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The multilinear Bohnenblust–Hille inequality

Let K be the real or complex scalars.

Bohnenblust and Hille (Annals, 1931):

There exists a sequence of positive scalars (CK,m)∞m=1 ≥ 1 such that N∑
i1,...,im=1

∣∣U(ei1 , . . . , eim)
∣∣ 2m
m+1


m+1
2m

≤ CK,m ‖U‖ (1)

for all m-linear forms U : lN∞× · · ·× lN∞ → K and every positive integer N.

The exponent 2m
m+1 is optimal... The best constant CK,m in this inequality

will be denoted by Bmult
K,m .
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The polynomial Bohnenblust–Hille inequality

Bohnenblust and Hille (Annals, 1931):

For any m ≥ 1, there exists a constant DK,m ≥ 1 such that, for any
n ≥ 1, for any m-homogeneous polynomial P(z) =

∑
|α|=m aαz

α on lN∞,

 ∑
|α|=m

|aα|
2m
m+1


m+1
2m

≤ DK,m‖P‖∞,

where ‖P‖∞ = sup‖z‖∞≤1 |P(z)|.

The exponent 2m
m+1 is optimal...

The best constant DK,m in this inequality will be denoted by Bpol
K,m.
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Bohnenblust–Hille inequalities

These inequalities have been proven to be very useful and powerful in
analysis, analytic number theory and physics. For instance:

1- To estimate the abscissae of convergence of Dirichlet
series (this was the initial goal of Bohnenblust and Hille).

2- To estimate the Bohr radius of the n-dimensional polydisk.

3- In Quantum Information Theory.

It turns out that having good estimates of the constants Bpol
K,m and Bmult

K,m
is crucial.
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Estimates for the complex BH constants along the history

H. F. Bohnenblust and E. Hille (Annals, 1931):

Bmult
C,m ≤ m

m+1
2m

(√
2
)m−1

A.M. Davie (J. London Math. Soc., 1973)

qBmult
C,m ≤

(√
2
)m−1

H. Queffelec (J. Analyse, 1995)

Bmult
C,m ≤

(
2√
π

)m−1

D. Nunez,D.P.,Serrano and Seoane (J. Functional Analysis, 2013)
....complicated recursive formula....but in any case

Bmult
C,m < (m − 1)0.31
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Complex multilinear BH: estimates for the constants

Optimal 2014 2013 1995 1978 1931
Bmult

C,3 ≤ ? 1.2184 1.24 1.27 2 4.17

Bmult
C,4 ≤ ? 1.2889 1.32 1.44 2.83 6.73

Bmult
C,5 ≤ ? 1.3474 1.42 ≈???1.44 4 10.51

Bmult
C,6 ≤ ? 1.3978 1.47 1.83 5.66 16.09

Bmult
C,7 ≤ ? 1.4422 1.53 ≈ 2.06 8 24.33

Bmult
C,8 ≤ ? 1.4821 1.58 ≈ 2.33 11.32 36.45

Bmult
C,9 ≤ ? 1.5183 1.63 2.63 16 54.24

Bmult
C,10 ≤ ? 1.5515 1.68 2.96 22.63 80.29

Bmult
C,100 ≤ ? 2.5118 4.55 1.56 · 105 7.9 · 1014 8.14 · 1015
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Best known estimates

The best known (upper) formulas for the case of real and complex
scalars, up to now, are:

(Bayart, D.P., Seoane, Advances in Mathematics 2014.

Bmult
C,m ≤

m∏
j=2

Γ

(
2− 1

j

) j
2−2j

.

For real scalars and m ≥ 14,

Bmult
R,m ≤ 2

446381
55440 −

m
2

m∏
j=14

Γ
(

3
2 −

1
j

)
√
π


j

2−2j

and

Bmult
R,m ≤

m∏
j=2

2
1

2j−2 .

for 2 ≤ m ≤ 13.
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Best known estimates

For instance, for real scalars,

Bmult
R,10 ≤ 2. 6656

Bmult
R,100 ≤ 6. 1493
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Applications.....

.....In 2012, A. Montanaro, from the Centre for Quantum Information
and Foundations, Cambridge University, has used our new estimates for
the BH constants (case of real scalars) in Quantum Information Theory:

A. Montanaro, Some applications of hypercontractive inequalities in
quantum information theory, J. Math. Physics, 2012.

In Montanaro´s terminology, our result is:

Theorem. Let G be a k-player XOR game with n possible inputs per
player. Then

β (G ) = Ω
(
k
−3

2 n
−(k−1)

2

)
.

Please do not ask me what does it mean!
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Lower estimates for BH multilinear constants: real case

...if we look for lower estimates then, by finding adequate n-linear forms,
as we will see next, we get lower bounds for the BH constants (case of
real scalars):

√
2 ≤ Bmult

R,2 ≤
√

2

1.587 ≤ Bmult
R,3 ≤ 1.6818

1.681 ≤ Bmult
R,4 ≤ 1.8877

1.741 ≤ Bmult
R,5 ≤ 2.0586

21− 1
n ≤ Bmult

R,n ≤ 2
446381
55440 −

m
2

m∏
j=14

(
Γ( 3

2−
1
j )√

π

) j
2−2j

< 1.3m0.36482.

for m ≥ 14. This last expression is dominated by (D. Diniz, G. Munoz,

D.P, J. Seoane, Proc. Amer. Math. Soc., to appear)
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How did we get these lower bounds?

Case m = 2:

Let
T2 : `2

∞ × `2
∞ → R

be defined by

T2(x , y) = x1y1 + x1y2 + x2y1 − x2y2.

Since the norm of T2 is 2, from(∑
i,j

|T2 (ei , ej)|
4
3

) 3
4

≤ Bmult
R,2 ‖T2‖

we get

Bmult
R,2 ≥ 21− 1

2 =
√

2
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Case m = 3:

Consider T3 : `4
∞ × `4

∞ × `4
∞ → R given by

T3(x , y , z) =

(z1+z2) (x1y1 + x1y2 + x2y1 − x2y2)+(z1−z2) (x3y3 + x3y4 + x4y3 − x4y4) .

Since ‖T3‖ = 4 and(∑
i,j,k

|T3 (ei , ej , ek)|
3
2

) 2
3

≤ Bmult
R,3 ‖T3‖

we get

Bmult
R,3 ≥ 21− 1

3
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Case m = 3:

Consider T3 : `4
∞ × `4

∞ × `4
∞ → R given by

T3(x , y , z) =
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) 2
3

≤ Bmult
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General case

Using an induction argument, we obtain

Bmult
R,n ≥ 21− 1

n

This procedure is useless for the complex case....
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The polynomial Bohnenblust–Hille inequality: estimates for
the constants

Bohnenblust and Hille (Annals, 1931):

Bpol
C,m ≤

(√
2
)m−1 m

m
2 (m + 1)

m+1
2

2m(m!)
m+1
2m

Defant et al (Annals, 2011): The polynomial BH inequality is
hypercontractive.

Bpol
C,m ≤

(
1 +

1

m − 1

)m−1√
m(
√

2)m−1

Bayart, D.P and Seoane (Advances in Math 2014): For any ε > 0, there
is a N such that, for any m ≥ N,

Bpol
C,m ≤ (1 + ε)m.
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Application: the Bohr radius problem

The Bohr radius Kn of the n-dimensional polydisk is the largest positive
number r such that all polynomials

∑
α aαz

α on Cn satisfy

sup
z∈rDn

∑
α

|aαzα| ≤ sup
z∈Dn

∣∣∣∣∣∑
α

aαz
α

∣∣∣∣∣ ,
with

Dn = {(z1, ..., zn) : max |zj | < 1 for all j} .

The Bohr radius K1 was studied and estimated by H. Bohr himself, and it
was shown independently by M. Riesz, I. Schur and F. Wiener that
K1 = 1/3. For n ≥ 2, exact values of Kn are unknown.
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Application: the Bohr radius problem

Our subexponential estimate for the constants of the complex BH
inequality was the key for the solution of the Bohr radius problem:

Theorem (Bayart, D.P, Seoane)

lim
m→∞

Km√
ln m
m

= 1.

This finishes a problem that problem that numerous researchers have
been chipping away at for more than fifteen years.
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Back to real scalars

Next result shows that real scalars behaves differently from real scalars:

Theorem (Campos, Jimenez, Munoz, D.P and Seoane)

Bpol
R,m >

(
2 4
√

3√
5

)m

> (1.17)m

for all positive integers m > 1.
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Proof

Let m be an even integer. Consider the m-homogeneous polynomial

Rm(x1, . . . , xm) =
(
x2

1 − x2
2 + x1x2

) (
x2

3 − x2
4 + x3x4

)
· · ·
(
x2
m−1 − x2

m + xm−1xm
)
.

Since ‖R2‖ = 5/4, it is simple to see that

‖Rm‖ = (5/4)m/2
.

From the BH inequality for Rm we have ∑
|α|=m

|aα|
2m
m+1


m+1
2m

≤ DR,m ‖Rm‖ ,

that is,

DR,m ≥
(
3

m
2

)m+1
2m(

5
4

)m
2
≥
(√

3
)m+1

2(
5
4

)m
2

>

(
2 4
√

3√
5

)m

.
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Proof

The case m is odd is similar. Keeping the previous notation, consider the
m homogeneous polynomial

Rm (x1, ..., x2m)

= (x2m + x2m−1)Rm−1 (x1, ..., xm−1)+(x2m − x2m−1)Rm−1 (xm, ..., x2m−2)

and we get the same estimate.
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The case of real scalars

In fact we have

Theorem (Campos, Jimenez, Munoz, D.P, Seoane)

lim sup
m

(
Bpol
R,m

)1/m

= 2.
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Proof

If P : l∞ (R)→ R is an m-homogeneous polynomial, by a result of Visser
if we consider the same polynomial PC : l∞ (C)→ C we have

‖PC‖ ≤ 2m−1 ‖P‖ .
So, for a real polynomial P : l∞ (R)→ R given by P =

∑
|α|=m

aαz
α, we

consider PC and we easily get from our estimate for complex scalars (and
big m),  ∑

|α|=m

|aα|
2m
m+1


m+1
2m

≤ (1 + ε)m ‖PC‖

≤ (1 + ε)m 2m−1 ‖P‖
≤ (2 + δ)m ‖P‖

and we conclude that

lim sup
m

(
Bpol
m

)1/m ≤ 2.
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Proof

The other inequality is a little bit more technical.
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D. Nuñez, D. Pellegrino and J.B. Seoane, On the Bohnenblust-Hille
inequality and a variant to Littlewood’s 4/3 inequality, J. Functional
Analysis (2013).
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