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n
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(xi)i

and (yj)j is a block sequence of (xi)i that generates some
sequence (ej)j as a spreading model,

then (ej)j is finitely block represented in (xi)i .
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Krivine’s theorem

Theorem (J. L. Krivine)
Let X be a Banach space with a Schauder basis. Then there
exists a p ∈ [1,∞] such that the unit vector basis of `p is finitely
block represented in X (the case p =∞ refers to the unit vector
basis of c0).

The set of all p’s that are finitely block represented in X is
called the Krivine set of X and is denoted by K (X ).

Remark: It follows that if for some p, X admits a spreading
model equivalent to the unit vector basis of `p, then p is in
the Krivine set of X .
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Krivine Set

In his paper on Krivine’s theorem, H. P. Rosenthal
observed the following:

On some block subspace Y of X , the Krivine set is
stabilized, i.e.

if Z is a further block subspace of Y then the sets K (Y )
and K (Z ) coincide.

Rosenthal concluded his paper with the following question:

Is such a stabilized Krivine set necessarily always a
singleton?
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Krivine Set

E. Odell and Th. Schlumprecht constructed a space X with
the property that every 1-unconditional basic sequence is
finitely block represented in every block subspace Y of X .

This space has [1,∞] as its stabilized Krivine set and
hence the answer the above question is negative.
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Next Question: Let X be a Banach space with a basis,
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Is F necessarily connected?

This question first appeared in a paper by P. Habala and N.
Tomczak-Jaegermann and was also later mentioned by
Odell as one of 15 open problems in Banach spaces.

In their paper Habala and Tomczak-Jaegermann prove the
following:
if p < q are in the stabilized Krivine set of X , then X admits
a block quotient Z such that every r ∈ [p,q] is finitely block
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The main result

Theorem
Let F ⊂ [1,∞] be either a finite set or a set consisting of an
increasing sequence and its limit. Then there exists a reflexive
Banach space X with an unconditional basis such that for every
infinite dimensional block subspace Y of X:

(i) For all 1 6 p 6∞, the space `p is finitely block
represented in Y if and only if p ∈ F.

(ii) If F is finite then the spreading models admitted by Y are
exactly the spaces `p for p ∈ F.

(iii) If F is an increasing sequence with limit pω then every
spreading model admitted by Y is isomorphic to `p for
some p ∈ F and for every p ∈ F \ {pω} `p is admitted as a
spreading model by Y .



The main result

Theorem
Let F ⊂ [1,∞] be either a finite set or a set consisting of an
increasing sequence and its limit. Then there exists a reflexive
Banach space X with an unconditional basis such that for every
infinite dimensional block subspace Y of X:

(i) For all 1 6 p 6∞, the space `p is finitely block
represented in Y if and only if p ∈ F.

(ii) If F is finite then the spreading models admitted by Y are
exactly the spaces `p for p ∈ F.

(iii) If F is an increasing sequence with limit pω then every
spreading model admitted by Y is isomorphic to `p for
some p ∈ F and for every p ∈ F \ {pω} `p is admitted as a
spreading model by Y .



The main result

Theorem
Let F ⊂ [1,∞] be either a finite set or a set consisting of an
increasing sequence and its limit. Then there exists a reflexive
Banach space X with an unconditional basis such that for every
infinite dimensional block subspace Y of X:

(i) For all 1 6 p 6∞, the space `p is finitely block
represented in Y if and only if p ∈ F.

(ii) If F is finite then the spreading models admitted by Y are
exactly the spaces `p for p ∈ F.

(iii) If F is an increasing sequence with limit pω then every
spreading model admitted by Y is isomorphic to `p for
some p ∈ F and for every p ∈ F \ {pω} `p is admitted as a
spreading model by Y .



The main result

Theorem
Let F ⊂ [1,∞] be either a finite set or a set consisting of an
increasing sequence and its limit. Then there exists a reflexive
Banach space X with an unconditional basis such that for every
infinite dimensional block subspace Y of X:

(i) For all 1 6 p 6∞, the space `p is finitely block
represented in Y if and only if p ∈ F.

(ii) If F is finite then the spreading models admitted by Y are
exactly the spaces `p for p ∈ F.

(iii) If F is an increasing sequence with limit pω then every
spreading model admitted by Y is isomorphic to `p for
some p ∈ F and for every p ∈ F \ {pω} `p is admitted as a
spreading model by Y .
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In particular, the stabilized Krivine set of X is F (which is
either finite or consists of an increasing sequence and its
limit) and hence not connected.

This space also answers some questions concerning
spreading models, which were asked by G. Androulakis,
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Question: Let n be a natural number. Does there exists a
Banach space X such that every subspace admits n-many
spreading models?
Answer: Yes, and they can be chosen to be `p’s for p ∈ F
for any n-set F ⊂ [1,∞].

Question: Does there exists a Banach space X such that
every subspace admits countably infinite many spreading
models?
Answer: Yes, for F an increasing sequence the space
constructed has this property.

Question: Let X be a Banach spaces such that every
subspace admits both `1 and `2 spreading models. Does X
admit uncountably many spreading models?
Answer: No, for F = {1,2} the space constructed admits
only `1 and `2 spreading models in every subspace.
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It is worth pointing out that the previously stated theorem is
false if stated for F a decreasing sequence and its limit.

Indeed, as B. Sari has proved, if a Banach space admits a
strictly increasing, with respect to domination, sequence of
spreading models, then it admits uncountably many
spreading models.
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The construction

The definition of the norm uses the method of saturation
under constraints, a method initialized by Odell and
Schlumprecht to construct the earlier mentioned space
with [1,∞] as its stabilized Krivine set.

The construction method used in the preset case is more
related to the one used by S. Argyros, K. Beanland and P.
M. to construct Tsirelson like reflexive spaces. Among the
properties of these spaces is that they admit only `1 and c0
as a spreading model in every subspace.

Actually, the space X we construct for F = {1,∞} is a
slight modification of the simplest case presented in that
paper.
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From now on let us assume that F consists of a strictly
increasing sequence (pk )

∞
k=1 and its limit pω. (The case in

which F is finite is the same)

We fix a constant 0 < θ 6 1/4.

The norm ‖ · ‖∗ of the space X satisfies an implicit formula
which is based on countably infinite many layers.

Each layer also comes in various sizes.
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The implicit formula

The base layer: for m ∈ N and x ∈ c00(N) define

‖x‖0,m = θ sup
1

m1/p′
ω

m∑
q=1

‖Eqx‖∗

where p′ω denotes the conjugate exponent of pω and the
supremum is taken over all successive subsets of the
natural number E1 < · · · < Em.

The index 0 states that this is the base layer of the norm,
which comes in many sizes, indicated by the index m.
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The implicit formula

We assume that for some k , the layers 0, . . . , k − 1 have been
defined, i.e. for every layer 0 6 i < k and every size m ∈ N, the
norm ‖ · ‖i,m has been defined.
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and all admissible and very fast growing (Eq)

d
q=1, (mq)
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q=1,

i.e. they satisfy

d 6 E1 < · · · < Ed , min Ei > (max Ei−1)
2 and

mi > max Ei−1 and mi > m for i = 2, . . . ,d .



The implicit formula

The k ’th layer: for m ∈ N and x ∈ c00(N) define

‖x‖k ,m = θ sup

 d∑
q=1

‖Eqx‖pk
iq ,mq

1/pk

where the supremum is taken over all d ∈ N, 0 6 iq < k
and all admissible and very fast growing (Eq)

d
q=1, (mq)

d
q=1,

i.e. they satisfy

d 6 E1 < · · · < Ed , min Ei > (max Ei−1)
2 and

mi > max Ei−1 and mi > m for i = 2, . . . ,d .



The implicit formula

The k ’th layer: for m ∈ N and x ∈ c00(N) define

‖x‖k ,m = θ sup

 d∑
q=1

‖Eqx‖pk
iq ,mq

1/pk

where the supremum is taken over all d ∈ N, 0 6 iq < k
and all admissible and very fast growing (Eq)

d
q=1, (mq)

d
q=1,

i.e. they satisfy

d 6 E1 < · · · < Ed , min Ei > (max Ei−1)
2 and

mi > max Ei−1 and mi > m for i = 2, . . . ,d .



The implicit formula

The k ’th layer: for m ∈ N and x ∈ c00(N) define

‖x‖k ,m = θ sup

 d∑
q=1

‖Eqx‖pk
iq ,mq

1/pk

where the supremum is taken over all d ∈ N, 0 6 iq < k
and all admissible and very fast growing (Eq)

d
q=1, (mq)

d
q=1,

i.e. they satisfy

d 6 E1 < · · · < Ed , min Ei > (max Ei−1)
2 and

mi > max Ei−1 and mi > m for i = 2, . . . ,d .



The implicit formula

The k ’th layer: for m ∈ N and x ∈ c00(N) define

‖x‖k ,m = θ sup

 d∑
q=1

‖Eqx‖pk
iq ,mq

1/pk

where the supremum is taken over all d ∈ N, 0 6 iq < k
and all admissible and very fast growing (Eq)

d
q=1, (mq)

d
q=1,

i.e. they satisfy

d 6 E1 < · · · < Ed , min Ei > (max Ei−1)
2 and

mi > max Ei−1 and mi > m for i = 2, . . . ,d .



The implicit formula

For x ∈ c00(N) we also define

‖x‖ω = θ sup

 d∑
q=1

‖Eqx‖pω
∗

1/pω

where the supremum is taken over all d ∈ N and all
successive subsets of the natural number E1 < · · · < Ed .



The implicit formula

For x ∈ c00(N) we also define

‖x‖ω = θ sup

 d∑
q=1

‖Eqx‖pω
∗

1/pω

where the supremum is taken over all d ∈ N and all
successive subsets of the natural number E1 < · · · < Ed .



The implicit formula

The norm ‖ · ‖∗ satisfies the following implicit formula for
every x ∈ c00(N):

‖x‖∗ = max

{
‖x‖∞, ‖x‖ω, sup

k ,m
‖x‖k ,m

}
.

For every block vectors x1 < · · · < xn the following estimate
holds:

θ

(
m∑

i=1

‖xi‖pω

)1/pω

6

∥∥∥∥∥
m∑

i=1

xi

∥∥∥∥∥ 6 2

(
m∑

i=1

‖xi‖p1

)1/p1

.



The implicit formula

The norm ‖ · ‖∗ satisfies the following implicit formula for
every x ∈ c00(N):

‖x‖∗ = max

{
‖x‖∞, ‖x‖ω, sup

k ,m
‖x‖k ,m

}
.

For every block vectors x1 < · · · < xn the following estimate
holds:

θ

(
m∑

i=1

‖xi‖pω

)1/pω

6

∥∥∥∥∥
m∑

i=1

xi

∥∥∥∥∥ 6 2

(
m∑

i=1

‖xi‖p1

)1/p1

.



The implicit formula

The norm ‖ · ‖∗ satisfies the following implicit formula for
every x ∈ c00(N):

‖x‖∗ = max

{
‖x‖∞, ‖x‖ω, sup

k ,m
‖x‖k ,m

}
.

For every block vectors x1 < · · · < xn the following estimate
holds:

θ

(
m∑

i=1

‖xi‖pω

)1/pω

6

∥∥∥∥∥
m∑

i=1

xi

∥∥∥∥∥ 6 2

(
m∑

i=1

‖xi‖p1

)1/p1

.



The implicit formula

The norm ‖ · ‖∗ satisfies the following implicit formula for
every x ∈ c00(N):

‖x‖∗ = max

{
‖x‖∞, ‖x‖ω, sup

k ,m
‖x‖k ,m

}
.

For every block vectors x1 < · · · < xn the following estimate
holds:

θ

(
m∑

i=1

‖xi‖pω

)1/pω

6

∥∥∥∥∥
m∑

i=1

xi

∥∥∥∥∥ 6 2

(
m∑

i=1

‖xi‖p1

)1/p1

.
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To show that the set F is contained in the Krivine set of
every block subspace of X , we show that for every k , `pk is
admitted as a spreading model by all subspaces of X .

In the present construction we use the α-indices of a block
sequence.

The α-index is a tool that has been used in earlier works
related to the method of constraints.
These indices determine the spreading models admitted
by a block sequence.
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Let k be a natural number and (xi)i be a block sequence.

If for every layer 0 6 k ′ < k and strictly increasing
sequence of sizes (mq)q, for every (xiq )q subsequence of
(xi)i we have that

lim
q
‖xiq‖k ′,mq = 0

then we say that the α<k -index of (xi)i is zero.
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The α-indices

Proposition

Let (xi)i be a seminormalized block sequence in X generating a
spreading model (yj)j .

The spreading model (yj)j of (xi)i is equivalent to the unit
vector basis of `pω if and only if the α<k index of (xi)i is
zero for every k.

For every k ∈ N, the spreading model (yj)j of (xi)i is
equivalent to the unit vector basis of `pk if and only if the
α<k index of (xi)i is not zero, while the α<k ′ index is zero
for all k ′ < k.
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Spreading models admitted by block subspaces of X .

We conclude that every spreading model admitted by X
has to be `p, for some p ∈ F .

It is also shown that all p’s in F , with the possible exception
of pω, occur as spreading models in every block subspace
of X .
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The stabilized Krivine set of X

Since for every p ∈ F \ {pω}, every block subspace of X
admits an `p spreading model,

we conclude that F \ {pω} and hence also F , is in the
Krivine set of every block subspace of X

We also show, by contradiction, that for every p /∈ F , the
unit vector basis of `p is not finitely block represented in X .

We derive that the Krivine set of every block subspace of X
is precisely F .

Let us note that it is not known to us whether every block
subspace of X admits an `pω spreading model.
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Spreading models admitted by block subspaces of X .

Some words on how to obtain the desired spreading
models in a a block subspace.

We use the following: if a block sequence generates an `pk

spreading model, then an appropriate blocking of this
sequence generates an `pk+1 spreading model. This
blocking can be chosen to be increasing pk -averages.

It is therefore sufficient to prove that every block subspace
of X admits an `p1 spreading model.

We start with a block sequence (xi)i in a block subspace of
X and distinguish two cases:
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Spreading models admitted by block subspaces of X .

Case 1: The block sequence (xi)i admits an `pω spreading
model.

In this case by appropriately blocking the sequence we
pass to an other one generating an `p1 spreading model.
This blocking can be chosen to be increasing pω-averages.
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Spreading models admitted by block subspaces of X .

Case 2: The block sequence (xi)i admits an `pk spreading
model for some k .

We may then take block sequencences (xm
i )i ,

m = k , k + 1, . . . each one generating an `pm spreading
model.

By carefully choosing block vectors, such that each one is
an `pm average of elements of the sequence

we arrive at a sequence that generates an `p1 spreading
model.
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The Krivine set of block subspaces of X .

Some words on how to prove that for p /∈ F , `p is not
finitely block represented in X .

If p /∈ [p1,pω] then the result follows easily from the fact
that block vectors in X

satisfy a lower `pω estimate with constant θ and

and upper `p1 estimate with constant 2.



The Krivine set of block subspaces of X .

Some words on how to prove that for p /∈ F , `p is not
finitely block represented in X .

If p /∈ [p1,pω] then the result follows easily from the fact
that block vectors in X

satisfy a lower `pω estimate with constant θ and

and upper `p1 estimate with constant 2.



The Krivine set of block subspaces of X .

Some words on how to prove that for p /∈ F , `p is not
finitely block represented in X .

If p /∈ [p1,pω] then the result follows easily from the fact
that block vectors in X

satisfy a lower `pω estimate with constant θ and

and upper `p1 estimate with constant 2.



The Krivine set of block subspaces of X .

Some words on how to prove that for p /∈ F , `p is not
finitely block represented in X .

If p /∈ [p1,pω] then the result follows easily from the fact
that block vectors in X

satisfy a lower `pω estimate with constant θ and

and upper `p1 estimate with constant 2.



The Krivine set of BLock subspaces of X .

If p ∈ [p1,pω] \ F then the proof is more technical.

Roughly speaking, let us assume that k is such that
pk < p < pk+1, N is sufficiently large, ε is sufficiently small
and

(xi)
N
i=1 is a block sequence (1 + ε)-equivalent to the unit

vector basis of `Np ,

The k + 1 layer of the norm provides `pk+1 structure to the
space and hence

the k ’th level is the one that has to be used to provide the
`p estimate on some vectors.

It turns out however that the `pk structure imposed by the
k ’th level demolishes the `p one of the sequence.

We conclude that `p is not finitely block represented in X .
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Thank you!


