An ℓ_{1} preserving operator on $L_{1}(0,1)$ which is not an isomorphism

Gideon Schechtman

Joint work with

Bill Johnson, Amir Nasseri and Tomasz Tkocz
Maresias, Sao Paulo, Brazil, August 2014

Main results

- ℓ_{1} preserving non-isomorphism

Theorem 1: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ that is an isomorphism when restricted to every subspace isomorphic to ℓ_{1} but is not an isomorphism.

- Restricted invertible operator with large kernel

Theorem 2: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ such that for some $\varepsilon, \delta>0$ $$
\|T f\| \geq \delta\|f\| \text { for all } f \text { with } \mid \text { supp } f \mid \leq \varepsilon
$$

but Ker T is infinite dimensional.

Main results

- ℓ_{1} preserving non-isomorphism

Theorem 1: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ that is an isomorphism when restricted to every subspace isomorphic to ℓ_{1} but is not an isomorphism.

- Restricted invertible operator with large kernel

Theorem 2: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ such that for some $\varepsilon, \delta>0$
$\|T f\| \geq \delta\|f\|$ for all f with \mid supp $f \mid \leq \varepsilon$ but $\operatorname{Ker} T$ is infinite dimensional.

some motivation

Although this was not our initial motivation, we found out that there is quite extensive literature on the subject.

An operator $T: X \rightarrow Y$ is called Tauberian if $T^{* *-1}(Y)=X$.
The notion was termed and studied by Kalton and Wilansky
[76]
A recent book by Gonzalez and Martinez-Abejon [2010] is recommended to anybody interested.
In particular the book deals extensively with Tauberian operators from L_{1} spaces and basically contains the following

some motivation

Although this was not our initial motivation, we found out that there is quite extensive literature on the subject.

An operator $T: X \rightarrow Y$ is called Tauberian if $T^{* *-1}(Y)=X$.
The notion was termed and studied by Kalton and Wilansky [76].
A recent book by Gonzalez and Martinez-Abejon [2010] is recommended to anybody interested.
In particular the book deals extensively with Tauberian
operators from L_{1} spaces and basically contains the following:

some motivation

Although this was not our initial motivation, we found out that there is quite extensive literature on the subject.

An operator $T: X \rightarrow Y$ is called Tauberian if $T^{* *-1}(Y)=X$.
The notion was termed and studied by Kalton and Wilansky [76].
A recent book by Gonzalez and Martinez-Abejon [2010] is recommended to anybody interested.

> In particular the book deals extensively with Tauberian
> operators from L_{1} spaces and basically contains the following:

some motivation

Although this was not our initial motivation, we found out that there is quite extensive literature on the subject.

An operator $T: X \rightarrow Y$ is called Tauberian if $T^{* *-1}(Y)=X$.
The notion was termed and studied by Kalton and Wilansky [76].
A recent book by Gonzalez and Martinez-Abejon [2010] is recommended to anybody interested.
In particular the book deals extensively with Tauberian operators from L_{1} spaces and basically contains the following:

some motivation

Theorem [G,M-A]: Let $T: L_{1}(0,1) \rightarrow Y$. TFAE
0. T is Tauberian

For all normalized disjoint sequence $\left\{x_{i}\right\}$,
$\liminf _{i \rightarrow \infty}\left\|T x_{i}\right\|>0$
2. If $\left\{x_{i}\right\}$ is equivalent to the unit vector basis of ℓ_{1} then there is an N such that $T_{\left[\left[x_{i}\right]_{i=N}^{\infty}\right.}$ is an isomorphism.
3. there is $\varepsilon, \delta>0$ such that $\|T f\|>\varepsilon$ for all f with
$|\operatorname{supp}(f)|<\delta$

some motivation

Theorem [G,M-A]: Let $T: L_{1}(0,1) \rightarrow Y$. TFAE
0. T is Tauberian

1. For all normalized disjoint sequence $\left\{x_{i}\right\}$, $\lim _{\inf _{i \rightarrow \infty} \|}\left\|x_{i}\right\|>0$
2. If $\left\{x_{i}\right\}$ is equivalent to the unit vector basis of ℓ_{1} then there
is an N such that $T_{\left[\left[x_{i}\right]_{i=N}^{\infty}\right.}$ is an isomorphism.
3. there is $\varepsilon, \delta>0$ such that $\|T f\|>\varepsilon$ for all f with
$|\operatorname{supp}(f)|<\delta$

some motivation

Theorem [G,M-A]: Let $T: L_{1}(0,1) \rightarrow Y$. TFAE
0. T is Tauberian

1. For all normalized disjoint sequence $\left\{x_{i}\right\}$, $\lim _{\inf _{i \rightarrow \infty} \|}\left\|x_{i}\right\|>0$
2. If $\left\{x_{i}\right\}$ is equivalent to the unit vector basis of ℓ_{1} then there is an N such that $T_{\mid\left[x_{i}\right]_{i=N}^{\infty}}$ is an isomorphism.
there is $\varepsilon, \delta>0$ such that $\|T f\|>\varepsilon$ for all f with
$|\operatorname{supp}(f)|<\delta$

some motivation

Theorem [G,M-A]: Let $T: L_{1}(0,1) \rightarrow Y$. TFAE
0. T is Tauberian

1. For all normalized disjoint sequence $\left\{x_{i}\right\}$, $\lim _{\inf _{i \rightarrow \infty} \|}\left\|x_{i}\right\|>0$
2. If $\left\{x_{i}\right\}$ is equivalent to the unit vector basis of ℓ_{1} then there is an N such that $T_{\mid\left[x_{i}\right]_{i=N}^{\infty}}$ is an isomorphism.
3. there is $\varepsilon, \delta>0$ such that $\|T f\|>\varepsilon$ for all f with $|\operatorname{supp}(f)|<\delta$

some motivation

If R is a reflexive subspace of $L_{1}=L_{1}[0,1]$, and $T: L_{1} \rightarrow L_{1} / R$ is the quotient map then T satisfy 3 and so is Tauberian. In the book Gonzalez and Martinez-Abejon ask whether a Tauberian $T: L_{1} \rightarrow L_{1}$ can have an infinite dimensional kernel. Our second theorem answers this positively:

Theorem: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ such that for some $\varepsilon, \delta>0$

Recall that it's unknown whether there is a reflexive $R \subset L_{1}$ such that L_{1} / R embeds back into L_{1}

some motivation

If R is a reflexive subspace of $L_{1}=L_{1}[0,1]$, and $T: L_{1} \rightarrow L_{1} / R$ is the quotient map then T satisfy 3 and so is Tauberian. In the book Gonzalez and Martinez-Abejon ask whether a Tauberian $T: L_{1} \rightarrow L_{1}$ can have an infinite dimensional kernel. Our second theorem answers this positively:

Theorem: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ such that for some $\varepsilon, \delta>0$
$\|T f\| \geq \delta\|f\|$ for all f with $|\operatorname{supp}(f)| \leq \varepsilon$ but $\operatorname{Ker} T$ is infinite dimensional.

Recall that it's unknown whether there is a reflexive $R \subset L_{1}$ such that L_{1} / R embeds back into L_{1}.

some motivation

If R is a reflexive subspace of $L_{1}=L_{1}[0,1]$, and $T: L_{1} \rightarrow L_{1} / R$ is the quotient map then T satisfy 3 and so is Tauberian. In the book Gonzalez and Martinez-Abejon ask whether a Tauberian $T: L_{1} \rightarrow L_{1}$ can have an infinite dimensional kernel. Our second theorem answers this positively:

Theorem: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ such that for some $\varepsilon, \delta>0$
$\|T f\| \geq \delta\|f\|$ for all f with $|\operatorname{supp}(f)| \leq \varepsilon$ but $\operatorname{Ker} T$ is infinite dimensional.

Recall that it's unknown whether there is a reflexive $R \subset L_{1}$ such that L_{1} / R embeds back into L_{1}.
(The situation for $L_{p}, p>1$, is very different.).

some motivation

If R is a reflexive subspace of $L_{1}=L_{1}[0,1]$, and $T: L_{1} \rightarrow L_{1} / R$ is the quotient map then T satisfy 3 and so is Tauberian. In the book Gonzalez and Martinez-Abejon ask whether a Tauberian $T: L_{1} \rightarrow L_{1}$ can have an infinite dimensional kernel. Our second theorem answers this positively:

Theorem: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ such that for some $\varepsilon, \delta>0$
$\|T f\| \geq \delta\|f\|$ for all f with $|\operatorname{supp}(f)| \leq \varepsilon$ but $\operatorname{Ker} T$ is infinite dimensional.

Recall that it's unknown whether there is a reflexive $R \subset L_{1}$ such that L_{1} / R embeds back into L_{1}.
(The situation for $L_{p}, p>1$, is very different.)

Th 2 implies Th 1

Back to the characterization of Tauberian operators from L_{1}
Theorem: Let $T: L_{1}(0,1) \rightarrow Y$. TFAE
$0 . T$ is Tauberian

1. For all normalized disjoint sequence $\left\{x_{i}\right\}$, $\liminf _{i \rightarrow \infty}\left\|T x_{i}\right\|>0$
2. If $\left\{x_{i}\right\}$ is equivalent to the unit vector basis of ℓ_{1} then there is an N such that $T_{\mid\left[x_{i}\right]_{i=N}^{\infty}}$ is an isomorphism.
3. there is $\varepsilon, \delta>0$ such that $\|T f\|>\varepsilon$ for all f with $|\operatorname{supp}(f)|<\delta$

Th 2 implies Th 1

Proof of 3 implies 2:

- Assume $\left\{x_{i}\right\}$ equivalent to the ℓ_{1} basis and $T_{\left[\left[x_{i}\right]_{i=N}^{\infty}\right.}$ is an not an isomorphism for any N.
- Passing to a block basis we may assume that there is a normalized $\left\{y_{i}\right\}$ equivalent to the ℓ_{1} basis and $\left\|T y_{i}\right\| \rightarrow 0$ as fast as we want.
- Given $\lambda>1$, passing to another block basis we can also assume $\left\{y_{i}\right\}$ is λ equivalent to the ℓ_{1} basis.
- Then, $\left\{y_{i}\right\}$ is basically disjointly supported. and this contradicts 3.

Th 2 implies Th 1

Proof of 3 implies 2:

- Assume $\left\{x_{i}\right\}$ equivalent to the ℓ_{1} basis and $T_{\mid\left[x_{i}\right]_{i=N}^{\infty}}$ is an not an isomorphism for any N.
- Passing to a block basis we may assume that there is a normalized $\left\{y_{i}\right\}$ equivalent to the ℓ_{1} basis and $\left\|T y_{i}\right\| \rightarrow 0$ as fast
as we want.
- Given $\lambda>1$, passing to another block basis we can also assume $\left\{y_{i}\right\}$ is λ equivalent to the ℓ_{1} basis.
- Then, $\left\{y_{i}\right\}$ is basically disjointly supported. and this
contradicts 3.

Th 2 implies Th 1

Proof of 3 implies 2:

- Assume $\left\{x_{i}\right\}$ equivalent to the ℓ_{1} basis and $T_{\mid\left[x_{i}\right]_{i=N}^{\infty}}$ is an not an isomorphism for any N.
- Passing to a block basis we may assume that there is a normalized $\left\{y_{i}\right\}$ equivalent to the ℓ_{1} basis and $\left\|T y_{i}\right\| \rightarrow 0$ as fast as we want.
- Given $\lambda>1$, passing to another block basis we can also
assume $\left\{y_{i}\right\}$ is λ equivalent to the ℓ_{1} basis.
- Then, $\left\{y_{i}\right\}$ is basically disjointly supported. and this
contradicts 3 .

Th 2 implies Th 1

Proof of 3 implies 2:

- Assume $\left\{x_{i}\right\}$ equivalent to the ℓ_{1} basis and $T_{\mid\left[x_{i}\right]_{i=N}^{\infty}}$ is an not an isomorphism for any N.
- Passing to a block basis we may assume that there is a normalized $\left\{y_{i}\right\}$ equivalent to the ℓ_{1} basis and $\left\|T y_{i}\right\| \rightarrow 0$ as fast as we want.
- Given $\lambda>1$, passing to another block basis we can also assume $\left\{y_{i}\right\}$ is λ equivalent to the ℓ_{1} basis.
- Then, $\left\{y_{i}\right\}$ is basically disjointly supported. and this
contradicts 3.

Th 2 implies Th 1

Proof of 3 implies 2:

- Assume $\left\{x_{i}\right\}$ equivalent to the ℓ_{1} basis and $T_{\mid\left[x_{i}\right]_{i=N}^{\infty}}$ is an not an isomorphism for any N.
- Passing to a block basis we may assume that there is a normalized $\left\{y_{i}\right\}$ equivalent to the ℓ_{1} basis and $\left\|T y_{i}\right\| \rightarrow 0$ as fast as we want.
- Given $\lambda>1$, passing to another block basis we can also assume $\left\{y_{i}\right\}$ is λ equivalent to the ℓ_{1} basis.
- Then, $\left\{y_{i}\right\}$ is basically disjointly supported. and this contradicts 3.

Th 2 implies Th 1

Recall our two main theorems:

- ℓ_{1} preserving non-isomorphism

Theorem 1: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ that is an isomorphism when restricted to every subspace isomorphic to ℓ_{1} but is not an isomorphism.

- Restricted invertible operator with large kernel

Theorem 2: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ such that for some $\varepsilon, \delta>0$
but $\operatorname{Ker} T$ is infinite dimensional.
It is now clear that the second one implies the first.

Th 2 implies Th 1

Recall our two main theorems:

- ℓ_{1} preserving non-isomorphism

Theorem 1: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ that is an isomorphism when restricted to every subspace isomorphic to ℓ_{1} but is not an isomorphism.

- Restricted invertible operator with large kernel

Theorem 2: There is an operator $T: L_{1}(0,1) \rightarrow L_{1}(0,1)$ such that for some $\varepsilon, \delta>0$

$$
\|T f\| \geq \delta\|f\| \text { for all } f \text { with }|\operatorname{supp} f| \leq \varepsilon
$$

but $\operatorname{Ker} T$ is infinite dimensional.
It is now clear that the second one implies the first.

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

> Indeed, let $\left\{x_{n}, x_{n}^{*}\right\}$ be a Marcinkiewicz basis for Ker T.
> Let \bar{x}_{n}^{*} a norm preserving extension of x_{n}^{*}.
> Let $a_{n}>0$ with $\sum a_{n} \ll 1$ and $S: L_{1} \rightarrow \ell_{1}$ given by $S(x)=\sum a_{n} \bar{x}_{n}^{*}(x) e_{i}$.

Then $S+T: L_{1} \rightarrow L_{1} \Theta_{1} l_{1}$ is the required operator.

Main Results and Motivation
Proofs

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let $\left\{x_{n}, x_{n}^{*}\right\}$ be a Marcinkiewicz basis for Ker T.
Let \bar{x}_{n}^{*} a norm preserving extension of x_{n}^{*}.
Let $a_{n}>0$ with $\sum a_{n} \ll 1$ and $S: L_{1} \rightarrow \ell_{1}$ given by $S(x)=\sum a_{n} \bar{x}_{n}^{*}(x) e_{i}$.

Then $S+T: L_{1} \rightarrow L_{1} \oplus_{1} \ell_{1}$ is the required operator.

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let $\left\{x_{n}, x_{n}^{*}\right\}$ be a Marcinkiewicz basis for Ker T. Let \bar{x}_{n}^{*} a norm preserving extension of x_{n}^{*}.

Then $S+T: L_{1} \rightarrow L_{1} \oplus_{1} \ell_{1}$ is the required operator.

Th 2 implies Th 1

Proof of Th 2 implies Th 1:
Indeed, let $\left\{x_{n}, x_{n}^{*}\right\}$ be a Marcinkiewicz basis for Ker T.
Let \bar{x}_{n}^{*} a norm preserving extension of x_{n}^{*}.
Let $a_{n}>0$ with $\sum a_{n} \ll 1$ and $S: L_{1} \rightarrow \ell_{1}$ given by

Then $S+T: L_{1} \rightarrow L_{1} \oplus_{1} \ell_{1}$ is the required operator.

Th 2 implies Th 1

Proof of Th 2 implies Th 1:
Indeed, let $\left\{x_{n}, x_{n}^{*}\right\}$ be a Marcinkiewicz basis for Ker T.
Let \bar{x}_{n}^{*} a norm preserving extension of x_{n}^{*}.
Let $a_{n}>0$ with $\sum a_{n} \ll 1$ and $S: L_{1} \rightarrow \ell_{1}$ given by

$$
S(x)=\sum \bar{a}_{n} \bar{x}_{n}^{*}(x) e_{i}
$$

Then $S+T: L_{1} \rightarrow L_{1} \oplus_{1} \ell_{1}$ is the required operator.

Th 2 implies Th 1

Proof of Th 2 implies Th 1:
Indeed, let $\left\{x_{n}, x_{n}^{*}\right\}$ be a Marcinkiewicz basis for Ker T.
Let \bar{x}_{n}^{*} a norm preserving extension of x_{n}^{*}.
Let $a_{n}>0$ with $\sum a_{n} \ll 1$ and $S: L_{1} \rightarrow \ell_{1}$ given by

$$
S(x)=\sum \bar{a}_{n} \bar{x}_{n}^{*}(x) e_{i}
$$

Then $S+T: L_{1} \rightarrow L_{1} \oplus_{1} \ell_{1}$ is the required operator.

another characterization

For the proof of Theorem 2 we'll need another simple characterization of Tauberian operators from L_{1} spaces.

Lemma: Let μ be any measure on any measure space. $T: L_{1}(\mu): \rightarrow Y$ is Tauberian iff there is an $r>0$ and a natural number N such that if $\left\{x_{n}\right\}_{n=1}^{N}$ are disjoint unit vectors in $L_{1}(\mu)$ then $\max _{1 \leq n \leq N}\left\|T x_{n}\right\| \geq r$.

BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]:
For each n sufficiently large putting $m=[3 n / 4]$, there is an operator $T: \ell_{1}^{n} \rightarrow \ell_{1}^{m}$ such that $\frac{1}{4}\|x\|_{1} \leq\|T x\|_{1} \leq\|x\|_{1}$ for all x with $\sharp \operatorname{supp}(x) \leq n / 400$.

More generally

Theorem [BGIKS, 08]: For each ε and $m<n$ sufficiently large there is an operator $T: \ell_{1}^{n} \rightarrow \ell_{1}^{m}$ such that

for all x with $\sharp \operatorname{supp}(x) \leq \phi(n / m, \varepsilon) n$.

BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]:
For each n sufficiently large putting $m=[3 n / 4]$, there is an operator $T: \ell_{1}^{n} \rightarrow \ell_{1}^{m}$ such that
$\frac{1}{4}\|x\|_{1} \leq\|T x\|_{1} \leq\|x\|_{1}$
for all x with $\sharp \operatorname{supp}(x) \leq n / 400$.
More generally
Theorem [BGIKS, 08]: For each ε and $m<n$ sufficiently large there is an operator $T: \ell_{1}^{n} \rightarrow \ell_{1}^{m}$ such that
$(1-\varepsilon)\|x\|_{1} \leq\|T x\|_{1} \leq\|x\|_{1}$
for all x with $\sharp \operatorname{supp}(x) \leq \phi(n / m, \varepsilon) n$.

BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]:
For each n sufficiently large putting $m=[3 n / 4]$, there is an operator $T: \ell_{1}^{n} \rightarrow \ell_{1}^{m}$ such that
$\frac{1}{4}\|x\|_{1} \leq\|T x\|_{1} \leq\|x\|_{1}$
for all x with $\sharp \operatorname{supp}(x) \leq n / 400$.
More generally
Theorem [BGIKS, 08]: For each ε and $m<n$ sufficiently large there is an operator $T: \ell_{1}^{n} \rightarrow \ell_{1}^{m}$ such that
$(1-\varepsilon)\|x\|_{1} \leq\|T x\|_{1} \leq\|x\|_{1}$
for all x with $\sharp \operatorname{supp}(x) \leq \phi(n / m, \varepsilon) n$.
$(\phi(t, \varepsilon)>0$ for all $t>1, \varepsilon>0$.)

proof of Theorem 2

Denote the operator from the previous slide by T_{n} and note that it satisfies that $\|T\| \leq 1$ and if $x_{1}, x_{2}, \ldots, x_{400}$ are disjoint unit vectors in ℓ_{1}^{n} then $\max _{1 \leq n \leq 400}\left\|T x_{n}\right\|_{1} \geq 1 / 4$.

proof of Theorem 2

Denote the operator from the previous slide by T_{n} and note that it satisfies that $\|T\| \leq 1$ and if $x_{1}, x_{2}, \ldots, x_{400}$ are disjoint unit vectors in ℓ_{1}^{n} then $\max _{1 \leq n \leq 400}\left\|T x_{n}\right\|_{1} \geq 1 / 4$. Also $\operatorname{dim} \operatorname{Ker}(T) \geq n / 4$.

proof of Theorem 2

Denote the operator from the previous slide by T_{n} and note that it satisfies that $\|T\| \leq 1$ and if $x_{1}, x_{2}, \ldots, x_{400}$ are disjoint unit vectors in ℓ_{1}^{n} then $\max _{1 \leq n \leq 400}\left\|T x_{n}\right\|_{1} \geq 1 / 4$. Also dimKer $(T) \geq n / 4$.
Then the ultraproduct $\bar{T}=\left(\prod T_{n}\right)_{\mathcal{U}}:\left(\prod \ell_{1}^{n}\right)_{\mathcal{U}} \rightarrow\left(\prod \ell_{1}^{m}\right)_{\mathcal{U}}$ satisfies $\|\bar{T}\| \leq 1$ and if $x_{1}, x_{2}, \ldots, x_{400}$ are disjoint unit vectors in $\left(\prod \ell_{1}^{n}\right)_{\mathcal{U}}$ then $\max _{1 \leq n \leq 400}\left\|\bar{T} x_{n}\right\|_{1} \geq 1 / 4$. Also dimKer $(\bar{T})=\infty$.

proof of Theorem 2

Denote the operator from the previous slide by T_{n} and note that it satisfies that $\|T\| \leq 1$ and if $x_{1}, x_{2}, \ldots, x_{400}$ are disjoint unit vectors in ℓ_{1}^{n} then $\max _{1 \leq n \leq 400}\left\|T x_{n}\right\|_{1} \geq 1 / 4$.
Also $\operatorname{dim} \operatorname{Ker}(T) \geq n / 4$.
Then the ultraproduct $\bar{T}=\left(\prod T_{n}\right)_{\mathcal{U}}:\left(\prod \ell_{1}^{n}\right)_{\mathcal{U}} \rightarrow\left(\prod \ell_{1}^{m}\right)_{\mathcal{U}}$ satisfies $\|\bar{T}\| \leq 1$ and if $x_{1}, x_{2}, \ldots, x_{400}$ are disjoint unit vectors in $\left(\prod \ell_{1}^{n}\right)_{\mathcal{U}}$ then $\max _{1 \leq n \leq 400}\left\|\bar{T} x_{n}\right\|_{1} \geq 1 / 4$.
Also $\operatorname{dim} \operatorname{Ker}(\bar{T})=\infty$.
$\left(\prod \ell_{1}^{n}\right)_{\mathcal{U}}$ and $\left(\prod \ell_{1}^{m}\right)_{\mathcal{U}}$ are huge L_{1} spaces. Pick a separable subspace of $\operatorname{Ker} \bar{T}$, let L be the closed sublattice generated by it and T the restriction of \bar{T} to $L . T$ is then the required operator.
(L is an L_{1} space which contain the kernel which is a reflexive subspace so can't be

proof of Theorem 2

Denote the operator from the previous slide by T_{n} and note that it satisfies that $\|T\| \leq 1$ and if $x_{1}, x_{2}, \ldots, x_{400}$ are disjoint unit vectors in ℓ_{1}^{n} then $\max _{1 \leq n \leq 400}\left\|T x_{n}\right\|_{1} \geq 1 / 4$.
Also $\operatorname{dim} \operatorname{Ker}(T) \geq n / 4$.
Then the ultraproduct $\bar{T}=\left(\prod T_{n}\right)_{\mathcal{U}}:\left(\prod \ell_{1}^{n}\right)_{\mathcal{U}} \rightarrow\left(\prod \ell_{1}^{m}\right)_{\mathcal{U}}$ satisfies $\|\bar{T}\| \leq 1$ and if $x_{1}, x_{2}, \ldots, x_{400}$ are disjoint unit vectors in $\left(\prod \ell_{1}^{n}\right) \mathcal{U}$ then $\max _{1 \leq n \leq 400}\left\|\bar{T} x_{n}\right\|_{1} \geq 1 / 4$.
Also $\operatorname{dim} \operatorname{Ker}(\bar{T})=\infty$.
$\left(\prod \ell_{1}^{n}\right)_{\mathcal{U}}$ and $\left(\prod \ell_{1}^{m}\right)_{\mathcal{U}}$ are huge L_{1} spaces. Pick a separable subspace of $\operatorname{Ker} \bar{T}$, let L be the closed sublattice generated by it and T the restriction of \bar{T} to $L . T$ is then the required operator.
(L is an L_{1} space which contain the kernel which is a reflexive subspace so can't be ℓ_{1} so is $L_{1}(0,1)$.)

expanders

Special expander [probably Pinsker 73]: For each n sufficiently large there is a bipartite graph $G=(L, R, E)$ with

More generally: For each ε and $m<n$ sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m$ and left degree $d=\phi(n / m, \varepsilon)$ such that for all $S \subset L$ with $|S| \leq \phi(n / m, \varepsilon) n$, $|\Gamma(S)| \geq(1-\varepsilon)|S|$.

expanders

Special expander [probably Pinsker 73]: For each n sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$
such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.
Here
$\Gamma(S)=\{r \in R$; such that there is an $s \in S$ with $(s, r) \in E\}$.
More generally: For each ε and $m<n$ sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m$ and left degree $d=\phi(n / m, \varepsilon)$ such that for all $S \subset L$ with $|S| \leq \phi(n / m, \varepsilon) n$,

expanders

Special expander [probably Pinsker 73]: For each n sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$ such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.

expanders

Special expander [probably Pinsker 73]: For each n sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$ such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.

Here
$\Gamma(S)=\{r \in R$; such that there is an $s \in S$ with $(s, r) \in E\}$.
More generally: For each ε and $m<n$ sufficiently large there
is a bipartite graph $G=(L, R, E)$ with
$|L|=n,|R|=m$ and left degree $d=\phi(n / m, \varepsilon)$
such that for all $S \subset L$ with $|S| \leq \phi(n / m, \varepsilon) n$,

$(\phi(t, \varepsilon)>0$ for all $t>1, \varepsilon>0$.

expanders

Special expander [probably Pinsker 73]: For each n sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$ such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.

Here
$\Gamma(S)=\{r \in R$; such that there is an $s \in S$ with $(s, r) \in E\}$.
More generally: For each ε and $m<n$ sufficiently large there is a bipartite graph $G=(L, R, E)$ with

expanders

Special expander [probably Pinsker 73]: For each n sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$ such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.

Here
$\Gamma(S)=\{r \in R$; such that there is an $s \in S$ with $(s, r) \in E\}$.
More generally: For each ε and $m<n$ sufficiently large there is a bipartite graph $G=(L, R, E)$ with
$|L|=n,|R|=m$ and left degree $d=\phi(n / m, \varepsilon)$

expanders

Special expander [probably Pinsker 73]: For each n sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$ such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.

Here
$\Gamma(S)=\{r \in R$; such that there is an $s \in S$ with $(s, r) \in E\}$.
More generally: For each ε and $m<n$ sufficiently large there is a bipartite graph $G=(L, R, E)$ with
$|L|=n,|R|=m$ and left degree $d=\phi(n / m, \varepsilon)$ such that for all $S \subset L$ with $|S| \leq \phi(n / m, \varepsilon) n$,
$|\Gamma(S)| \geq(1-\varepsilon)|S|$.

expanders

Special expander [probably Pinsker 73]: For each n sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$ such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.

Here
$\Gamma(S)=\{r \in R$; such that there is an $s \in S$ with $(s, r) \in E\}$.
More generally: For each ε and $m<n$ sufficiently large there is a bipartite graph $G=(L, R, E)$ with
$|L|=n,|R|=m$ and left degree $d=\phi(n / m, \varepsilon)$ such that for all $S \subset L$ with $|S| \leq \phi(n / m, \varepsilon) n$,
$|\Gamma(S)| \geq(1-\varepsilon)|S|$.
($\phi(t, \varepsilon)>0$ for all $t>1, \varepsilon>0$.)
The proof is by simple random choice.

proof of the BGIKS theorem

$$
T e_{i}=\frac{1}{d} \sum_{(i, j) \in E} e_{j}
$$

Clearly $\|T\| \leq 1$.
To prove the lower bound take wlog $x=\sum_{i=1}^{n} a_{i} e_{i}$ with $\left|a_{1}\right| \geq\left|a_{2}\right| \geq \cdots \geq\left|a_{k}\right|, a_{k+1}=\cdots=a_{n}=0$, and we want to evaluate ||Tx\| from below.
Order the edges $u_{t}=\left(i_{t}, j_{t}\right)$ in lexicographic order, $t=1,2, \ldots, d n$.

An edge u_{+}causes a collision if there is an earlier edge u_{s} with $j_{s}=j_{t}$.
Put $E^{\prime}=\{$ all edges which do not cause a collision\}, and

proof of the BGIKS theorem

$$
T e_{i}=\frac{1}{d} \sum_{(i, j) \in E} e_{j}
$$

Clearly $\|T\| \leq 1$.
To prove the lower bound take wlog $x=\sum_{i=1}^{n} a_{i} e_{i}$ with $\left|a_{1}\right| \geq\left|a_{2}\right| \geq \cdots \geq\left|a_{k}\right|, a_{k+1}=\cdots=a_{n}=0$, and we want to evaluate $\|T x\|$ from below.
Order the edges $u_{t}=\left(i_{t}, j_{t}\right)$ in lexicographic order,

An edge u_{t} causes a collision if there is an earlier edge u_{s} with

Put $E^{\prime}=\{$ all edges which do not cause a collision\}, and

proof of the BGIKS theorem

$$
T e_{i}=\frac{1}{d} \sum_{(i, j) \in E} e_{j}
$$

Clearly $\|T\| \leq 1$.
To prove the lower bound take wlog $x=\sum_{i=1}^{n} a_{i} e_{i}$ with $\left|a_{1}\right| \geq\left|a_{2}\right| \geq \cdots \geq\left|a_{k}\right|, a_{k+1}=\cdots=a_{n}=0$, and we want to evaluate $\|T x\|$ from below.
Order the edges $u_{t}=\left(i_{t}, j_{t}\right)$ in lexicographic order, $t=1,2, \ldots, d n$.

An edge u_{t} causes a collision if there is an earlier edge u_{s} with

Put $E^{\prime}=\{$ all edges which do not cause a collision $\}$, and

proof of the BGIKS theorem

$$
T e_{i}=\frac{1}{d} \sum_{(i, j) \in E} e_{j}
$$

Clearly $\|T\| \leq 1$.
To prove the lower bound take wlog $x=\sum_{i=1}^{n} a_{i} e_{i}$ with $\left|a_{1}\right| \geq\left|a_{2}\right| \geq \cdots \geq\left|a_{k}\right|, a_{k+1}=\cdots=a_{n}=0$, and we want to evaluate $\|T x\|$ from below.
Order the edges $u_{t}=\left(i_{t}, j_{t}\right)$ in lexicographic order, $t=1,2, \ldots, d n$.

An edge u_{t} causes a collision if there is an earlier edge u_{s} with $j_{s}=j_{t}$.

proof of the BGIKS theorem

$$
T e_{i}=\frac{1}{d} \sum_{(i, j) \in E} e_{j}
$$

Clearly $\|T\| \leq 1$.
To prove the lower bound take wlog $x=\sum_{i=1}^{n} a_{i} e_{i}$ with $\left|a_{1}\right| \geq\left|a_{2}\right| \geq \cdots \geq\left|a_{k}\right|, a_{k+1}=\cdots=a_{n}=0$, and we want to evaluate $\|T x\|$ from below.
Order the edges $u_{t}=\left(i_{t}, j_{t}\right)$ in lexicographic order, $t=1,2, \ldots, d n$.
An edge u_{t} causes a collision if there is an earlier edge u_{s} with $j_{s}=j_{t}$.
Put $E^{\prime}=\{$ all edges which do not cause a collision $\}$, and
$E^{\prime \prime}=E \backslash E^{\prime}$.

proof of the BGIKS theorem

$$
T e_{i}=\frac{1}{d} \sum_{(i, j) \in E} e_{j}
$$

Clearly $\|T\| \leq 1$.
To prove the lower bound take wlog $x=\sum_{i=1}^{n} a_{i} e_{i}$ with $\left|a_{1}\right| \geq\left|a_{2}\right| \geq \cdots \geq\left|a_{k}\right|, a_{k+1}=\cdots=a_{n}=0$, and we want to evaluate $\|T x\|$ from below.
Order the edges $u_{t}=\left(i_{t}, j_{t}\right)$ in lexicographic order, $t=1,2, \ldots, d n$.
An edge u_{t} causes a collision if there is an earlier edge u_{s} with $j_{s}=j_{t}$.
Put $E^{\prime}=\{$ all edges which do not cause a collision $\}$, and
$E^{\prime \prime}=E \backslash E^{\prime}$.

proof of the BGIKS theorem

Lemma: $\sum_{(i, j) \in E^{\prime \prime}}\left|a_{i}\right| \leq \varepsilon d\|x\|$.

So

proof of the BGIKS theorem

Lemma: $\sum_{(i, j) \in E^{\prime \prime}}\left|a_{i}\right| \leq \varepsilon d\|x\|$.

So

$$
d\|T x\|=\sum_{j=1}^{m}\left|\sum_{(i, j) \in E} a_{i}\right| \geq \sum_{j=1}^{m}\left|\sum_{(i, j) \in E^{\prime}} a_{i}\right|-\sum_{j=1}^{m}\left|\sum_{(i, j) \in E^{\prime \prime}} a_{i}\right|
$$

proof of the BGIKS theorem

Lemma: $\sum_{(i, j) \in E^{\prime \prime}}\left|a_{i}\right| \leq \varepsilon d\|x\|$.

So

$$
\begin{gathered}
d\|T x\|=\sum_{j=1}^{m}\left|\sum_{(i, j) \in E} a_{i}\right| \geq \sum_{j=1}^{m}\left|\sum_{(i, j) \in E^{\prime}} a_{i}\right|-\sum_{j=1}^{m}\left|\sum_{(i, j) \in E^{\prime \prime}} a_{i}\right| \\
\geq \sum_{j=1}^{m} \sum_{(i, j) \in E^{\prime}}\left|a_{i}\right|-\sum_{j=1}^{m} \sum_{(i, j) \in E^{\prime \prime}}\left|a_{i}\right| \\
\geq \sum_{j=1}^{m} \sum_{(i, j) \in E}\left|a_{i}\right|-2 \sum_{j=1}^{m} \sum_{(i, j) \in E^{\prime \prime}}\left|a_{i}\right| \geq(1-2 \varepsilon) d\|x\|
\end{gathered}
$$

proof of the BGIKS theorem

Lemma: $\sum_{(i, j) \in E^{\prime \prime}}\left|a_{i}\right| \leq \varepsilon d\|x\|$.
So

$$
\begin{gathered}
d\|T x\|=\sum_{j=1}^{m}\left|\sum_{(i, j) \in E} a_{i}\right| \geq \sum_{j=1}^{m}\left|\sum_{(i, j) \in E^{\prime}} a_{i}\right|-\sum_{j=1}^{m}\left|\sum_{(i, j) \in E^{\prime \prime}} a_{i}\right| \\
\geq \sum_{j=1}^{m} \sum_{(i, j) \in E^{\prime}}\left|a_{i}\right|-\sum_{j=1}^{m} \sum_{(i, j) \in E^{\prime \prime}}\left|a_{i}\right| \\
\geq \sum_{j=1}^{m} \sum_{(i, j) \in E}\left|a_{i}\right|-2 \sum_{j=1}^{m} \sum_{(i, j) \in E^{\prime \prime}}\left|a_{i}\right| \geq(1-2 \varepsilon) d\|x\|
\end{gathered}
$$

Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each n

 sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$ such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.

We want to show that the union of all the $A_{S, T}-\mathrm{S}$ has probability less than 1

The probability of $A_{S, T}$ is $(t / m)^{s d}$. So the probability of the union of the $A_{S, T}-\mathrm{S}$ is estimated by,

Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each n

 sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$ such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.For $S \subset L$ of cardinality $s=|S| \leq n / 10 d$ and $T \subset R$ of cardinality $t=|T|<5 d s / 8$ let $A_{S, T}$ be the event that all the edges from S go to T.

We want to show that the union of all the $A_{S, T}-S$ has probability less than 1

The probability of $A_{S, T}$ is $(t / m)^{s d}$. So the probability of the union of the $A_{S, T}-\mathrm{S}$ is estimated by,

Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each n sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$ such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.

For $S \subset L$ of cardinality $s=|S| \leq n / 10 d$ and $T \subset R$ of cardinality $t=|T|<5 d s / 8$ let $A_{S, T}$ be the event that all the edges from S go to T.

We want to show that the union of all the $A_{S, T}$-s has probability less than 1.

The probability of $A_{S, T}$ is $(t / m)^{s d}$. So the probability of the union of the $A_{S, T}-\mathrm{S}$ is estimated by,

Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each n sufficiently large there is a bipartite graph $G=(L, R, E)$ with $|L|=n,|R|=m=[3 n / 4]$ and left degree $d=32$ such that for all $S \subset L$ with $|S| \leq n / 10 d,|\Gamma(S)| \geq 5 d|S| / 8$.

For $S \subset L$ of cardinality $s=|S| \leq n / 10 d$ and $T \subset R$ of cardinality $t=|T|<5 d s / 8$ let $A_{S, T}$ be the event that all the edges from S go to T.

We want to show that the union of all the $A_{S, T}$-S has probability less than 1.

The probability of $A_{S, T}$ is $(t / m)^{s d}$. So the probability of the union of the $A_{S, T}-\mathrm{S}$ is estimated by,

Proof of Pinsker's Thm.

$$
\sum_{|S| \leq n / 10 d,|T|=5 d s / 8}(t / m)^{s d} \leq \sum_{s=1}^{n / 10 d}\binom{n}{s}\binom{m}{5 d s / 8}\left(\frac{5 d s}{8 m}\right)^{s d}
$$

Proof of Pinsker's Thm.

$$
\sum_{|S| \leq n / 10 d,|T|=5 d s / 8}(t / m)^{s d} \leq \sum_{s=1}^{n / 10 d}\binom{n}{s}\binom{m}{5 d s / 8}\left(\frac{5 d s}{8 m}\right)^{s d}
$$

$$
\leq \sum_{s=1}^{n / 10 d}\left(\frac{n e}{s}\right)^{s}\left(\frac{8 m e}{5 d s}\right)^{5 d s / 8}\left(\frac{5 d s}{8 m}\right)^{s d}
$$

