An ℓ_1 preserving operator on $L_1(0, 1)$ which is not an isomorphism

Gideon Schechtman

Joint work with Bill Johnson, Amir Nasseri and Tomasz Tkocz

Maresias, Sao Paulo, Brazil, August 2014

イロト イ理ト イヨト イヨト

main Results motivation Th 2 implies Th 1

• ℓ_1 preserving non-isomorphism

Theorem 1: There is an operator $T : L_1(0, 1) \rightarrow L_1(0, 1)$ that is an isomorphism when restricted to every subspace isomorphic to ℓ_1 but is not an isomorphism.

• Restricted invertible operator with large kernel

Theorem 2: There is an operator $T : L_1(0, 1) \rightarrow L_1(0, 1)$ such that for some $\varepsilon, \delta > 0$ $||Tf|| \ge \delta ||f||$ for all *f* with $|\text{supp}f| \le \varepsilon$ but Ker *T* is infinite dimensional.

ヘロン 人間 とくほ とくほ とう

main Results motivation Th 2 implies Th 1

• ℓ_1 preserving non-isomorphism

Theorem 1: There is an operator $T : L_1(0, 1) \rightarrow L_1(0, 1)$ that is an isomorphism when restricted to every subspace isomorphic to ℓ_1 but is not an isomorphism.

• Restricted invertible operator with large kernel

Theorem 2: There is an operator $T : L_1(0, 1) \rightarrow L_1(0, 1)$ such that for some $\varepsilon, \delta > 0$ $||Tf|| \ge \delta ||f||$ for all *f* with $|\operatorname{supp} f| \le \varepsilon$ but Ker*T* is infinite dimensional.

ヘロン 人間 とくほ とくほ とう

main Results motivation Th 2 implies Th 1

some motivation

Although this was not our initial motivation, we found out that there is quite extensive literature on the subject.

An operator $T: X \to Y$ is called Tauberian if $T^{**-1}(Y) = X$.

The notion was termed and studied by Kalton and Wilansky [76].

A recent book by Gonzalez and Martinez-Abejon [2010] is recommended to anybody interested.

In particular the book deals extensively with Tauberian operators from L_1 spaces and basically contains the following:

イロト 不得 とくほ とくほ とうほ

main Results motivation Th 2 implies Th 1

some motivation

Although this was not our initial motivation, we found out that there is quite extensive literature on the subject.

An operator $T: X \to Y$ is called Tauberian if $T^{**-1}(Y) = X$.

The notion was termed and studied by Kalton and Wilansky [76].

A recent book by Gonzalez and Martinez-Abejon [2010] is recommended to anybody interested.

In particular the book deals extensively with Tauberian operators from L_1 spaces and basically contains the following:

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

main Results motivation Th 2 implies Th 1

some motivation

Although this was not our initial motivation, we found out that there is quite extensive literature on the subject.

An operator $T: X \to Y$ is called Tauberian if $T^{**-1}(Y) = X$.

The notion was termed and studied by Kalton and Wilansky [76].

A recent book by Gonzalez and Martinez-Abejon [2010] is recommended to anybody interested.

In particular the book deals extensively with Tauberian operators from L_1 spaces and basically contains the following:

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

main Results motivation Th 2 implies Th 1

some motivation

Although this was not our initial motivation, we found out that there is quite extensive literature on the subject.

An operator $T: X \to Y$ is called Tauberian if $T^{**-1}(Y) = X$.

The notion was termed and studied by Kalton and Wilansky [76].

A recent book by Gonzalez and Martinez-Abejon [2010] is recommended to anybody interested.

In particular the book deals extensively with Tauberian operators from L_1 spaces and basically contains the following:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

main Results motivation Th 2 implies Th 1

some motivation

Theorem [G,M-A]: Let $T : L_1(0, 1) \rightarrow Y$. TFAE

0. T is Tauberian

- For all normalized disjoint sequence {x_i}, lim inf_{i→∞} || Tx_i|| > 0
- If {*x_i*} is equivalent to the unit vector basis of ℓ₁ then there is an *N* such that *T*<sub>[[*x_i*][∞]_{ℓ₁}, is an isomorphism.
 </sub>
- 3. there is $\varepsilon, \delta > 0$ such that $||Tf|| > \varepsilon$ for all *f* with $|\text{supp}(f)| < \delta$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

main Results motivation Th 2 implies Th 1

some motivation

Theorem [G,M-A]: Let $T : L_1(0,1) \rightarrow Y$. TFAE

0. T is Tauberian

- 1. For all normalized disjoint sequence $\{x_i\}$, $\liminf_{i\to\infty} ||Tx_i|| > 0$
- If {*x_i*} is equivalent to the unit vector basis of ℓ₁ then there is an *N* such that *T*_{|[*x_i*][∞]_{2,i}} is an isomorphism.
- 3. there is $\varepsilon, \delta > 0$ such that $||Tf|| > \varepsilon$ for all *f* with $|\text{supp}(f)| < \delta$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

main Results motivation Th 2 implies Th 1

some motivation

Theorem [G,M-A]: Let $T : L_1(0,1) \rightarrow Y$. TFAE

- 0. T is Tauberian
- 1. For all normalized disjoint sequence $\{x_i\}$, $\liminf_{i\to\infty} ||Tx_i|| > 0$
- If {*x_i*} is equivalent to the unit vector basis of ℓ₁ then there is an *N* such that *T*_{|[*x_i*][∞]_{LM}} is an isomorphism.
- 3. there is $\varepsilon, \delta > 0$ such that $||Tf|| > \varepsilon$ for all f with $|\text{supp}(f)| < \delta$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

main Results motivation Th 2 implies Th 1

some motivation

Theorem [G,M-A]: Let $T : L_1(0,1) \rightarrow Y$. TFAE

- 0. T is Tauberian
- 1. For all normalized disjoint sequence $\{x_i\}$, $\liminf_{i\to\infty} ||Tx_i|| > 0$
- If {*x_i*} is equivalent to the unit vector basis of ℓ₁ then there is an *N* such that *T*<sub>|[*x_i*][∞]_{*i*=*N*} is an isomorphism.
 </sub>
- 3. there is $\varepsilon, \delta > 0$ such that $||Tf|| > \varepsilon$ for all f with $|\text{supp}(f)| < \delta$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

main Results motivation Th 2 implies Th 1

some motivation

If *R* is a reflexive subspace of $L_1 = L_1[0, 1]$, and $T : L_1 \rightarrow L_1/R$ is the quotient map then *T* satisfy 3 and so is Tauberian. In the book Gonzalez and Martinez-Abejon ask whether a Tauberian $T : L_1 \rightarrow L_1$ can have an infinite dimensional kernel. Our second theorem answers this positively:

Theorem: There is an operator $T : L_1(0, 1) \to L_1(0, 1)$ such that for some $\varepsilon, \delta > 0$ $||Tf|| \ge \delta ||f||$ for all *f* with $|\text{supp}(f)| \le \varepsilon$ but Ker *T* is infinite dimensional.

Recall that it's unknown whether there is a reflexive $R \subset L_1$ such that L_1/R embeds back into L_1 .

main Results motivation Th 2 implies Th 1

some motivation

If *R* is a reflexive subspace of $L_1 = L_1[0, 1]$, and $T : L_1 \rightarrow L_1/R$ is the quotient map then *T* satisfy 3 and so is Tauberian. In the book Gonzalez and Martinez-Abejon ask whether a Tauberian $T : L_1 \rightarrow L_1$ can have an infinite dimensional kernel. Our second theorem answers this positively:

Theorem: There is an operator $T : L_1(0, 1) \to L_1(0, 1)$ such that for some $\varepsilon, \delta > 0$ $||Tf|| \ge \delta ||f||$ for all *f* with $|\text{supp}(f)| \le \varepsilon$ but Ker*T* is infinite dimensional.

Recall that it's unknown whether there is a reflexive $R \subset L_1$ such that L_1/R embeds back into L_1 .

main Results motivation Th 2 implies Th 1

some motivation

If *R* is a reflexive subspace of $L_1 = L_1[0, 1]$, and $T : L_1 \rightarrow L_1/R$ is the quotient map then *T* satisfy 3 and so is Tauberian. In the book Gonzalez and Martinez-Abejon ask whether a Tauberian $T : L_1 \rightarrow L_1$ can have an infinite dimensional kernel. Our second theorem answers this positively:

Theorem: There is an operator $T : L_1(0, 1) \to L_1(0, 1)$ such that for some $\varepsilon, \delta > 0$ $||Tf|| \ge \delta ||f||$ for all *f* with $|\operatorname{supp}(f)| \le \varepsilon$ but Ker*T* is infinite dimensional.

Recall that it's unknown whether there is a reflexive $R \subset L_1$ such that L_1/R embeds back into L_1 .

main Results motivation Th 2 implies Th 1

some motivation

If *R* is a reflexive subspace of $L_1 = L_1[0, 1]$, and $T : L_1 \rightarrow L_1/R$ is the quotient map then *T* satisfy 3 and so is Tauberian. In the book Gonzalez and Martinez-Abejon ask whether a Tauberian $T : L_1 \rightarrow L_1$ can have an infinite dimensional kernel. Our second theorem answers this positively:

Theorem: There is an operator $T : L_1(0, 1) \to L_1(0, 1)$ such that for some $\varepsilon, \delta > 0$ $\|Tf\| \ge \delta \|f\|$ for all *f* with $|\operatorname{supp}(f)| \le \varepsilon$ but Ker*T* is infinite dimensional.

Recall that it's unknown whether there is a reflexive $R \subset L_1$ such that L_1/R embeds back into L_1 .

main Results motivation Th 2 implies Th 1

Back to the characterization of Tauberian operators from L_1

Theorem: Let $T : L_1(0, 1) \rightarrow Y$. TFAE

0. T is Tauberian

1. For all normalized disjoint sequence $\{x_i\}$,

 $\liminf_{i\to\infty}\|Tx_i\|>0$

2. If $\{x_i\}$ is equivalent to the unit vector basis of ℓ_1 then there is an *N* such that $T_{|[x_i]_{i=N}^{\infty}}$ is an isomorphism.

3. there is $\varepsilon, \delta > 0$ such that $||Tf|| > \varepsilon$ for all f with $|\text{supp}(f)| < \delta$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of 3 implies 2:

• Assume $\{x_i\}$ equivalent to the ℓ_1 basis and $T_{|[x_i]_{i=N}^{\infty}}$ is an not an isomorphism for any *N*.

• Passing to a block basis we may assume that there is a normalized $\{y_i\}$ equivalent to the ℓ_1 basis and $||Ty_i|| \rightarrow 0$ as fast as we want.

• Given $\lambda > 1$, passing to another block basis we can also assume $\{y_i\}$ is λ equivalent to the ℓ_1 basis.

• Then, $\{y_i\}$ is basically disjointly supported. and this contradicts 3.

ヘロン 人間 とくほ とくほ とう

3

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of 3 implies 2:

• Assume $\{x_i\}$ equivalent to the ℓ_1 basis and $T_{|[x_i]_{i=N}^{\infty}}$ is an not an isomorphism for any *N*.

• Passing to a block basis we may assume that there is a normalized $\{y_i\}$ equivalent to the ℓ_1 basis and $||Ty_i|| \rightarrow 0$ as fast as we want.

• Given $\lambda > 1$, passing to another block basis we can also assume $\{y_i\}$ is λ equivalent to the ℓ_1 basis.

• Then, $\{y_i\}$ is basically disjointly supported. and this contradicts 3.

イロト イポト イヨト イヨト 三日

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of 3 implies 2:

• Assume $\{x_i\}$ equivalent to the ℓ_1 basis and $T_{|[x_i]_{i=N}^{\infty}}$ is an not an isomorphism for any *N*.

• Passing to a block basis we may assume that there is a normalized $\{y_i\}$ equivalent to the ℓ_1 basis and $||Ty_i|| \rightarrow 0$ as fast as we want.

• Given $\lambda > 1$, passing to another block basis we can also assume $\{y_i\}$ is λ equivalent to the ℓ_1 basis.

• Then, $\{y_i\}$ is basically disjointly supported. and this contradicts 3.

イロト イポト イヨト イヨト 三日

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of 3 implies 2:

• Assume $\{x_i\}$ equivalent to the ℓ_1 basis and $T_{|[x_i]_{i=N}^{\infty}}$ is an not an isomorphism for any *N*.

• Passing to a block basis we may assume that there is a normalized $\{y_i\}$ equivalent to the ℓ_1 basis and $||Ty_i|| \rightarrow 0$ as fast as we want.

• Given $\lambda > 1$, passing to another block basis we can also assume $\{y_i\}$ is λ equivalent to the ℓ_1 basis.

• Then, $\{y_i\}$ is basically disjointly supported. and this contradicts 3.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of 3 implies 2:

• Assume $\{x_i\}$ equivalent to the ℓ_1 basis and $T_{|[x_i]_{i=N}^{\infty}}$ is an not an isomorphism for any *N*.

• Passing to a block basis we may assume that there is a normalized $\{y_i\}$ equivalent to the ℓ_1 basis and $||Ty_i|| \rightarrow 0$ as fast as we want.

• Given $\lambda > 1$, passing to another block basis we can also assume $\{y_i\}$ is λ equivalent to the ℓ_1 basis.

• Then, $\{y_i\}$ is basically disjointly supported. and this contradicts 3.

イロト イポト イヨト イヨト 三日

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Recall our two main theorems:

• ℓ_1 preserving non-isomorphism

Theorem 1: There is an operator $T : L_1(0,1) \rightarrow L_1(0,1)$ that is an isomorphism when restricted to every subspace isomorphic to ℓ_1 but is not an isomorphism.

• Restricted invertible operator with large kernel

Theorem 2: There is an operator $T : L_1(0, 1) \rightarrow L_1(0, 1)$ such that for some $\varepsilon, \delta > 0$

 $\|Tf\| \ge \delta \|f\|$ for all f with $|supp f| \le \varepsilon$ but Ker T is infinite dimensional.

It is now clear that the second one implies the first.

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Recall our two main theorems:

• ℓ_1 preserving non-isomorphism

Theorem 1: There is an operator $T : L_1(0, 1) \rightarrow L_1(0, 1)$ that is an isomorphism when restricted to every subspace isomorphic to ℓ_1 but is not an isomorphism.

• Restricted invertible operator with large kernel

Theorem 2: There is an operator $T : L_1(0, 1) \rightarrow L_1(0, 1)$ such that for some $\varepsilon, \delta > 0$

 $\|Tf\| \ge \delta \|f\|$ for all f with $|\text{supp} f| \le \varepsilon$ but KerT is infinite dimensional.

It is now clear that the second one implies the first.

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let $\{x_n, x_n^*\}$ be a Marcinkiewicz basis for Ker T. Let \bar{x}_n^* a norm preserving extension of x_n^* . Let $a_n > 0$ with $\sum a_n << 1$ and $S : L_1 \to \ell_1$ given by $S(x) = \sum a_n \bar{x}_n^*(x) e_i$.

Then $S + T : L_1 \rightarrow L_1 \oplus_1 \ell_1$ is the required operator.

ヘロト 人間 とくほとく ほとう

3

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let $\{x_n, x_n^*\}$ be a Marcinkiewicz basis for Ker T. Let \bar{x}_n^* a norm preserving extension of x_n^* . Let $a_n > 0$ with $\sum a_n << 1$ and $S : L_1 \to \ell_1$ given by $S(x) = \sum a_n \bar{x}_n^*(x) e_i$.

Then $S + T : L_1 \rightarrow L_1 \oplus_1 \ell_1$ is the required operator.

<ロ> <問> <問> < 同> < 同> < 同> < 同> < 同

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let $\{x_n, x_n^*\}$ be a Marcinkiewicz basis for Ker T. Let \bar{x}_n^* a norm preserving extension of x_n^* . Let $a_n > 0$ with $\sum a_n << 1$ and $S : L_1 \to \ell_1$ given by $S(x) = \sum a_n \bar{x}_n^*(x) e_i$.

Then $S + T : L_1 \rightarrow L_1 \oplus_1 \ell_1$ is the required operator.

<ロ> <問> <問> < 同> < 同> < 同> < 同> < 同

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let $\{x_n, x_n^*\}$ be a Marcinkiewicz basis for Ker T. Let \bar{x}_n^* a norm preserving extension of x_n^* . Let $a_n > 0$ with $\sum a_n << 1$ and $S : L_1 \to \ell_1$ given by $S(x) = \sum a_n \bar{x}_n^*(x) e_i$.

Then $S + T : L_1 \rightarrow L_1 \oplus_1 \ell_1$ is the required operator.

<ロ> <問> <問> < 同> < 同> < 同> < 同> < 同

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let $\{x_n, x_n^*\}$ be a Marcinkiewicz basis for Ker T. Let \bar{x}_n^* a norm preserving extension of x_n^* . Let $a_n > 0$ with $\sum a_n << 1$ and $S : L_1 \to \ell_1$ given by $S(x) = \sum a_n \bar{x}_n^*(x) e_i$.

Then $S + T : L_1 \rightarrow L_1 \oplus_1 \ell_1$ is the required operator.

イロト イポト イヨト イヨト 三日

main Results motivation Th 2 implies Th 1

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let $\{x_n, x_n^*\}$ be a Marcinkiewicz basis for Ker T. Let \bar{x}_n^* a norm preserving extension of x_n^* . Let $a_n > 0$ with $\sum a_n << 1$ and $S : L_1 \to \ell_1$ given by $S(x) = \sum a_n \bar{x}_n^*(x) e_i$.

Then $S + T : L_1 \rightarrow L_1 \oplus_1 \ell_1$ is the required operator.

イロト イポト イヨト イヨト 三日

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

another characterization

For the proof of Theorem 2 we'll need another simple characterization of Tauberian operators from L_1 spaces.

Lemma: Let μ be any measure on any measure space. $T: L_1(\mu) :\to Y$ is Tauberian iff there is an r > 0 and a natural number N such that if $\{x_n\}_{n=1}^N$ are disjoint unit vectors in $L_1(\mu)$ then $\max_{1 \le n \le N} ||Tx_n|| \ge r$.

ヘロト ヘアト ヘビト ヘビト

BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]: For each *n* sufficiently large putting m = [3n/4], there is an operator $T : \ell_1^n \to \ell_1^m$ such that $\frac{1}{4} ||x||_1 \le ||Tx||_1 \le ||x||_1$

for all x with $\sharp supp(x) < n/400$.

More generally

Theorem [BGIKS, 08]: For each ε and m < n sufficiently large there is an operator $T : \ell_1^n \to \ell_1^m$ such that

```
(1-\varepsilon)\|x\|_{1} \le \|Tx\|_{1} \le \|x\|_{1}
```

for all x with $\sharp supp(x) \le \phi(n/m, \varepsilon)n$.

 $(\phi(t,\varepsilon) > 0 \text{ for all } t > 1, \varepsilon > 0.)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]: For each *n* sufficiently large putting m = [3n/4], there is an operator $T : \ell_1^n \to \ell_1^m$ such that

 $\frac{1}{4}\|x\|_1 \le \|Tx\|_1 \le \|x\|_1$

for all x with $\sharp supp(x) \le n/400$.

More generally

Theorem [BGIKS, 08]: For each ε and m < n sufficiently large there is an operator $T : \ell_1^n \to \ell_1^m$ such that

```
(1-\varepsilon)\|x\|_1 \le \|Tx\|_1 \le \|x\|_1
```

for all x with $\sharp \operatorname{supp}(x) \leq \phi(n/m, \varepsilon)n$.

$(\phi(t,\varepsilon) > 0 \text{ for all } t > 1, \varepsilon > 0.)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]: For each *n* sufficiently large putting m = [3n/4], there is an operator $T : \ell_1^n \to \ell_1^m$ such that

 $\frac{1}{4}\|x\|_1 \le \|Tx\|_1 \le \|x\|_1$

for all x with $\sharp supp(x) \le n/400$.

More generally

Theorem [BGIKS, 08]: For each ε and m < n sufficiently large there is an operator $T : \ell_1^n \to \ell_1^m$ such that

$$(1-\varepsilon)||x||_1 \le ||Tx||_1 \le ||x||_1$$

for all x with $\sharp \operatorname{supp}(x) \leq \phi(n/m, \varepsilon)n$.

 $(\phi(t,\varepsilon) > 0 \text{ for all } t > 1, \varepsilon > 0.)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

proof of Theorem 2

Denote the operator from the previous slide by T_n and note that it satisfies that $||T|| \le 1$ and if $x_1, x_2, \ldots, x_{400}$ are disjoint unit vectors in ℓ_1^n then $\max_{1 \le n \le 400} ||Tx_n||_1 \ge 1/4$. Also $\dim Ker(T) > n/4$

Then the ultraproduct $\overline{T} = (\prod T_n)_{\mathcal{U}} : (\prod \ell_1^n)_{\mathcal{U}} \to (\prod \ell_1^m)_{\mathcal{U}}$ satisfies $\|\overline{T}\| \le 1$ and if x_1, x_2, \dots, x_{400} are disjoint unit vectors in $(\prod \ell_1^n)_{\mathcal{U}}$ then $\max_{1 \le n \le 400} \|\overline{T}x_n\|_1 \ge 1/4$. Also dim $Ker(\overline{T}) = \infty$.

 $(\prod \ell_1^n)_{\mathcal{U}}$ and $(\prod \ell_1^m)_{\mathcal{U}}$ are huge L_1 spaces. Pick a separable subspace of $Ker\overline{T}$, let L be the closed sublattice generated by it and T the restriction of \overline{T} to L. T is then the required operator.

(*L* is an L_1 space which contain the kernel which is a reflexive subspace so can't be ℓ_1 so is $L_1(0, 1)$.)

proof of Theorem 2

Denote the operator from the previous slide by T_n and note that it satisfies that $||T|| \le 1$ and if $x_1, x_2, \ldots, x_{400}$ are disjoint unit vectors in ℓ_1^n then $\max_{1 \le n \le 400} ||Tx_n||_1 \ge 1/4$. Also dim $Ker(T) \ge n/4$.

Then the ultraproduct $\overline{T} = (\prod T_n)_{\mathcal{U}} : (\prod \ell_1^n)_{\mathcal{U}} \to (\prod \ell_1^m)_{\mathcal{U}}$ satisfies $\|\overline{T}\| \le 1$ and if x_1, x_2, \dots, x_{400} are disjoint unit vectors in $(\prod \ell_1^n)_{\mathcal{U}}$ then $\max_{1 \le n \le 400} \|\overline{T}x_n\|_1 \ge 1/4$. Also dim $Ker(\overline{T}) = \infty$.

 $(\prod \ell_1^n)_{\mathcal{U}}$ and $(\prod \ell_1^m)_{\mathcal{U}}$ are huge L_1 spaces. Pick a separable subspace of $Ker\overline{T}$, let L be the closed sublattice generated by it and T the restriction of \overline{T} to L. T is then the required operator.

(*L* is an L_1 space which contain the kernel which is a reflexive subspace so can't be ℓ_1 so is $L_1(0, 1)$.)

proof of Theorem 2

Denote the operator from the previous slide by T_n and note that it satisfies that $||T|| \le 1$ and if $x_1, x_2, \ldots, x_{400}$ are disjoint unit vectors in ℓ_1^n then $\max_{1 \le n \le 400} ||Tx_n||_1 \ge 1/4$. Also dim*Ker*(*T*) $\ge n/4$.

Then the ultraproduct $\overline{T} = (\prod T_n)_{\mathcal{U}} : (\prod \ell_1^n)_{\mathcal{U}} \to (\prod \ell_1^m)_{\mathcal{U}}$ satisfies $\|\overline{T}\| \le 1$ and if x_1, x_2, \dots, x_{400} are disjoint unit vectors in $(\prod \ell_1^n)_{\mathcal{U}}$ then $\max_{1 \le n \le 400} \|\overline{T}x_n\|_1 \ge 1/4$. Also dim $Ker(\overline{T}) = \infty$.

 $(\prod \ell_1^n)_{\mathcal{U}}$ and $(\prod \ell_1^m)_{\mathcal{U}}$ are huge L_1 spaces. Pick a separable subspace of $Ker\overline{T}$, let L be the closed sublattice generated by it and T the restriction of \overline{T} to L. T is then the required operator.

(*L* is an L_1 space which contain the kernel which is a reflexive subspace so can't be ℓ_1 so is $L_1(0, 1)$.)

proof of Theorem 2

Denote the operator from the previous slide by T_n and note that it satisfies that $||T|| \le 1$ and if $x_1, x_2, \ldots, x_{400}$ are disjoint unit vectors in ℓ_1^n then $\max_{1 \le n \le 400} ||Tx_n||_1 \ge 1/4$. Also dim*Ker*(*T*) $\ge n/4$.

Then the ultraproduct $\overline{T} = (\prod T_n)_{\mathcal{U}} : (\prod \ell_1^n)_{\mathcal{U}} \to (\prod \ell_1^m)_{\mathcal{U}}$ satisfies $\|\overline{T}\| \le 1$ and if x_1, x_2, \dots, x_{400} are disjoint unit vectors in $(\prod \ell_1^n)_{\mathcal{U}}$ then $\max_{1 \le n \le 400} \|\overline{T}x_n\|_1 \ge 1/4$. Also dim $Ker(\overline{T}) = \infty$.

 $(\prod \ell_1^n)_{\mathcal{U}}$ and $(\prod \ell_1^m)_{\mathcal{U}}$ are huge L_1 spaces. Pick a separable subspace of *KerT*, let *L* be the closed sublattice generated by it and *T* the restriction of \overline{T} to *L*. *T* is then the required operator.

(*L* is an L_1 space which contain the kernel which is a reflexive subspace so can't be ℓ_1 so is $L_1(0, 1)$.)

proof of Theorem 2

Denote the operator from the previous slide by T_n and note that it satisfies that $||T|| \le 1$ and if $x_1, x_2, \ldots, x_{400}$ are disjoint unit vectors in ℓ_1^n then $\max_{1 \le n \le 400} ||Tx_n||_1 \ge 1/4$. Also dim $Ker(T) \ge n/4$.

Then the ultraproduct $\overline{T} = (\prod T_n)_{\mathcal{U}} : (\prod \ell_1^n)_{\mathcal{U}} \to (\prod \ell_1^m)_{\mathcal{U}}$ satisfies $\|\overline{T}\| \le 1$ and if x_1, x_2, \dots, x_{400} are disjoint unit vectors in $(\prod \ell_1^n)_{\mathcal{U}}$ then $\max_{1 \le n \le 400} \|\overline{T}x_n\|_1 \ge 1/4$. Also dim*Ker* $(\overline{T}) = \infty$.

 $(\prod \ell_1^n)_{\mathcal{U}}$ and $(\prod \ell_1^m)_{\mathcal{U}}$ are huge L_1 spaces. Pick a separable subspace of *Ker* \overline{T} , let *L* be the closed sublattice generated by it and *T* the restriction of \overline{T} to *L*. *T* is then the required operator.

(*L* is an L_1 space which contain the kernel which is a reflexive subspace so can't be ℓ_1 so is $L_1(0, 1)$.)

expanders

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \leq n/10d$, $|\Gamma(S)| \geq 5d|S|/8$.

Here

 $\Gamma(S) = \{r \in R; \text{ such that there is an } s \in S \text{ with } (s, r) \in E\}.$

More generally: For each ε and m < n sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m and left degree $d = \phi(n/m, \varepsilon)$ such that for all $S \subset L$ with $|S| \le \phi(n/m, \varepsilon)n$, $|\Gamma(S)| \ge (1 - \varepsilon)|S|$.

expanders

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \leq n/10d$, $|\Gamma(S)| \geq 5d|S|/8$.

Here

 $\Gamma(S) = \{r \in R; \text{ such that there is an } s \in S \text{ with } (s, r) \in E\}.$

More generally: For each ε and m < n sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m and left degree $d = \phi(n/m, \varepsilon)$ such that for all $S \subset L$ with $|S| \le \phi(n/m, \varepsilon)n$, $|\Gamma(S)| \ge (1 - \varepsilon)|S|$.

 $(\phi(t,\varepsilon) > 0$ for all t > 1, $\varepsilon > 0$.) The proof is by simple random choice.

・ロト ・ 理 ト ・ ヨ ト ・

expanders

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \le n/10d$, $|\Gamma(S)| \ge 5d|S|/8$.

Here

 $\Gamma(S) = \{r \in R; \text{ such that there is an } s \in S \text{ with } (s, r) \in E\}.$

More generally: For each ε and m < n sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m and left degree $d = \phi(n/m, \varepsilon)$ such that for all $S \subset L$ with $|S| \le \phi(n/m, \varepsilon)n$, $|\Gamma(S)| \ge (1 - \varepsilon)|S|$.

 $(\phi(t,\varepsilon) > 0$ for all t > 1, $\varepsilon > 0$.) The proof is by simple random choice.

イロト 不得 とくほ とくほ とうほ

expanders

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \leq n/10d$, $|\Gamma(S)| \geq 5d|S|/8$.

Here

 $\Gamma(S) = \{r \in R; \text{ such that there is an } s \in S \text{ with } (s, r) \in E\}.$

More generally: For each ε and m < n sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m and left degree $d = \phi(n/m, \varepsilon)$ such that for all $S \subset L$ with $|S| \le \phi(n/m, \varepsilon)n$, $|\Gamma(S)| \ge (1 - \varepsilon)|S|$.

expanders

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \leq n/10d$, $|\Gamma(S)| \geq 5d|S|/8$.

Here

 $\Gamma(S) = \{r \in R; \text{ such that there is an } s \in S \text{ with } (s, r) \in E\}.$

More generally: For each ε and m < n sufficiently large there is a bipartite graph G = (L, R, E) with

|L| = n, |R| = m and left degree $d = \phi(n/m, \varepsilon)$ such that for all $S \subset L$ with $|S| \le \phi(n/m, \varepsilon)n$, $|\Gamma(S)| \ge (1 - \varepsilon)|S|$.

expanders

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \leq n/10d$, $|\Gamma(S)| \geq 5d|S|/8$.

Here

 $\Gamma(S) = \{r \in R; \text{ such that there is an } s \in S \text{ with } (s, r) \in E\}.$

More generally: For each ε and m < n sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m and left degree $d = \phi(n/m, \varepsilon)$ such that for all $S \subset L$ with $|S| \le \phi(n/m, \varepsilon)n$, $|\Gamma(S)| \ge (1 - \varepsilon)|S|$.

expanders

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \leq n/10d$, $|\Gamma(S)| \geq 5d|S|/8$.

Here

 $\Gamma(S) = \{r \in R; \text{ such that there is an } s \in S \text{ with } (s, r) \in E\}.$

More generally: For each ε and m < n sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m and left degree $d = \phi(n/m, \varepsilon)$ such that for all $S \subset L$ with $|S| \le \phi(n/m, \varepsilon)n$, $|\Gamma(S)| \ge (1 - \varepsilon)|S|$.

expanders

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \leq n/10d$, $|\Gamma(S)| \geq 5d|S|/8$.

Here

 $\Gamma(S) = \{r \in R; \text{ such that there is an } s \in S \text{ with } (s, r) \in E\}.$

More generally: For each ε and m < n sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m and left degree $d = \phi(n/m, \varepsilon)$ such that for all $S \subset L$ with $|S| \le \phi(n/m, \varepsilon)n$, $|\Gamma(S)| \ge (1 - \varepsilon)|S|$.

 $(\phi(t,\varepsilon) > 0$ for all t > 1, $\varepsilon > 0$.) The proof is by simple random choice.

イロト イポト イヨト イヨト

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

proof of the BGIKS theorem

$$Te_i = rac{1}{d} \sum_{(i,j)\in E} e_j.$$

Clearly $||T|| \leq 1$.

To prove the lower bound take wlog $x = \sum_{i=1}^{n} a_i e_i$ with $|a_1| \ge |a_2| \ge \cdots \ge |a_k|$, $a_{k+1} = \cdots = a_n = 0$, and we want to evaluate ||Tx|| from below.

Order the edges $u_t = (i_t, j_t)$ in lexicographic order, t = 1, 2, ..., dn.

An edge u_t causes a collision if there is an earlier edge u_s with $j_s = j_t$.

Put $E' = \{$ all edges which do not cause a collision $\}$, and $E'' = E \setminus E'.$

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

proof of the BGIKS theorem

$$Te_i = rac{1}{d} \sum_{(i,j)\in E} e_j.$$

Clearly $||T|| \leq 1$.

To prove the lower bound take wlog $x = \sum_{i=1}^{n} a_i e_i$ with $|a_1| \ge |a_2| \ge \cdots \ge |a_k|$, $a_{k+1} = \cdots = a_n = 0$, and we want to evaluate ||Tx|| from below.

Order the edges $u_t = (i_t, j_t)$ in lexicographic order, t = 1, 2, ..., dn.

An edge u_t causes a collision if there is an earlier edge u_s with $j_s = j_t$.

Put $E' = \{$ all edges which do not cause a collision $\}$, and $E'' = E \setminus E'.$

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

proof of the BGIKS theorem

$$Te_i = rac{1}{d} \sum_{(i,j)\in E} e_j.$$

Clearly $||T|| \leq 1$.

To prove the lower bound take wlog $x = \sum_{i=1}^{n} a_i e_i$ with $|a_1| \ge |a_2| \ge \cdots \ge |a_k|$, $a_{k+1} = \cdots = a_n = 0$, and we want to evaluate ||Tx|| from below.

Order the edges $u_t = (i_t, j_t)$ in lexicographic order, t = 1, 2, ..., dn.

An edge u_t causes a collision if there is an earlier edge u_s with $j_s = j_t$.

Put $E' = \{$ all edges which do not cause a collision $\}$, and $E'' = E \setminus E'.$

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

proof of the BGIKS theorem

$$Te_i = rac{1}{d} \sum_{(i,j)\in E} e_j.$$

Clearly $||T|| \leq 1$.

To prove the lower bound take wlog $x = \sum_{i=1}^{n} a_i e_i$ with $|a_1| \ge |a_2| \ge \cdots \ge |a_k|$, $a_{k+1} = \cdots = a_n = 0$, and we want to evaluate ||Tx|| from below.

Order the edges $u_t = (i_t, j_t)$ in lexicographic order, t = 1, 2, ..., dn.

An edge u_t causes a collision if there is an earlier edge u_s with $j_s = j_t$.

Put $E' = \{ all edges which do not cause a collision \}, and$ $<math>E'' = E \setminus E'.$

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

proof of the BGIKS theorem

$$Te_i = rac{1}{d} \sum_{(i,j)\in E} e_j.$$

Clearly $||T|| \leq 1$.

To prove the lower bound take wlog $x = \sum_{i=1}^{n} a_i e_i$ with $|a_1| \ge |a_2| \ge \cdots \ge |a_k|$, $a_{k+1} = \cdots = a_n = 0$, and we want to evaluate ||Tx|| from below.

Order the edges $u_t = (i_t, j_t)$ in lexicographic order, t = 1, 2, ..., dn.

An edge u_t causes a collision if there is an earlier edge u_s with $j_s = j_t$. Put $E' = \{$ all edges which do not cause a collision $\}$, and $E'' = E \setminus E'$.

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

proof of the BGIKS theorem

$$Te_i = rac{1}{d} \sum_{(i,j)\in E} e_j.$$

Clearly $||T|| \leq 1$.

To prove the lower bound take wlog $x = \sum_{i=1}^{n} a_i e_i$ with $|a_1| \ge |a_2| \ge \cdots \ge |a_k|$, $a_{k+1} = \cdots = a_n = 0$, and we want to evaluate ||Tx|| from below.

Order the edges $u_t = (i_t, j_t)$ in lexicographic order, t = 1, 2, ..., dn.

An edge u_t causes a collision if there is an earlier edge u_s with $j_s = j_t$. Put $E' = \{$ all edges which do not cause a collision $\}$, and $E'' = E \setminus E'$.

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

proof of the BGIKS theorem

Lemma:
$$\sum_{(i,j)\in E''} |a_i| \leq \varepsilon d ||x||.$$

So

 $\geq \sum_{j=1}^m \sum_{(i,j)\in E} |a_i| - 2\sum_{j=1}^m \sum_{(i,j)\in E''} |a_i| \geq (1-2\varepsilon)d\|x\|.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

proof of the BGIKS theorem

Lemma:
$$\sum_{(i,j)\in E''} |a_i| \leq \varepsilon d ||x||.$$

So

 $\geq \sum_{j=1}^m \sum_{(i,j)\in E} |a_i| - 2\sum_{j=1}^m \sum_{(i,j)\in E''} |a_i| \geq (1-2\varepsilon)d||x||.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

proof of the BGIKS theorem

Lemma:
$$\sum_{(i,j)\in E''} |a_i| \leq \varepsilon d ||x||.$$

So

$$\geq \sum_{j=1}^{m} \sum_{(i,j)\in E'} |a_i| - \sum_{j=1}^{m} \sum_{(i,j)\in E''} |a_i|$$

 $\geq \sum_{j=1}^m \sum_{(i,j)\in E} |a_i| - 2\sum_{j=1}^m \sum_{(i,j)\in E''} |a_i| \geq (1-2\varepsilon)d||x||.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

proof of the BGIKS theorem

Lemma:
$$\sum_{(i,j)\in E''} |a_i| \leq \varepsilon d \|x\|.$$

So

$$d\|Tx\| = \sum_{j=1}^{m} |\sum_{(i,j)\in E} a_i| \ge \sum_{j=1}^{m} |\sum_{(i,j)\in E'} a_i| - \sum_{j=1}^{m} |\sum_{(i,j)\in E''} a_i|$$

$$\geq \sum_{j=1}^{m} \sum_{(i,j)\in E'} |a_i| - \sum_{j=1}^{m} \sum_{(i,j)\in E''} |a_i|$$

$$\geq \sum_{j=1}^m \sum_{(i,j)\in E} |a_i| - 2\sum_{j=1}^m \sum_{(i,j)\in E''} |a_i| \geq (1-2\varepsilon)d||x||.$$

<ロ> (四) (四) (三) (三) (三)

Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \le n/10d$, $|\Gamma(S)| \ge 5d|S|/8$.

For $S \subset L$ of cardinality $s = |S| \le n/10d$ and $T \subset R$ of cardinality t = |T| < 5ds/8 let $A_{S,T}$ be the event that all the edges from *S* go to *T*.

We want to show that the union of all the $A_{S,T}$ -s has probability less than 1.

Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \le n/10d$, $|\Gamma(S)| \ge 5d|S|/8$.

For $S \subset L$ of cardinality $s = |S| \le n/10d$ and $T \subset R$ of cardinality t = |T| < 5ds/8 let $A_{S,T}$ be the event that all the edges from *S* go to *T*.

We want to show that the union of all the $A_{S,T}$ -s has probability less than 1.

Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \le n/10d$, $|\Gamma(S)| \ge 5d|S|/8$.

For $S \subset L$ of cardinality $s = |S| \le n/10d$ and $T \subset R$ of cardinality t = |T| < 5ds/8 let $A_{S,T}$ be the event that all the edges from *S* go to *T*.

We want to show that the union of all the $A_{S,T}$ -s has probability less than 1.

Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each *n* sufficiently large there is a bipartite graph G = (L, R, E) with |L| = n, |R| = m = [3n/4] and left degree d = 32 such that for all $S \subset L$ with $|S| \le n/10d$, $|\Gamma(S)| \ge 5d|S|/8$.

For $S \subset L$ of cardinality $s = |S| \le n/10d$ and $T \subset R$ of cardinality t = |T| < 5ds/8 let $A_{S,T}$ be the event that all the edges from *S* go to *T*.

We want to show that the union of all the $A_{S,T}$ -s has probability less than 1.

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

Proof of Pinsker's Thm.

$$\sum_{|S| \le n/10d, |T| = 5ds/8} (t/m)^{sd} \le \sum_{s=1}^{n/10d} \binom{n}{s} \binom{m}{5ds/8} \left(\frac{5ds}{8m}\right)^{sd}$$

$$\leq \sum_{s=1}^{n/10d} \left(\frac{ne}{s}\right)^s \left(\frac{8me}{5ds}\right)^{5ds/8} \left(\frac{5ds}{8m}\right)^{sd}$$

Gideon Schechtman Non-isomorphism ℓ_1 preserving operator on $L_1(0, 1)$

<ロ> (四) (四) (三) (三) (三)

another characterization finite dimensional analogue proof of theorem 2 proof of finite dimensional analogue

Proof of Pinsker's Thm.

$$\sum_{|S| \le n/10d, |T| = 5ds/8} (t/m)^{sd} \le \sum_{s=1}^{n/10d} \binom{n}{s} \binom{m}{5ds/8} \left(\frac{5ds}{8m}\right)^{sd}$$

$$\leq \sum_{s=1}^{n/10d} \left(\frac{ne}{s}\right)^s \left(\frac{8me}{5ds}\right)^{5ds/8} \left(\frac{5ds}{8m}\right)^{sd}$$

Gideon Schechtman Non-isomorphism ℓ_1 preserving operator on $L_1(0, 1)$

<ロ> (四) (四) (三) (三) (三)