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Uniform classification question

A bijection φ : X → Y is a uniform homeomorphism if both φ
and φ−1 are uniformly continuous.

Basic questions: Suppose X is uniformly homeomorphic to
Y . Are they linearly isomorphic? If not, how much of the linear
structure is preserved?

Ribe ’76. The local structure is preserved: There exists
K = K(φ) such that every finite dimensional subspace of X
K-embeds into Y , and vice versa.
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Classical spaces

Johnson-Lindenstrauss-Schechtman ’96
Suppose X is uniformly homeomorphic to `p for 1 < p <∞.
Then X is isomorphic to `p.

Godefroy-Kalton-Lancien ’00
If X is Lipschitz isomorphic c0, then X is isomorphic to c0. If
X is uniformly homeomorphic to c0, then X is ‘almost’
isomorphic to c0.

Open for `1 (Lipschitz case too)
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Idea of the proof for 1 < p <∞ case

Enough to show `2 6↪→ X (follows from Ribe and
Johnson-Odell)

For 1 ≤ p < 2 Midpoint technique Enflo ‘69, Bourgain
‘87

For 2 < p <∞ Gorelik principle Gorelik ‘94

Alternatively, for 2 < p <∞ Asymptotic smoothness
Kalton-Randrianarivony ‘08

We will give another.
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Result

Theorem. Suppose φ : X → Y is a uniform homeomorphism
and Y is reflexive. Then there exists K = K(φ) such that for all
n and all asymptotic spaces (xi)

n
i=1 of X and all scalars (ai)

n
i=1,

we have

‖
n∑

i=1

aixi‖ ≤ K sup ‖
n∑

i=1

aiyi‖

where sup is over all (yi)
n
i=1 asymptotic spaces of Y .

If Y = `p, then this means

‖
n∑

i=1

aixi‖ ≤ K(

n∑
i=1

|ai|p)1/p.

Thus, X cannot contain `2 if p > 2.
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Asymptotic structure

Maurey-Milman-Tomczak-Jaegermann ’94 Let X be a
Banach space with a normalized basis (or a minimal system)
(ui). Write n < x < y if
n < min suppx < max suppx < min suppy.

An n-dimensional space with basis (ei)
n
1 is called an

asymptotic space of X, write (ei)
n
1 ∈ {X}n, if for all ε > 0

∀m1 ∃m1 < x1 ∀m2 ∃m2 < x2 . . . ∀mn ∃mn < xn

such that the resulting blocks (called permissible) satisfy

(xi)
n
1

1+ε∼ (ei)
n
1 .
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Asymptotic tree

(ei)
n
1 ∈ {X}n means that for all ε > 0 there exists a block tree

of n-levels

Tn = {x(k1, k2, . . . , kj) : 1 ≤ j ≤ n}

so that every branch (x(k1), x(k1, k2), . . . , x(k1, . . . , kn)) is
(1 + ε)-equivalent to (ei)

n
1 .



Asymptotic-`p spaces

X is asymptotic-`p (asymptotic-c0 for p =∞), if there exists

K ≥ 1 such that for all n and (ei)
n
1 ∈ {X}n, (ei)

n
1

K∼ uvb `np .

`p is asymptotic-`p.

Lp is not. Indeed, every C-unconditional (xi)
n
1 ⊂ Lp is

CKp-equivalent to some asymptotic space of Lp.

Tsirelson space T is asymptotic-`1.

T ∗ is asymptotic-c0.
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Envelope functions

Define the upper envelope function rX on c00 by

rX(a1, . . . , an) = sup
(ei)n1∈{X}n

‖
n∑
i

aiei‖

and the lower envelope gX by

gX(a1, . . . , an) = inf
(ei)n1∈{X}n

‖
n∑
i

aiei‖

X is asymptotic-`p iff gX ' ‖.‖p ' rX .

rX ' ‖.‖∞ implies X is asymptotic-c0.
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The upper envelope is invariant

Theorem. Suppose φ : X → Y is uniform homeomorphism,
and X and Y are reflexive. Then there exists K = K(φ) such
that for all scalars a = (ai) ∈ c00, we have

1

K
rY (a) ≤ rX(a) ≤ KrY (a).

Corollary. Suppose X is uniformly homeomorphic to a
reflexive asymptotic-c0 space. Then X is asymptotic-c0.

Example. T ∗
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The main technical theorem

Theorem. Suppose φ : X → Y is a uniform homeomorphism
and Y is reflexive. Then for all (ei)

k
1 ∈ {X}k, integers (ai)

k
1 and

ε > 0, there exist permissible (xi)
k
1 in X with (xi)

k
1

1+ε∼ (ei)
k
1 and

permissible tuple (hi/‖hi‖)k1 in Y with ‖hi‖ ≤ K|ai|
(K depends only on φ) such that∥∥∥∥∥φ(

k∑
i=1

aixi

)
−

k∑
i=1

hi

∥∥∥∥∥ ≤ ε.


