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Main results

`1 preserving non-isomorphism

Theorem 1: There is an operator T : L1(0,1)→ L1(0,1)
that is an isomorphism when restricted to every subspace
isomorphic to `1 but is not an isomorphism.

Restricted invertible operator with large kernel

Theorem 2: There is an operator T : L1(0,1)→ L1(0,1)
such that for some ε, δ > 0
‖Tf‖ ≥ δ‖f‖ for all f with |suppf | ≤ ε

but KerT is infinite dimensional.
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some motivation

Although this was not our initial motivation, we found out that
there is quite extensive literature on the subject.

An operator T : X → Y is called Tauberian if T ∗∗−1(Y ) = X .

The notion was termed and studied by Kalton and Wilansky
[76].
A recent book by Gonzalez and Martinez-Abejon [2010] is
recommended to anybody interested.
In particular the book deals extensively with Tauberian
operators from L1 spaces and basically contains the following:
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some motivation

Theorem [G,M-A]: Let T : L1(0,1)→ Y . TFAE

0. T is Tauberian
1. For all normalized disjoint sequence {xi},

lim infi→∞ ‖Txi‖ > 0
2. If {xi} is equivalent to the unit vector basis of `1 then there

is an N such that T|[xi ]
∞
i=N

is an isomorphism.
3. there is ε, δ > 0 such that ‖Tf‖ > ε for all f with
|supp(f )| < δ
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some motivation

If R is a reflexive subspace of L1 = L1[0,1], and T : L1 → L1/R
is the quotient map then T satisfy 3 and so is Tauberian. In the
book Gonzalez and Martinez-Abejon ask whether a Tauberian
T : L1 → L1 can have an infinite dimensional kernel. Our
second theorem answers this positively:

Theorem: There is an operator T : L1(0,1)→ L1(0,1) such
that for some ε, δ > 0
‖Tf‖ ≥ δ‖f‖ for all f with |supp(f )| ≤ ε

but KerT is infinite dimensional.

Recall that it’s unknown whether there is a reflexive R ⊂ L1
such that L1/R embeds back into L1.

(The situation for Lp,p > 1, is very different.)
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Back to the characterization of Tauberian operators from L1

Theorem: Let T : L1(0,1)→ Y . TFAE
0. T is Tauberian
1. For all normalized disjoint sequence {xi},
lim infi→∞ ‖Txi‖ > 0
2. If {xi} is equivalent to the unit vector basis of `1 then there is
an N such that T|[xi ]

∞
i=N

is an isomorphism.
3. there is ε, δ > 0 such that ‖Tf‖ > ε for all f with |supp(f )| < δ
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Proof of 3 implies 2:
• Assume {xi} equivalent to the `1 basis and T|[xi ]

∞
i=N

is an not
an isomorphism for any N.
• Passing to a block basis we may assume that there is a
normalized {yi} equivalent to the `1 basis and ‖Tyi‖ → 0 as fast
as we want.
• Given λ > 1, passing to another block basis we can also
assume {yi} is λ equivalent to the `1 basis.
• Then, {yi} is basically disjointly supported. and this
contradicts 3.
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Recall our two main theorems:

`1 preserving non-isomorphism

Theorem 1: There is an operator T : L1(0,1)→ L1(0,1)
that is an isomorphism when restricted to every subspace
isomorphic to `1 but is not an isomorphism.

Restricted invertible operator with large kernel

Theorem 2: There is an operator T : L1(0,1)→ L1(0,1)
such that for some ε, δ > 0
‖Tf‖ ≥ δ‖f‖ for all f with |suppf | ≤ ε

but KerT is infinite dimensional.

It is now clear that the second one implies the first.
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Proof of Th 2 implies Th 1:

Indeed, let {xn, x∗n} be a Marcinkiewicz basis for Ker T.
Let x̄∗n a norm preserving extension of x∗n .
Let an > 0 with

∑
an << 1 and S : L1 → `1 given by

S(x) =
∑

anx̄∗n (x)ei .

Then S + T : L1 → L1 ⊕1 `1 is the required operator.
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another characterization

For the proof of Theorem 2 we’ll need another simple
characterization of Tauberian operators from L1 spaces.

Lemma: Let µ be any measure on any measure space.
T : L1(µ) :→ Y is Tauberian iff there is an r > 0 and a natural
number N such that if {xn}Nn=1 are disjoint unit vectors in L1(µ)
then max1≤n≤N ‖Txn‖ ≥ r .
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BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]:
For each n sufficiently large putting m = [3n/4], there is an
operator T : `n1 → `m1 such that
1
4‖x‖1 ≤ ‖Tx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ n/400.

More generally

Theorem [BGIKS, 08]: For each ε and m < n sufficiently large
there is an operator T : `n1 → `m1 such that

(1− ε)‖x‖1 ≤ ‖Tx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ φ(n/m, ε)n.

(φ(t , ε) > 0 for all t > 1, ε > 0.)
Gideon Schechtman Non-isomorphism `1 preserving operator on L1(0, 1)



Main Results and Motivation
Proofs

another characterization
finite dimensional analogue
proof of theorem 2
proof of finite dimensional analogue

BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]:
For each n sufficiently large putting m = [3n/4], there is an
operator T : `n1 → `m1 such that
1
4‖x‖1 ≤ ‖Tx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ n/400.

More generally

Theorem [BGIKS, 08]: For each ε and m < n sufficiently large
there is an operator T : `n1 → `m1 such that

(1− ε)‖x‖1 ≤ ‖Tx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ φ(n/m, ε)n.

(φ(t , ε) > 0 for all t > 1, ε > 0.)
Gideon Schechtman Non-isomorphism `1 preserving operator on L1(0, 1)



Main Results and Motivation
Proofs

another characterization
finite dimensional analogue
proof of theorem 2
proof of finite dimensional analogue

BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]:
For each n sufficiently large putting m = [3n/4], there is an
operator T : `n1 → `m1 such that
1
4‖x‖1 ≤ ‖Tx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ n/400.

More generally

Theorem [BGIKS, 08]: For each ε and m < n sufficiently large
there is an operator T : `n1 → `m1 such that

(1− ε)‖x‖1 ≤ ‖Tx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ φ(n/m, ε)n.

(φ(t , ε) > 0 for all t > 1, ε > 0.)
Gideon Schechtman Non-isomorphism `1 preserving operator on L1(0, 1)



Main Results and Motivation
Proofs

another characterization
finite dimensional analogue
proof of theorem 2
proof of finite dimensional analogue

proof of Theorem 2

Denote the operator from the previous slide by Tn and note that
it satisfies that ‖T‖ ≤ 1 and if x1, x2, . . . , x400 are disjoint unit
vectors in `n1 then max1≤n≤400 ‖Txn‖1 ≥ 1/4.
Also dimKer(T ) ≥ n/4.

Then the ultraproduct T̄ = (
∏

Tn)U : (
∏
`n1)U → (

∏
`m1 )U

satisfies ‖T̄‖ ≤ 1 and if x1, x2, . . . , x400 are disjoint unit vectors
in (
∏
`n1)U then max1≤n≤400 ‖T̄ xn‖1 ≥ 1/4.

Also dimKer(T̄ ) =∞.

(
∏
`n1)U and (

∏
`m1 )U are huge L1 spaces. Pick a separable

subspace of KerT̄ , let L be the closed sublattice generated by it
and T the restriction of T̄ to L. T is then the required operator.

(L is an L1 space which contain the kernel which is a reflexive
subspace so can’t be `1 so is L1(0,1).)
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it satisfies that ‖T‖ ≤ 1 and if x1, x2, . . . , x400 are disjoint unit
vectors in `n1 then max1≤n≤400 ‖Txn‖1 ≥ 1/4.
Also dimKer(T ) ≥ n/4.

Then the ultraproduct T̄ = (
∏

Tn)U : (
∏
`n1)U → (

∏
`m1 )U

satisfies ‖T̄‖ ≤ 1 and if x1, x2, . . . , x400 are disjoint unit vectors
in (
∏
`n1)U then max1≤n≤400 ‖T̄ xn‖1 ≥ 1/4.
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(
∏
`n1)U and (

∏
`m1 )U are huge L1 spaces. Pick a separable

subspace of KerT̄ , let L be the closed sublattice generated by it
and T the restriction of T̄ to L. T is then the required operator.
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expanders

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L,R,E) with
|L| = n, |R| = m = [3n/4] and left degree d = 32
such that for all S ⊂ L with |S| ≤ n/10d , |Γ(S)| ≥ 5d |S|/8.

Here
Γ(S) = {r ∈ R; such that there is an s ∈ S with (s, r) ∈ E}.

More generally: For each ε and m < n sufficiently large there
is a bipartite graph G = (L,R,E) with
|L| = n, |R| = m and left degree d = φ(n/m, ε)
such that for all S ⊂ L with |S| ≤ φ(n/m, ε)n,
|Γ(S)| ≥ (1− ε)|S|.

(φ(t , ε) > 0 for all t > 1, ε > 0.)
The proof is by simple random choice.
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proof of the BGIKS theorem

Tei =
1
d

∑
(i,j)∈E

ej .

Clearly ‖T‖ ≤ 1.

To prove the lower bound take wlog x =
∑n

i=1 aiei with
|a1| ≥ |a2| ≥ · · · ≥ |ak |, ak+1 = · · · = an = 0, and we want to
evaluate ‖Tx‖ from below.

Order the edges ut = (it , jt ) in lexicographic order,
t = 1,2, . . . ,dn.

An edge ut causes a collision if there is an earlier edge us with
js = jt .

Put E ′ = {all edges which do not cause a collision}, and
E ′′ = E \ E ′.
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proof of the BGIKS theorem

Lemma:
∑

(i,j)∈E ′′ |ai | ≤ εd‖x‖.

So

d‖Tx‖ =
m∑

j=1

|
∑

(i,j)∈E

ai | ≥
m∑

j=1

|
∑

(i,j)∈E ′

ai | −
m∑

j=1

|
∑

(i,j)∈E ′′

ai |

≥
m∑

j=1

∑
(i,j)∈E ′

|ai | −
m∑

j=1

∑
(i,j)∈E ′′

|ai |

≥
m∑

j=1

∑
(i,j)∈E

|ai | − 2
m∑

j=1

∑
(i,j)∈E ′′

|ai | ≥ (1− 2ε)d‖x‖.
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Proof of Pinsker’s Thm.

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L,R,E) with
|L| = n, |R| = m = [3n/4] and left degree d = 32
such that for all S ⊂ L with |S| ≤ n/10d , |Γ(S)| ≥ 5d |S|/8.

For S ⊂ L of cardinality s = |S| ≤ n/10d and T ⊂ R of
cardinality t = |T | < 5ds/8 let
AS,T be the event that all the edges from S go to T .

We want to show that the union of all the AS,T -s has probability
less than 1.

The probability of AS,T is (t/m)sd . So the probability of the
union of the AS,T -s is estimated by,
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Proof of Pinsker’s Thm.

∑
|S|≤n/10d ,|T |=5ds/8

(t/m)sd ≤
n/10d∑
s=1

(
n
s

)(
m

5ds/8

)(
5ds
8m

)sd

≤
n/10d∑
s=1

(ne
s

)s
(

8me
5ds

)5ds/8(5ds
8m

)sd
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