Uniform classification of classical Banach spaces

Bünyamin Sarı

University of North Texas

BWB 2014

Uniform classification question

A bijection $\phi: X \to Y$ is a uniform homeomorphism if both ϕ and ϕ^{-1} are uniformly continuous. A bijection $\phi: X \to Y$ is a uniform homeomorphism if both ϕ and ϕ^{-1} are uniformly continuous.

Basic questions: Suppose X is uniformly homeomorphic to Y. Are they linearly isomorphic? If not, how much of the linear structure is preserved?

A bijection $\phi: X \to Y$ is a uniform homeomorphism if both ϕ and ϕ^{-1} are uniformly continuous.

Basic questions: Suppose X is uniformly homeomorphic to Y. Are they linearly isomorphic? If not, how much of the linear structure is preserved?

Ribe '76. The local structure is preserved: There exists $K = K(\phi)$ such that every finite dimensional subspace of X K-embeds into Y, and vice versa.

Johnson-Lindenstrauss-Schechtman '96

Suppose X is uniformly homeomorphic to ℓ_p for 1 . $Then X is isomorphic to <math>\ell_p$.

Johnson-Lindenstrauss-Schechtman '96 Suppose X is uniformly homeomorphic to ℓ_p for 1 . $Then X is isomorphic to <math>\ell_p$.

Godefroy-Kalton-Lancien '00

If X is Lipschitz isomorphic c_0 , then X is isomorphic to c_0 . If X is uniformly homeomorphic to c_0 , then X is 'almost' isomorphic to c_0 .

Johnson-Lindenstrauss-Schechtman '96 Suppose X is uniformly homeomorphic to ℓ_p for 1 . $Then X is isomorphic to <math>\ell_p$.

Godefroy-Kalton-Lancien '00

If X is Lipschitz isomorphic c_0 , then X is isomorphic to c_0 . If X is uniformly homeomorphic to c_0 , then X is 'almost' isomorphic to c_0 .

Open for ℓ_1 (Lipschitz case too)

Idea of the proof for 1 case

• Enough to show $\ell_2 \not\hookrightarrow X$ (follows from Ribe and Johnson-Odell)

Idea of the proof for 1 case

- Enough to show $\ell_2 \not\hookrightarrow X$ (follows from Ribe and Johnson-Odell)
- For $1 \le p < 2$ Midpoint technique Enflo '69, Bourgain '87

- Enough to show $\ell_2 \not\hookrightarrow X$ (follows from Ribe and Johnson-Odell)
- For $1 \le p < 2$ Midpoint technique Enflo '69, Bourgain '87
- For 2 Gorelik principle**Gorelik '94**

- Enough to show $\ell_2 \not\hookrightarrow X$ (follows from Ribe and Johnson-Odell)
- For $1 \le p < 2$ Midpoint technique Enflo '69, Bourgain '87
- For 2 Gorelik principle**Gorelik '94**
- Alternatively, for 2 Asymptotic smoothness Kalton-Randrianarivony '08

- Enough to show $\ell_2 \not\hookrightarrow X$ (follows from Ribe and Johnson-Odell)
- For $1 \le p < 2$ Midpoint technique Enflo '69, Bourgain '87
- For 2 Gorelik principle**Gorelik '94**
- Alternatively, for 2 Asymptotic smoothness Kalton-Randrianarivony '08

We will give another.

Result

Theorem. Suppose $\phi: X \to Y$ is a uniform homeomorphism and Y is reflexive. Then there exists $K = K(\phi)$ such that for all n and all asymptotic spaces $(x_i)_{i=1}^n$ of X and all scalars $(a_i)_{i=1}^n$, we have

$$\|\sum_{i=1}^{n} a_i x_i\| \le K \sup \|\sum_{i=1}^{n} a_i y_i\|$$

where sup is over all $(y_i)_{i=1}^n$ asymptotic spaces of Y.

Result

Theorem. Suppose $\phi : X \to Y$ is a uniform homeomorphism and Y is reflexive. Then there exists $K = K(\phi)$ such that for all n and all asymptotic spaces $(x_i)_{i=1}^n$ of X and all scalars $(a_i)_{i=1}^n$, we have

$$\|\sum_{i=1}^{n} a_i x_i\| \le K \sup \|\sum_{i=1}^{n} a_i y_i\|$$

where sup is over all $(y_i)_{i=1}^n$ asymptotic spaces of Y.

If $Y = \ell_p$, then this means

$$\|\sum_{i=1}^{n} a_i x_i\| \le K (\sum_{i=1}^{n} |a_i|^p)^{1/p}.$$

Thus, X cannot contain ℓ_2 if p > 2.

Maurey-Milman-Tomczak-Jaegermann '94 Let X be a Banach space with a normalized basis (or a minimal system) (u_i) . Write n < x < y if

 $n < \min \operatorname{supp} x < \max \operatorname{supp} x < \min \operatorname{supp} y.$

Maurey-Milman-Tomczak-Jaegermann '94 Let X be a Banach space with a normalized basis (or a minimal system) (u_i) . Write n < x < y if

 $n < \min \operatorname{supp} x < \max \operatorname{supp} x < \min \operatorname{supp} y.$

An *n*-dimensional space with basis $(e_i)_1^n$ is called an asymptotic space of X, write $(e_i)_1^n \in \{X\}_n$, if for all $\varepsilon > 0$

$$\forall m_1 \exists m_1 < x_1 \ \forall m_2 \exists m_2 < x_2 \ \dots \forall m_n \ \exists m_n < x_n$$

such that the resulting blocks (called **permissible**) satisfy $(x_i)_1^n \stackrel{1+\varepsilon}{\sim} (e_i)_1^n$.

 $(e_i)_1^n \in \{X\}_n$ means that for all $\varepsilon > 0$ there exists a block tree of n-levels

$$T_n = \{x(k_1, k_2, \dots, k_j) : 1 \le j \le n\}$$

so that every branch $(x(k_1), x(k_1, k_2), \ldots, x(k_1, \ldots, k_n))$ is $(1 + \varepsilon)$ -equivalent to $(e_i)_1^n$.

Asymptotic- ℓ_p spaces

X is asymptotic- ℓ_p (asymptotic- c_0 for $p = \infty$), if there exists $K \ge 1$ such that for all n and $(e_i)_1^n \in \{X\}_n$, $(e_i)_1^n \stackrel{K}{\sim} \text{uvb } \ell_p^n$.

• ℓ_p is asymptotic- ℓ_p .

- ℓ_p is asymptotic- ℓ_p .
- L_p is not. Indeed, every C-unconditional $(x_i)_1^n \subset L_p$ is CK_p -equivalent to some asymptotic space of L_p .

- ℓ_p is asymptotic- ℓ_p .
- L_p is not. Indeed, every C-unconditional $(x_i)_1^n \subset L_p$ is CK_p -equivalent to some asymptotic space of L_p .
- Tsirelson space T is asymptotic- ℓ_1 .

- ℓ_p is asymptotic- ℓ_p .
- L_p is not. Indeed, every C-unconditional $(x_i)_1^n \subset L_p$ is CK_p -equivalent to some asymptotic space of L_p .
- Tsirelson space T is asymptotic- ℓ_1 .
- T^* is asymptotic- c_0 .

Define the **upper envelope** function r_X on c_{00} by

$$r_X(a_1, \dots, a_n) = \sup_{(e_i)_1^n \in \{X\}_n} \|\sum_i^n a_i e_i\|$$

and the **lower envelope** g_X by

$$g_X(a_1,...,a_n) = \inf_{(e_i)_1^n \in \{X\}_n} \|\sum_i^n a_i e_i\|$$

Define the **upper envelope** function r_X on c_{00} by

$$r_X(a_1, \dots, a_n) = \sup_{(e_i)_1^n \in \{X\}_n} \|\sum_i^n a_i e_i\|$$

and the **lower envelope** g_X by

$$g_X(a_1,...,a_n) = \inf_{(e_i)_1^n \in \{X\}_n} \|\sum_i^n a_i e_i\|$$

• X is asymptotic- ℓ_p iff $g_X \simeq \|.\|_p \simeq r_X$.

Define the **upper envelope** function r_X on c_{00} by

$$r_X(a_1, \dots, a_n) = \sup_{(e_i)_1^n \in \{X\}_n} \|\sum_i^n a_i e_i\|$$

and the **lower envelope** g_X by

$$g_X(a_1,...,a_n) = \inf_{(e_i)_1^n \in \{X\}_n} \|\sum_i^n a_i e_i\|$$

X is asymptotic-ℓ_p iff g_X ≃ ||.||_p ≃ r_X.
r_X ≃ ||.||_∞ implies X is asymptotic-c₀.

Theorem. Suppose $\phi : X \to Y$ is uniform homeomorphism, and X and Y are reflexive. Then there exists $K = K(\phi)$ such that for all scalars $a = (a_i) \in c_{00}$, we have

$$\frac{1}{K}r_Y(a) \le r_X(a) \le Kr_Y(a).$$

Theorem. Suppose $\phi : X \to Y$ is uniform homeomorphism, and X and Y are reflexive. Then there exists $K = K(\phi)$ such that for all scalars $a = (a_i) \in c_{00}$, we have

$$\frac{1}{K}r_Y(a) \le r_X(a) \le Kr_Y(a).$$

Corollary. Suppose X is uniformly homeomorphic to a reflexive asymptotic- c_0 space. Then X is asymptotic- c_0 .

Theorem. Suppose $\phi : X \to Y$ is uniform homeomorphism, and X and Y are reflexive. Then there exists $K = K(\phi)$ such that for all scalars $a = (a_i) \in c_{00}$, we have

$$\frac{1}{K}r_Y(a) \le r_X(a) \le Kr_Y(a).$$

Corollary. Suppose X is uniformly homeomorphic to a reflexive asymptotic- c_0 space. Then X is asymptotic- c_0 .

Example. T^*

Theorem. Suppose $\phi: X \to Y$ is a uniform homeomorphism and Y is reflexive. Then for all $(e_i)_1^k \in \{X\}_k$, integers $(a_i)_1^k$ and $\varepsilon > 0$, there exist permissible $(x_i)_1^k$ in X with $(x_i)_1^k \stackrel{1+\varepsilon}{\sim} (e_i)_1^k$ and permissible tuple $(h_i/||h_i||)_1^k$ in Y with $||h_i|| \leq K|a_i|$ (K depends only on ϕ) such that

$$\left\|\phi\left(\sum_{i=1}^{k}a_{i}x_{i}\right)-\sum_{i=1}^{k}h_{i}\right\|\leq\varepsilon$$