be chosen so that,
supj=1 ‖ej‖ · ‖e∗j ‖ < 1 + ε.
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Ovsepian & Pe lczyński, 1975: (ej) can be chosen to be bounded,
i.e. supj=1 ‖ej‖ · ‖e∗j ‖ < c, c universal.
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Assume (Ej) is an FMD of X with biorthogonals (Fj).

By minimality: X = Ek ⊕ span(Ej : j 6= k), for k ∈ N, and let

PE
k : X = Ek ⊕ span(Ej : j 6= k)→ Ek , x1 + x2 7→ x1

which is a bounded (but not necessarily uniformly in k ∈ N)
projection. For A ⊂ N finite we put

PE
A =

∑
n∈A

PE
k and PE

N\A = Id −
∑
n∈A

PE
n .

For x ∈ X and x∗ ∈ X ∗:
suppE (x) = {j ∈N : PE

j (x) 6= 0} = {j ∈N : x |Fk
6= 0} and

suppE (x∗) = {j ∈N : x∗|Ej
6= 0}

rgE (x), rgE (x∗) = smallest interval containing suppE (x), resp.
suppE (x∗).

Th. Schlumprecht A new Proof of Zippin’s Embedding Theorem and Applications



Assume (Ej) is an FMD of X with biorthogonals (Fj).

By minimality: X = Ek ⊕ span(Ej : j 6= k), for k ∈ N, and let

PE
k : X = Ek ⊕ span(Ej : j 6= k)→ Ek , x1 + x2 7→ x1

which is a bounded (but not necessarily uniformly in k ∈ N)
projection.

For A ⊂ N finite we put

PE
A =

∑
n∈A

PE
k and PE

N\A = Id −
∑
n∈A

PE
n .

For x ∈ X and x∗ ∈ X ∗:
suppE (x) = {j ∈N : PE

j (x) 6= 0} = {j ∈N : x |Fk
6= 0} and

suppE (x∗) = {j ∈N : x∗|Ej
6= 0}

rgE (x), rgE (x∗) = smallest interval containing suppE (x), resp.
suppE (x∗).

Th. Schlumprecht A new Proof of Zippin’s Embedding Theorem and Applications



Assume (Ej) is an FMD of X with biorthogonals (Fj).

By minimality: X = Ek ⊕ span(Ej : j 6= k), for k ∈ N, and let

PE
k : X = Ek ⊕ span(Ej : j 6= k)→ Ek , x1 + x2 7→ x1

which is a bounded (but not necessarily uniformly in k ∈ N)
projection. For A ⊂ N finite we put

PE
A =

∑
n∈A

PE
k and PE

N\A = Id −
∑
n∈A

PE
n .

For x ∈ X and x∗ ∈ X ∗:
suppE (x) = {j ∈N : PE

j (x) 6= 0} = {j ∈N : x |Fk
6= 0} and

suppE (x∗) = {j ∈N : x∗|Ej
6= 0}

rgE (x), rgE (x∗) = smallest interval containing suppE (x), resp.
suppE (x∗).

Th. Schlumprecht A new Proof of Zippin’s Embedding Theorem and Applications



Assume (Ej) is an FMD of X with biorthogonals (Fj).

By minimality: X = Ek ⊕ span(Ej : j 6= k), for k ∈ N, and let

PE
k : X = Ek ⊕ span(Ej : j 6= k)→ Ek , x1 + x2 7→ x1

which is a bounded (but not necessarily uniformly in k ∈ N)
projection. For A ⊂ N finite we put

PE
A =

∑
n∈A

PE
k and PE

N\A = Id −
∑
n∈A

PE
n .

For x ∈ X and x∗ ∈ X ∗:
suppE (x) = {j ∈N : PE

j (x) 6= 0} = {j ∈N : x |Fk
6= 0} and

suppE (x∗) = {j ∈N : x∗|Ej
6= 0}

rgE (x), rgE (x∗) = smallest interval containing suppE (x), resp.
suppE (x∗).

Th. Schlumprecht A new Proof of Zippin’s Embedding Theorem and Applications



Assume (Ej) is an FMD of X with biorthogonals (Fj).

By minimality: X = Ek ⊕ span(Ej : j 6= k), for k ∈ N, and let

PE
k : X = Ek ⊕ span(Ej : j 6= k)→ Ek , x1 + x2 7→ x1

which is a bounded (but not necessarily uniformly in k ∈ N)
projection. For A ⊂ N finite we put

PE
A =

∑
n∈A

PE
k and PE

N\A = Id −
∑
n∈A

PE
n .

For x ∈ X and x∗ ∈ X ∗:
suppE (x) = {j ∈N : PE

j (x) 6= 0} = {j ∈N : x |Fk
6= 0} and

suppE (x∗) = {j ∈N : x∗|Ej
6= 0}

rgE (x), rgE (x∗) = smallest interval containing suppE (x), resp.
suppE (x∗).

Th. Schlumprecht A new Proof of Zippin’s Embedding Theorem and Applications



Finite Dimensional Decompositions

An FMD (En) is called a Finite Dimensional Decomposition of X
(FDD) if every x ∈ X can be uniquely written as

x =
∞∑

n=1

xn, with xn ∈ En, for n ∈ N,

or, equivalently, if b = supm≤n

∥∥PE
[m,n]

∥∥ <∞ (Projection

Constant),

and an FDD (En) is called unconditional if above representation of
every x ∈ X converges unconditional, or, equivalently, if
u = supA⊂N, finite

∥∥PE
A

∥∥ <∞.
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Two simple, but Key Arguments

Assume that X ∗ is separable and that (E ′i ) is a shrinking Finite
Dimensional Markushevich Decomposition. (F ′i ) its biorthogonal
sequence.

Lemma

(E ′i ) can be blocked to (En) (i.e. En = span(E ′i : in−1 < i ≤ in), for
some in ↗∞), so that

every, with respect to (Ej), skipped block sequence (xn) in X
(max rgE (xn−1) < min rgE (xn)− 1) is basic with projection
constant at most 3.

every, with respect to (Fj), skipped block sequence (x∗n ) in X ∗

(Fn = span(F ′i : in−1 < i ≤ in)) is basic with projection
constant at most 3.

and, if X ∗ has the unconditional tree property for some
constant C , every skipped block sequence (x∗n ) in X ∗ with
respect to Fn is 2C -unconditional.
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Lemma (Johnson, 1977)

Let (εk) ⊂ (0, 1). There exists a strictly increasing (nk)⊂N with:
For every x∗ ∈ BX∗ there exists (jk) ∈

∏∞
k=1{nk , nk + 1, . . . nk+1}

with ‖x∗|Ejk
‖E∗jk < εk , for k ∈ N.

Follows from iterating the following:

Lemma

Given m ∈ N and ε > 0 there is an n > m so that for all x∗ ∈ BX∗ ,
there is a j ∈ [m, n], with ‖x∗|Ej

‖ < ε.

Remark

Since (En) not necessarily FDD it could be that
‖x∗|En‖E∗K << ‖P

E
n (x∗)‖X∗ .
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Let (εk) ⊂ (0, 1) so that
∑∞

k=1 εk <
1

10 .
Apply Johnson’s lemma to get the sequence (nk).
Let x∗ ∈ SX∗ .
Choose jk ∈

∏∞
k=1{nk , nk + 1, . . . nk+1}, so that ‖x∗|Ejk

‖E∗jk < εk .

Use Hahn Banach to extend x∗|Ejk
to y∗k ∈ X ∗ with ‖y∗k ‖ < εk .

Then take x̃∗ = x∗ −
∑∞

k=1 y∗k .
Note: ‖x̃∗ − x∗‖ ≤ 1/10 and x̃∗|Ejk

≡ 0, for k = 1, 2 . . . .
Conclusion: the set

B∗ =

{
x∗ ∈ BX∗ :

∃ (jk) ∈
∏∞

k=1{nk , nk + 1, . . . nk+1}
x∗|Ejk

≡ 0, k = 1, 2, . . .

}
,

is 1
2 -norming the space X , so without loss of generality:

‖x‖ = sup
x∗∈B∗

|x∗(x)|.
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We define

B =

{
(x∗k )⊂X ∗ :

∃(jk) ∈
∏∞

k=1{nk , nk +1, . . . , nk+1}
rgE (x∗k ) ⊂ (jk−1, jk), k ∈ N, and ‖

∑∞
k=1 x∗k‖ ≤ 1

}
.

Thus: B∗ =

{ ∞∑
k=1

x∗k : (x∗k ) ∈ B∗
}
.

The point of our construction will be that B will become the
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Properties of Z

1) The map

I : X → Z , x 7→ (PE
(nk−1,nk+1)(x) : k ∈ N)

is an isometric embedding:

Indeed, for x ∈ X

‖I (x)‖ = sup
(x∗k )∈B

∞∑
k=1

x∗k (PE
(nk−1,nk+1)(x))

= sup
(x∗k )∈B

∞∑
k=1

x∗k (x)

= sup
(x∗k )∈B

( ∞∑
k=1

x∗k

)
(x) = sup

x∗∈B
|x∗(x)| = ‖x‖.
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2) (Zk) is a Finite Dimensional Decomposition for Z , with
projection constant not larger than 3.

For z = (zk) ∈ c00

(
⊕∞k=1 Zk

)
, and m ≤ n we have

∥∥PZ
[m,n](z)

∥∥ = sup
(x∗k )∈B

∣∣∣ n∑
k=m

x∗k (zk)
∣∣∣

≤ sup
(x∗k )∈B

∥∥∥(x∗k )n
k=m

∥∥∥
Z∗
‖z‖Z

≤ sup
(x∗k )∈B

∥∥∥ n∑
k=m

x∗k

∥∥∥
X∗
‖z‖Z[∑

y∗k ∈B∗ ⇒ (y∗k )∈B, thus
∥∥(x∗)n

k=m

∥∥
Z∗
≤
∥∥ n∑

j=m

x∗k
∥∥

X∗

]
≤ 3‖z‖[

(x∗k ) is a skipped block with respect to (Fj)
]
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3) The set B (seen as subset of BZ∗) is 1-norming Z , w∗

compact, and the map

Ψ : B→ B, (x∗k ) 7→
∞∑
j=1

x∗k ,

is norm preserving, onto, and w∗-continuous (but not
injective).

4) For j = (jk) ∈
∏∞

k=1{nk , nk + 1, . . . nk+1}, define

U∗
j

= U∗ =
{

x∗ ∈ X ∗ : x∗|Ejk
= 0, k ∈ N

}
.

Then U∗ is w∗ closed and the map

Φj : U∗ → Z ∗, x∗ 7→ (PF
(jk−1,jk )(x∗) : k ∈ N),

is a well defined isometric embedding, which is w∗ continuous.
5) For every skipped block (z∗k ) in B (with respect to (Z ∗j )),

(Ψ(z∗k )) is an isometrically equivalent to a skipped block in
X ∗ with respect to (Fk). And for every skipped block (x∗k ) in
B with respect to Fj ,

(
Φj(x∗k )

)
is an isometrically equivalent

skipped block in B with respect to (Z ∗j ).
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6) Y Banach space, N ∈ N, Tk : Y → Zk , for k = 1, 2, . . .N.
We want to find an expression of the norm of
T : Y → Z , y 7→ (Tk(y) : k = 1, . . .N).

Example: PZ
A : Z → Z , (zj : j ∈N) 7→ (zj : j ∈A), A⊂N fin.

Define

BN =
{

(x∗k ) ∈ B : x∗N+1 = x∗N+2 = . . . = 0
}

≡

{
(x∗k )N

k=1⊂X ∗ :
∃(jk) ∈

∏N
k=1{nk , nk +1, . . . , nk+1}

rgE (x∗)⊂(jk−1, jk), k∈N, ‖
∑N

k=1 x∗k‖≤1

}
For x∗ = (x∗k )N

k=1 ∈ BN , let

Tx∗ : span(x∗k : 1 ≤ k ≤ N)→ Y ∗,
∑

akx∗k 7→
∑

akx∗k◦Tk .

Then ‖T‖L(Y ,Z) = supx∗∈BN
‖Tx∗‖.

If T = PZ
A , and thus Tk = PZ

k , if k ∈ A, and Tk = 0
otherwise. Then

‖PZ
A ‖ = sup

x∈B

∥∥∑
k∈A

x∗k
∥∥

Z∗
= sup

x∈B

∥∥∑
k∈A

x∗k
∥∥

X∗ .
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If T = PZ
A , and thus Tk = PZ

k , if k ∈ A, and Tk = 0
otherwise. Then

‖PZ
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x∗k
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X∗ .
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Open Problems

Problem

Does every separable super reflexive space X embed into a super
reflexive space with basis?

This problem has two parts.

Problem (Infinite Dimensional Part)

Does every separable super reflexive space X embed into a super
reflexive space with an FDD?

Problem (Finite Dimensional Part)

Assume that E is a finite dimensional space whose modulus of
uniform convexity is w(·). Is there a constant C (could depend on
w(·) but not on anything else) so that E is C -isomorphic to a
subspace of finite dimensional space F whose modulus of uniform
convexity is also w(·) (or a function v(r) only depending on w(·)),
so that F has a basis whose constant is at most C ?
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