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Groups as geometric objects

How may we view groups as geometric objects?

For a finitely generated group Γ there is an almost canonical
manner of doing this.

Fix a finite symmetric generating set Σ for Γ and define the
corresponding Cayley graph on Γ by letting the edges be all

(g , gs)

where g ∈ Γ and s ∈ Σ \ {1}.

The resulting graph Cayley(Γ,Σ) is connected and hence Γ is a
metric space, when given the shortest-path metric ρΣ.
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Consider first (Z,+) with generating set Σ = {−1, 1}.

• • • • • • • • • •
−2 −1 0 1 2 3

Similarly, let F2 be the free non-abelian group on generators a, b
and set Σ = {a, b, a−1, b−1}.
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Observe that

ρΣ(g , f ) = min(k
∣∣ ∃s1, . . . , sk ∈ Σ: f = gs1 · · · sk).

Also, since

f = gs1 · · · sk ⇔ hf = hgs1 · · · sk ,

the metric ρΣ is left-invariant, i.e.,

ρΣ(hg , hf ) = ρΣ(g , f ).

ρΣ is called the word metric induced by the generating set Σ.

Christian Rosendal, University of Illinois at Chicago The intrinsic geometry of topological groups



Observe that

ρΣ(g , f ) = min(k
∣∣ ∃s1, . . . , sk ∈ Σ: f = gs1 · · · sk).

Also, since

f = gs1 · · · sk ⇔ hf = hgs1 · · · sk ,

the metric ρΣ is left-invariant, i.e.,

ρΣ(hg , hf ) = ρΣ(g , f ).

ρΣ is called the word metric induced by the generating set Σ.

Christian Rosendal, University of Illinois at Chicago The intrinsic geometry of topological groups



Observe that

ρΣ(g , f ) = min(k
∣∣ ∃s1, . . . , sk ∈ Σ: f = gs1 · · · sk).

Also, since

f = gs1 · · · sk ⇔ hf = hgs1 · · · sk ,

the metric ρΣ is left-invariant, i.e.,

ρΣ(hg , hf ) = ρΣ(g , f ).

ρΣ is called the word metric induced by the generating set Σ.

Christian Rosendal, University of Illinois at Chicago The intrinsic geometry of topological groups



Observe that

ρΣ(g , f ) = min(k
∣∣ ∃s1, . . . , sk ∈ Σ: f = gs1 · · · sk).

Also, since

f = gs1 · · · sk ⇔ hf = hgs1 · · · sk ,

the metric ρΣ is left-invariant, i.e.,

ρΣ(hg , hf ) = ρΣ(g , f ).

ρΣ is called the word metric induced by the generating set Σ.

Christian Rosendal, University of Illinois at Chicago The intrinsic geometry of topological groups



As mentioned, Cayley(Γ,Σ) is almost canonical for Γ, except that
it involves the choice of a finite generating set Σ.

Now, if Σ′ was another finite generating set, then every s ′ ∈ Σ′

can be written as s ′ = s1 · · · sn for some si ∈ Σ, which means that,
for every g ∈ Γ,

g gs1 gs1s2 . . . gs1s2 · · · sn

is a path of length n in Cayley(Γ,Σ) from g to gs ′ = gs1s2 · · · sn.

Taking N to be the largest n needed for the finitely many s ′ ∈ Σ′,
one sees that

ρΣ 6 N · ρΣ′ .
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By symmetry, we therefore see that there is a K so that

1

K
· ρΣ′ 6 ρΣ 6 K · ρΣ′ .

It follows that, for a finitely generated group Γ,

the word metric ρΣ is canonical up to bi-Lipschitz
equivalence.

Take again the example of (Z,+) with generating set Σ = {−1, 1}.
• • • • • • • • • •

−2 −1 0 1 2 3

Whereas, with generating set Σ = {−2,−1, 1, 2}, we have
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Large scale geometry of locally compact groups

In non-discrete locally compact groups, word metrics are not
compatible with the topology.

However, R. Struble showed that

if G is locally compact metrisable, then G admits a
compatible left-invariant proper metric d , i.e., so that
finite-diameter sets are relatively compact.

And with only a minimal amount of care this can be modified to

if G is locally compact metrisable group generated by a
compact symmetric set Σ, then G admits a compatible
left-invariant metric d quasi-isometric with the word
metric ρΣ.
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Definition

A map F : (X , d)→ (Y , ∂) between metric spaces is said to be a
quasi-isometric embedding if there are constants K ,C so that

1

K
· d(x , y)− C 6 ∂(Fx ,Fy) 6 K · d(x , y) + C .

Moreover, F is a quasi-isometry if, in addition, its image is
cobounded, meaning that

sup
y∈Y

∂(y ,F [X ]) <∞.

Definition

Also, two metrics d and ρ on G are quasi-isometric if the identity
map

id : (G , d)→ (G , ρ)

is a quasi-isometry.
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Whereas the word metrics by compact generating sets are all
quasi-isometric, the proper left-invariant metrics are only coarsely
equivalent.

Definition

A map F : (X , d)→ (Y , ∂) between metric spaces is said to be a
coarse embedding if,

1 for all R > 0 there is S > 0 so that

d(x , y) 6 R ⇒ ∂(Fx ,Fy) 6 S ,

2 for all S > 0 there is R > 0 so that

d(x , y) > R ⇒ ∂(Fx ,Fy) > S .

Moreover, F is a coarse equivalence if, in addition, its image is
cobounded.
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Large scale geometry of Polish groups

Due to the absence of proper metrics and canonical generating
sets, a priori, the preceding considerations have no bearing on
general topological groups.

For familiarity, we may restrict the attention to Polish groups, i.e.,
separable and completely metrisable topological groups.

Polish groups encompass most topological transformation groups,
e.g.,

Homeo(M), Diffk(M), Isom(X , ‖ · ‖).
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Relative property (OB)

Our goal is to isolate an intrinsic metric geometry of Polish groups.

We attain this by identifying the appropriate generalisation of
relatively compact sets.

Definition

A subset A of a Polish group G is said to have property (OB)
relative to G if, for every compatible left-invariant metric d on G ,
one has

diamd(A) <∞.

By the existence of proper metrics, in locally compact groups,
relative property (OB) coincides with relative compactness.

Also, in the additive group (X ,+) of a Banach space (X , ‖ · ‖),
the relative property (OB) coincides with norm boundedness.
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Using the mechanics of the Birkhoff–Kakutani metrisation
theorem, we have the following characterisation.

Lemma

TFAE for a subset A of a G ,

1 A has property (OB) relative to G ,

2 for every open V 3 1 there are a finite subset F ⊆ G and
some k > 1 so that

A ⊆ (FV )k .
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Coarse geometry of Polish groups

Extending the definition of proper metrics on locally compact
groups, we set

Definition

A compatible left-invariant metric d on G is said to be metrically
proper if, for all A ⊆ G ,

diamd(A) <∞ ⇔ A has property (OB) relative to G .

As in the locally compact case, we see that a metrically proper
metric is unique up to coarse equivalence.
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However, there are bad surprises. Namely, the infinite product

Z× Z× Z× . . .

admits no metrically proper metric.

So which groups do?
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Theorem

TFAE for a Polish group G ,

1 G admits a metrically proper metric,

2 G is locally (OB), i.e., there is a neighbourhood V 3 1 with
property (OB) relative to G .

So locally (OB) Polish groups are those that have a well-defined
coarse geometry type.

E.g., all locally compact second countable groups.
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Maximal and word metrics

Our next step is to consider Polish groups G generated by subsets
Σ with property (OB) relative to G .

Definition

A metric space (X , d) is said to be large scale geodesic if there is
K > 1 so that, for all x , y ∈ X , there are z0 = x , z1, z2, . . . , zn = y
satisfying

1 d(zi , zi+1) 6 K ,

2
∑n−1

i=0 d(zi , zi+1) 6 K · d(x , y).

•

••

•

•

x = z0

z1

z3

z2

y = z4
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Proposition

TFAE for a metrically proper metric d on a Polish group G ,

1 G is generated by a set Σ with the relative property (OB) so
that d is quasi-isometric to the word metric ρΣ,

2 (G , d) is large scale geodesic,

3 for every other compatible left-invariant ∂, the map

id : (G , d)→ (G , ∂)

is Lipschitz for large distances, that is,

∂ 6 K · d + C

for some constants K and C .

Such metrics d are called maximal.
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Maximal metrics, whenever they exist, are unique up to
quasi-isometry.

Theorem

TFAE for a Polish group G ,

1 G admits a maximal metric,

2 G is generated by a subset with the relative property (OB).

Such G may be considered as the Polish analogue of finitely or
compactly generated groups.

Any choice of maximal metric on G defines the same
quasi-isometry type of G . So we can speak of the latter without
refering to a choice of metric on G .
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The Milnor–Švarc lemma and the computation of
quasi-isometry types

Definition

Let d be a metrically proper metric on a Polish group G .

For gn ∈ G , we write gn →∞ if d(gn, 1)→∞.

An continuous isometric action G y (X , ∂) on a metric space is
said to be metrically proper if, for all x ∈ X ,

∂(gnx , x)→∞ whenever gn →∞.

Moreover, the action is cobounded if there is a set A ⊆ X of finite
∂-diameter so that X = G · A.
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Theorem (Milnor–Švarc)

Suppose G is a Polish group with a metrically proper cobounded
continuous isometric action G y (X , d) on a large scale geodesic
metric space.

(a) Then G admits a maximal compatible left-invariant metric.

(b) Moreover, for every x ∈ X , the map

g ∈ G 7→ gx ∈ X

is a quasi-isometry between G and (X , d).
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Let (X ,+) be the underlying additive topological group of a
Banach space (X , ‖ · ‖). Then

(X ,+) 'q.i . (X , ‖ · ‖).

Let T denote the ℵ0-regular tree, i.e., the connected acylic
graph in which every vertex has countably infinite valence.
Then

Aut(T ) 'q.i . T .

Let U be the Urysohn metric space. Then

Isom(U) 'q.i . U.
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Let X be one of `p or Lp([0, 1]), 1 < p <∞. Then

Aff(X ) 'q.i . X ,

where Aff(X ) denotes the group of all (necessarily affine)
isometries of X .

In the last example, we know by work of W. B. Johnson, J.
Lindenstrauss and G. Schechtman that two such spaces X ,Y are
quasi-isometric only if either X = Y or if X ,Y = `2, L2([0, 1]).

So, apart from those cases, we conclude that

Aff(X ) 6∼= Aff(Y ).
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Theorem

The group Homeo0(M) of isotopically trivial homeomorphisms of a
compact surface M has a maximal metric and thus a well-defined
quasi-isometry type.

Theorem

The group Homeo0(T2) of isotopically trivial homeomorphisms of
the 2-torus has an unbounded maximal metric.

However, the identification of its actual quasi-isometry type
remains a significant challenge.
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Proper affine isometric actions on Banach spaces

By the Mazur–Ulam theorem, every surjective isometry of a
Banach space X is affine.

Thus, if α : G y X is an isometric action of a Polish group G ,
there are an isometric linear representation

π : G y X

and a cocycle
b : G → X ,

so that
α(g)x = π(g)x + b(g).

Moreover, if the action α : G y X is metrically proper, then
b : G → X will be a coarse embedding of G into X .
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Geometric properties of Banach spaces are emminently suited for
use as yardsticks for the metric geometry of groups.

We may ask which Polish groups admits coarse or quasi-isometric
embeddings into or proper affine isometric actions on spaces of
various types.

Hilbert spaces,

Super-reflexive spaces,

Reflexive spaces,

General Banach spaces.
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By using Arens–Eells spaces, we first observe that the full category
of Banach spaces places no restriction on the groups.

Theorem

Let G be a locally (OB) Polish group. Then G admits a metrically
proper affine isometric action on a Banach space.
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Also, in the case of Hilbert spaces, we may elaborate a
construction due to I. Aharoni, B. Maurey and B. S. Mityagin for
the case of abelian groups and extended to locally compact
amenable groups by Y. de Cornulier, R. Tessera and A. Valette.

Theorem

TFAE for an amenable locally (OB) Polish group.

1 G admits a coarse embedding into a Hilbert space,

2 G admits a metrically proper affine isometric action on a
Hilbert space.

Extending the definition from the locally compact setting, groups
satisfying condition (2) are said to have the Haagerup property.

Whereas all amenable locally compact groups have the Haagerup
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Stronger than amenability we have

Definition

A Polish group G is approximately compact if there is a chain

K1 6 K2 6 K3 6 . . . 6 G

of compact subgroups whose union
⋃

n Kn is dense in G .

E.g., unitary groups of AF von Neumann algebras (P. de la Harpe).

Extending a previous construction due to V. Pestov, we have

Theorem

TFAE for an approximately compact, locally (OB) Polish group.

1 G admits a coarse embedding into a super-reflexive space,

2 G admits a metrically proper affine isometric action on a
super-reflexive space.

Similar results hold for Rademacher type and cotype.
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Finally, using the Krivine–Maurey theory of stable Banach and
metric spaces, we have

Theorem

Suppose G carries a metrically proper stable metric. Then G
admits a metrically proper affine isometric action on a reflexive
Banach space.

We should mention that, by a result of N. Brown and E. Guentner
extended by U. Haagerup and A. Przybyszewska, every locally
compact group admits a proper affine isometric action on a
reflexive space.

Again, c0 (N. Kalton) is a counter-example in the Polish setting.
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