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Uniform classification question

A bijection ¢ : X — Y is a uniform homeomorphism if both ¢
and ¢! are uniformly continuous.

Basic questions: Suppose X is uniformly homeomorphic to
Y. Are they linearly isomorphic? If not, how much of the linear
structure is preserved?

Ribe ’76. The local structure is preserved: There exists
K = K(¢) such that every finite dimensional subspace of X
K-embeds into Y, and vice versa.
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Classical spaces

Johnson-Lindenstrauss-Schechtman ’96
Suppose X is uniformly homeomorphic to ¢, for 1 < p < ooc.
Then X is isomorphic to £p,.

Godefroy-Kalton-Lancien 00

If X is Lipschitz isomorphic ¢y, then X is isomorphic to ¢q. If
X is uniformly homeomorphic to ¢y, then X is ‘almost’
isomorphic to cg.

Open for ¢; (Lipschitz case too)
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Idea of the proof for 1 < p < oo case

e Enough to show ¢5 <& X (follows from Ribe and
Johnson-Odell)

e For 1 < p < 2 Midpoint technique Enflo ‘69, Bourgain
‘87

e For 2 < p < oo Gorelik principle Gorelik ‘94

o Alternatively, for 2 < p < co Asymptotic smoothness
Kalton-Randrianarivony ‘08

We will give another.
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Theorem. Suppose ¢ : X — Y is a uniform homeomorphism
and Y is reflexive. Then there exists K = K(¢) such that for all
n and all asymptotic spaces (z;)7_; of X and all scalars (a;)};,

we have
n n
1)~ aixil| < Ksup || ) aiyill
i=1 i=1

where sup is over all (y;)I"_; asymptotic spaces of Y.

It Y = /,, then this means

1Y aimill < KO laiP)'P.
=1 i=1

Thus, X cannot contain £y if p > 2.
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Asymptotic structure

Maurey-Milman-Tomczak-Jaegermann 94 Let X be a
Banach space with a normalized basis (or a minimal system)
(u;). Write n < z < y if

n < minsuppz < maxsuppz < minsuppy.

An n-dimensional space with basis (e;)} is called an
asymptotic space of X, write (e;)} € {X}, if for alle >0

VYmi dmi < a1 Vmeo Ime < x9 ...¥Ym, Im, < x,

such that the resulting blocks (called permissible) satisfy

1+
()]~ (e)]-



Asymptotic tree

(e;)} € {X},, means that for all € > 0 there exists a block tree
of n-levels

Tn:{x(kl,kg,...,kj):1§j§n}

so that every branch (x(k1),z(k1, k2),...,x(k1,... kp)) is

n

(1 4 €)-equivalent to (e;)}.
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Asymptotic-£, spaces

X is asymptotic-/, (asymptotic-cg for p = 00), if there exists
K > 1 such that for all n and (e;)} € {X }n, (€))7} K uvb .

¢, is asymptotic-£),.

L, is not. Indeed, every C-unconditional (x;)} C L, is
CKp-equivalent to some asymptotic space of L.

Tsirelson space T is asymptotic-£1.

e T is asymptotic-cg.
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n
rx(ai,...,ap) =  sup ||Zaiei||
(e)Pe{X}n

and the lower envelope gx by

gx(a1,...,an) = inf || ZazeZH

(e)Te{X}n

e X is asymptotic-£), iff gx >~ ||.||, ~ rx.

o 7x =~ ||.||co implies X is asymptotic-cg.
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The upper envelope is invariant

Theorem. Suppose ¢ : X — Y is uniform homeomorphism,
and X and Y are reflexive. Then there exists K = K(¢) such
that for all scalars a = (a;) € coo, we have

%ry(a) <rx(a) < Kry(a).

Corollary. Suppose X is uniformly homeomorphic to a
reflexive asymptotic-cg space. Then X is asymptotic-cy.

Example. T*



The main technical theorem

Theorem. Suppose ¢ : X — Y is a uniform homeomorphism

and Y is reflexive. Then for all (e;)} € {X}4, integers (a;)% and
£ > 0, there exist permissible (z;)¥ in X with (x;)¥ e (e;)} and
permissible tuple (h;/||h;||)¥ in Y with ||hs]| < K]a]

(K depends only on ¢) such that

k
H Z a,:c, Z h;
i=1




