## On spectra of measures

### Przemysław Ohrysko joint work with Michał Wojciechowski

Institute of Mathematics Polish Academy of Sciences

### Definitions

 $M(\mathbb{T})$  – the Banach algebra of complex-valued, Borel regular measures on the circle group with the usual convolution as multiplication. For  $\mu \in M(\mathbb{T})$  we define the spectrum  $\sigma(\mu)$  of  $\mu$  as the set

$$\sigma(\mu) = \{\lambda \in \mathbb{C} : \mu - \lambda \delta_0 \text{ is not invertible} \}.$$

It follows from the general theory of commutative Banach algebras that the spectrum of a measure is an image of its Gelfand transform and it is non-empty compact subset of the complex plane. The alternative definition of the spectrum goes as follows: with every  $\mu \in M(\mathbb{T})$  we can associate an operator  $T_{\mu}: L^{1}(\mathbb{T}) \mapsto L^{1}(\mathbb{T})$  by the formula  $T_{\mu}(f) = \mu * f$  and then  $\sigma(\mu) = \sigma(T_{\mu}).$ 

For  $\mu \in M(\mathbb{T})$  we also define the *n*-th Fourier-Stieltjes coefficient:

$$\widehat{\mu}(n) = \int_{\mathbb{T}} e^{-int} d\mu(t).$$

One can also easily check that  $\widehat{\mu}(\mathbb{Z}) = \sigma_p(\mathcal{T}_\mu)$ .

## Formulation of the problem

### Main problem

It is obvious that for every  $\mu \in M(\mathbb{T})$  we have  $\overline{\widehat{\mu}(\mathbb{Z})} \subset \sigma(\mu)$ . But when do we have  $\overline{\widehat{\mu}(\mathbb{Z})} = \sigma(\mu)$ ?

## Formulation of the problem

#### Main problem

It is obvious that for every  $\mu \in M(\mathbb{T})$  we have  $\overline{\widehat{\mu}(\mathbb{Z})} \subset \sigma(\mu)$ . But when do we have  $\overline{\widehat{\mu}(\mathbb{Z})} = \sigma(\mu)$ ?

#### Natural spectrum

Following M. Zafran we say that a measure  $\mu \in M(\mathbb{T})$  has a natural spectrum iff  $\overline{\hat{\mu}(\mathbb{Z})} = \sigma(\mu)$ .

## Formulation of the problem

#### Main problem

It is obvious that for every  $\mu \in M(\mathbb{T})$  we have  $\overline{\widehat{\mu}(\mathbb{Z})} \subset \sigma(\mu)$ . But when do we have  $\overline{\widehat{\mu}(\mathbb{Z})} = \sigma(\mu)$ ?

#### Natural spectrum

Following M. Zafran we say that a measure  $\mu \in M(\mathbb{T})$  has a natural spectrum iff  $\overline{\widehat{\mu}(\mathbb{Z})} = \sigma(\mu)$ .

#### Examples

Absolutely continuous and purely discrete measures have a natural spectrum.

(人間) トイヨト イヨト

#### The Wiener-Pitt phenomenon

There exists a measure  $\mu \in M(\mathbb{T})$  for which  $\overline{\mu(\mathbb{Z})} \neq \sigma(\mu)$ .

A B K A B K

#### The Wiener-Pitt phenomenon

There exists a measure  $\mu \in M(\mathbb{T})$  for which  $\overline{\mu(\mathbb{Z})} \neq \sigma(\mu)$ .

The Proof of the existence of the Wiener-Pitt phenomenon by C. C. Graham

Consider the usual Riesz product:

$$\mu = \prod_{k=1}^{\infty} (1 + \cos(3^k t))$$
 understood as a weak\* limit of finite products.

Then

$$\overline{\widehat{\mu}(\mathbb{Z})} = \{0\} \cup \left\{\frac{1}{2^n}\right\}_{n=1}^{\infty} \cup \{1\}.$$

Ohrysko, Wojciechowski (IMPAN)

### The proof continued

The formula for the Fourier-Stieltjes coefficients for the Riesz product is

$$\widehat{\mu}\left(\sum_{k=1}^{n}\varepsilon_{k}3^{k}\right)=\prod_{k=1}^{n}\left(\frac{1}{2}\right)^{|\varepsilon_{k}|} \text{ where } \varepsilon_{k}\in\{-1,0,1\} \text{ and }$$

 $\widehat{\mu}(m) = 0$  if m is not expressible in the above form. Now, let us take two disjoint open sets  $A, B \subset \mathbb{C}$  such that  $\overline{\widehat{\mu}(\mathbb{Z})} \subset A \cup B$ and  $\frac{1}{2} \in B$ . Assume that  $\sigma(\mu) = \overline{\widehat{\mu}(\mathbb{Z})}$ , then the function f defined on  $A \cup B$  by the formula f = 1 on B and f = 0 on A is holomorphic on  $A \cup B$ and hence we can apply functional calculus obtaining a measure  $\nu := f(\mu)$ . By the properties of the functional calculus we have

$$\widehat{
u}(\pm 3^k)=1$$
 and  $\widehat{
u}(n)=0$  otherwise .

This result contradicts the classical Helson's theorem (finitely-valued Fourier-Stieltjes sequence has to be periodic with only finitely many exceptions).

Ohrysko, Wojciechowski (IMPAN)

Since the set  $\widehat{\mu}(\mathbb{Z})$  is the only part of the spectrum of  $\mu$  which is easily computable, we asked if it is possible to decide whether a measure  $\mu \in M(\mathbb{T})$  has a natural spectrum examining the set  $\widehat{\mu}(\mathbb{Z})$ .

#### The notion of Wiener-Pitt sets

We say that a compact set  $A \subset \mathbb{C}$  is a Wiener-Pitt set, if every measure  $\mu \in M(\mathbb{T})$  such that  $\widehat{\mu}(\mathbb{Z}) \subset A$  has a natural spectrum.

Since the set  $\hat{\mu}(\mathbb{Z})$  is the only part of the spectrum of  $\mu$  which is easily computable, we asked if it is possible to decide whether a measure  $\mu \in M(\mathbb{T})$  has a natural spectrum examining the set  $\hat{\mu}(\mathbb{Z})$ .

#### The notion of Wiener-Pitt sets

We say that a compact set  $A \subset \mathbb{C}$  is a Wiener-Pitt set, if every measure  $\mu \in M(\mathbb{T})$  such that  $\widehat{\mu}(\mathbb{Z}) \subset A$  has a natural spectrum.

#### Example

Every finite set is a Wiener-Pitt set. Let  $A = \{a_1, \ldots, a_n\}$  and assume that  $\mu \in M(\mathbb{T})$  is such that  $\widehat{\mu}(\mathbb{Z}) = \{a_1, \ldots, a_k\}, k \leq n$ . Then

$$(\mu - a_1\delta_0)*(\mu - a_2\delta_0)*\ldots*(\mu - a_k\delta_0) = 0$$
 so

 $(\varphi(\mu) - a_1) \cdot (\varphi(\mu) - a_2) \cdot \ldots \cdot (\varphi(\mu) - a_k) = 0$  for every  $\varphi \in \triangle(M(\mathbb{T})).$ 

Since the spectrum of a measure is the image of its Gelfand transform the proof is finished.

Ohrysko, Wojciechowski (IMPAN)

## Main theorems

Our theorems went in direction of constructing infinite Wiener-Pitt sets.

The case of continuous measures

Theorem (Ohrysko, Wojciechowski)

There exists an open set  $U \subset \mathbb{C}$  with  $0 \in \overline{U}$  such that every continuous measure  $\mu$  with  $\widehat{\mu}(\mathbb{Z}) \subset U \cup \{0\}$  has a natural spectrum.

## Main theorems

Our theorems went in direction of constructing infinite Wiener-Pitt sets.

The case of continuous measures

Theorem (Ohrysko, Wojciechowski)

There exists an open set  $U \subset \mathbb{C}$  with  $0 \in \overline{U}$  such that every continuous measure  $\mu$  with  $\widehat{\mu}(\mathbb{Z}) \subset U \cup \{0\}$  has a natural spectrum.

The general case

Theorem (Ohrysko, Wojciechowski)

There exists a set K homeomorphic to the Cantor set such that  $0 \in K$  and every measure  $\mu$  with  $\hat{\mu}(\mathbb{Z}) \subset K$  has a natural spectrum.

In fact, the set U from Theorem 1 has the following form

$$U = \bigcup_{n \in \mathbb{N}} (s_n \cdot A + B(0, r_n))$$
 where  $A = \{-1, 1\}$ 

where for  $n = \sum_{i} a_i 2^i$ ,  $a_i \in \{0, 1\}$  we put  $s_{n+1} = \prod_i \varepsilon_i^{a_i}$ .  $(\{\varepsilon_n\}_{n \in \mathbb{N}} \text{ and } \{r_n\}_{n \in \mathbb{N}} \text{ are suitably chosen sequences}).$ Moreover, we constructed a singular measure with Fourier-Stieltjes coefficients included in this set. It is an instance of generalized Riesz products and the formula is as follows:

$$\mu = \prod_{k=1}^{\infty} (1 - w_k)$$
 where  $w_k = \varepsilon_k P_{n_k}(m_k t) e^{ir_k t} + \varepsilon_k \overline{P_{n_k}(m_k t)} e^{-ir_k t}$ 

and the polynomials  $P_n$  are Rudin-Shapiro polynomials.

ヘロト 不得 とくき とくき とうき

### Theorem (Bożejko, Pełczyński; Bourgain)

Let  $\Lambda \subset \mathbb{N}$  be a finite set with  $\#\Lambda = k$ . Then for every  $\varepsilon > 0$  there exists  $f \in \mathscr{P}$  such that

$$f(n) = 1 \text{ for } n \in \Lambda.$$

$$2 ||f||_{L^1(\mathbb{T})} \le 1 + \varepsilon$$

Theorem (McGehee, Pigno, Smith; Konyagin) For every  $f \in \mathscr{P}$  of the form

$$f(t) = \sum_{k=1}^{N} c_k e^{in_k t},$$

where  $n_k$  is the sequence of increasing integers and  $|c_k| \ge 1$ ,  $1 \le k \le N$ , we have

$$||f||_{L^1(\mathbb{T})} > L \ln N,$$

where the constant L > 0 does not depend on N.

Ohrysko, Wojciechowski (IMPAN)

### Definition

Let  $\mathscr{C}$  denote the set of measures with a natural spectrum with Fourier-Stieltjes coefficients from  $c_0$ , i.e.

$$\mathscr{C} = \{ \mu \in M_0(\mathbb{T}) : \sigma(\mu) = \overline{\widehat{\mu}(\mathbb{Z})} = \widehat{\mu}(\mathbb{Z}) \cup \{0\} \}.$$

### Theorem (Zafran)

The following hold true:

- if  $h \in \mathfrak{M}(M_0(\mathbb{T})) \setminus \mathbb{Z}$ , then  $h(\mu) = 0$  for  $\mu \in \mathscr{C}$ .
- **2**  $\mathscr{C}$  is a closed ideal in  $M_0(\mathbb{T})$ .

$$(\mathscr{C}) = \mathbb{Z}.$$

Assume that  $\mu \in M(\mathbb{T})$  has a natural spectrum. Does it follow that  $\mu * \delta_{\tau}$  $(\tau \in \mathbb{T})$  have a natural spectrum? Does there exist an infinite Wiener-Pitt set for every locally compact

abelian group?

For which sequences  $\{a_n\}_{n=1}^{\infty}$  converging to zero any measure  $\mu \in M_0(\mathbb{T})$  with  $\widehat{\mu}(\mathbb{Z}) \subset \{a_n\}_{n=1}^{\infty} \cup \{0\}$  has a natural spectrum? For which non-commutative (infinite) discrete groups the Wiener-Pitt phenomenon occurs?

ヘロト 不得 とうき とうとう ほう

- The cardinality of  $\triangle(M(\mathbb{T}))$  is  $2^{\mathfrak{c}}$ .
- It is not a separable topological space.
- $\bullet$  It contains uncountably many pairwise disjoint copies of  $\beta \mathbb{Z}$ .
- It has uncountable first Čech cohomology group with integral coefficients.
- Image: Measures glue ultrafilters'.

These results can be found on arxiv: "On the Gelfand space of the measure algebra on the circle group" (preprint).

# Inhabitants of $riangle(M(\mathbb{T}))$



э

(日) (同) (三) (三)

Inhabitants of  $\triangle(M(\mathbb{T}))$ 



Ohrysko, Wojciechowski (IMPAN)

э

(人間) トイヨト イヨト

Inhabitants of  $\triangle(M(\mathbb{T}))$ 



## Thank you for your attention!

æ

イロト イポト イヨト イヨト