The stabilized set of p 's in Krivine's theorem can be disconnected

Pavlos Motakis
(joint work with Kevin Beanland and Daniel Freeman)

Department of Mathematics
National Technical University of Athens

Brazilian Workshop in Geometry of Banach spaces 25 August 2014, Maresias

European Union European Social Fund

MINISTRY OF EDUCATION \& RELIGIOUS AFFAIRS, CULTURE \& SPORTS M A N A G I N G A U T H O R I T Y

Co-financed by Greece and the European Union

The main problem

- Question: Let X be a Banach space with a basis, with a stabilized Krivine set F.
- Is F necessarily connected?
- During this lecture we shall demonstrate that this need not always be the case.

The main problem

- Question: Let X be a Banach space with a basis, with a stabilized Krivine set F.
- Is F necessarily connected?
- During this lecture we shall demonstrate that this need not always be the case.

The main problem

- Question: Let X be a Banach space with a basis, with a stabilized Krivine set F.
- Is F necessarily connected?
- During this lecture we shall demonstrate that this need not always be the case.

Preliminaries: finite block representability

- Let X be a Banach space with a Schauder basis $\left(x_{i}\right)_{i}$.
- Let also $\left(e_{j}\right)_{j}$ be a Schauder basic sequence, not
necessarily in X.
- We say that $\left(e_{j}\right)_{j}$ is finitely block represented in $\left(x_{i}\right)_{i}$ (or simply in X) if:
for every natural number n and $\varepsilon>0$ there exists
a finite block sequence $\left(y_{j}\right)_{j=1}^{n}$ of $\left(x_{i}\right)_{i}$
that is $(1+\varepsilon)$-equivalent io $\left(e_{j}\right)_{j=1}^{n}$

Preliminaries: finite block representability

- Let X be a Banach space with a Schauder basis $\left(x_{i}\right)_{i}$.
- Let also $\left(e_{j}\right)_{j}$ be a Schauder basic sequence, not necessarily in X.
- We say that $\left(e_{j}\right)_{j}$ is finitely block represented in $\left(x_{i}\right)_{i}$ (or simply in X) if:
for every natural number n and $\varepsilon>0$ there exists
a finite block sequence $\left(y_{j}\right)_{j=1}^{n}$ of $\left(x_{i}\right)_{i}$
that is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)^{n}=1$

Preliminaries: finite block representability

- Let X be a Banach space with a Schauder basis $\left(x_{i}\right)_{i}$.
- Let also $\left(e_{j}\right)_{j}$ be a Schauder basic sequence, not necessarily in X.
- We say that $\left(e_{j}\right)_{j}$ is finitely block represented in $\left(x_{i}\right)_{i}$ (or simply in X) if:
for every natural number n and $\varepsilon>0$ there exists
a finite block sequence $\left(y_{j}\right)_{j=1}^{n}$ of $\left(x_{i}\right)_{i}$
that is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)^{n}=1$

Preliminaries: finite block representability

- Let X be a Banach space with a Schauder basis $\left(x_{i}\right)_{i}$.
- Let also $\left(e_{j}\right)_{j}$ be a Schauder basic sequence, not necessarily in X.
- We say that $\left(e_{j}\right)_{j}$ is finitely block represented in $\left(x_{i}\right)_{i}($ or simply in X) if:
for every natural number n and $\varepsilon>0$ there exists
a finite block sequence $\left(y_{j}\right)_{j=1}^{n}$ of $\left(x_{i}\right)_{i}$
that is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)_{j=1}^{n}$

Preliminaries: finite block representability

- Let X be a Banach space with a Schauder basis $\left(x_{i}\right)_{i}$.
- Let also $\left(e_{j}\right)_{j}$ be a Schauder basic sequence, not necessarily in X.
- We say that $\left(e_{j}\right)_{j}$ is finitely block represented in $\left(x_{i}\right)_{i}($ or simply in X) if:
for every natural number n and $\varepsilon>0$ there exists a finite block sequence $\left(y_{j}\right)_{j=1}^{n}$ of $\left(x_{i}\right)_{i}$
that is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)_{j=1}^{n}$

Preliminaries: finite block representability

- Let X be a Banach space with a Schauder basis $\left(x_{i}\right)_{i}$.
- Let also $\left(e_{j}\right)_{j}$ be a Schauder basic sequence, not necessarily in X.
- We say that $\left(e_{j}\right)_{j}$ is finitely block represented in $\left(x_{i}\right)_{i}$ (or simply in X) if:
for every natural number n and $\varepsilon>0$ there exists a finite block sequence $\left(y_{j}\right)_{j=1}^{n}$ of $\left(x_{i}\right)_{i}$ that is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)_{j=1}^{n}$.

Preliminaries: spreading models

- Let X be a Banach space and $\left(x_{i}\right)_{i}$ be a sequence in X.
- Let also $\left(e_{j}\right)_{j}$ be a sequence in some Banach space, which is not necessarily X.
- We say that $\left(x_{i}\right)_{i}$ generates $\left(e_{j}\right)_{j}$ as a spreading model if:
for every natural number n and $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$
such that for every natural numbers $n_{0} \leqslant i_{1}<\cdots<i_{n}$
we have that $\left(x_{i j}\right)_{j=1}^{n}$ is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)_{j=1}^{n}$.

Preliminaries: spreading models

- Let X be a Banach space and $\left(x_{i}\right)_{i}$ be a sequence in X.
- Let also $\left(e_{j}\right)_{j}$ be a sequence in some Banach space, which is not necessarily X.
- We say that $\left(x_{i}\right)_{i}$ generates $\left(e_{j}\right)_{j}$ as a spreading model if:
for every natural number n and $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$
such that for every natural numbers $n_{0} \leqslant i_{1}<\cdots<i_{n}$
we have that $\left(x_{i_{j}}\right)_{j=1}^{n}$ is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)_{j=1}^{n}$

Preliminaries: spreading models

- Let X be a Banach space and $\left(x_{i}\right)_{i}$ be a sequence in X.
- Let also $\left(e_{j}\right)_{j}$ be a sequence in some Banach space, which is not necessarily X.
- We say that $\left(x_{i}\right)_{i}$ generates $\left(e_{j}\right)_{j}$ as a spreading model if:
for every natural number n and $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$
such that for every natural numbers $n_{0} \leqslant i_{1}<\cdots<i_{n}$
we have that $\left(x_{i j}\right)_{j=1}^{n}$ is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)_{j=1}^{n}$

Preliminaries: spreading models

- Let X be a Banach space and $\left(x_{i}\right)_{i}$ be a sequence in X.
- Let also $\left(e_{j}\right)_{j}$ be a sequence in some Banach space, which is not necessarily X.
- We say that $\left(x_{i}\right)_{i}$ generates $\left(e_{j}\right)_{j}$ as a spreading model if: for every natural number n and $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$
such that for every natural numbers $n_{0} \leqslant i_{1}<\cdots<i_{n}$ we have that $\left(x_{i j}\right)_{j=1}^{n}$ is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)_{j=1}^{n}$

Preliminaries: spreading models

- Let X be a Banach space and $\left(x_{i}\right)_{i}$ be a sequence in X.
- Let also $\left(e_{j}\right)_{j}$ be a sequence in some Banach space, which is not necessarily X.
- We say that $\left(x_{i}\right)_{i}$ generates $\left(e_{j}\right)_{j}$ as a spreading model if: for every natural number n and $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that for every natural numbers $n_{0} \leqslant i_{1}<\cdots<i_{n}$ we have that $\left(x_{i j}\right)_{j=1}^{n}$ is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)_{j=1}^{n}$.

Preliminaries: spreading models

- Let X be a Banach space and $\left(x_{i}\right)_{i}$ be a sequence in X.
- Let also $\left(e_{j}\right)_{j}$ be a sequence in some Banach space, which is not necessarily X.
- We say that $\left(x_{i}\right)_{i}$ generates $\left(e_{j}\right)_{j}$ as a spreading model if: for every natural number n and $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that for every natural numbers $n_{0} \leqslant i_{1}<\cdots<i_{n}$ we have that $\left(x_{i}\right)_{j=1}^{n}$ is $(1+\varepsilon)$-equivalent to $\left(e_{j}\right)_{j=1}^{n}$.
- An easy observation: if X is a Banach space with a basis $\left(x_{i}\right)_{i}$
- and $\left(y_{j}\right)_{j}$ is a block sequence of $\left(x_{i}\right)_{i}$ that generates some sequence $\left(e_{j}\right)_{j}$ as a spreading model,
- then $\left(e_{j}\right)_{j}$ is finitely block represented in $\left(x_{i}\right)_{i}$.
- An easy observation: if X is a Banach space with a basis $\left(x_{i}\right)_{i}$
- and $\left(y_{j}\right)_{j}$ is a block sequence of $\left(x_{i}\right)_{i}$ that generates some sequence $\left(e_{j}\right)_{j}$ as a spreading model,
- then $\left(e_{j}\right)_{j}$ is finitely block represented in $\left(x_{i}\right)_{i}$.
- An easy observation: if X is a Banach space with a basis $\left(x_{i}\right)_{i}$
- and $\left(y_{j}\right)_{j}$ is a block sequence of $\left(x_{i}\right)_{i}$ that generates some sequence $\left(e_{j}\right)_{j}$ as a spreading model,
- then $\left(e_{j}\right)_{j}$ is finitely block represented in $\left(x_{i}\right)_{i}$.

Krivine's theorem

Theorem (J. L. Krivine)

Let X be a Banach space with a Schauder basis. Then there exists a $p \in[1, \infty]$ such that the unit vector basis of ℓ_{p} is finitely block represented in X (the case $p=\infty$ refers to the unit vector basis of c_{0}).

- The set of all p's that are finitely block represented in X is called the Krivine set of X and is denoted by $K(X)$.
- Remark: It follows that if for some p, X admits a spreading model equivalent to the unit vector basis of ℓ_{p}, then p is in the Krivine set of X.

Krivine's theorem

Theorem (J. L. Krivine)

Let X be a Banach space with a Schauder basis. Then there exists a $p \in[1, \infty]$ such that the unit vector basis of ℓ_{p} is finitely block represented in X (the case $p=\infty$ refers to the unit vector basis of c_{0}).

- The set of all p's that are finitely block represented in X is called the Krivine set of X and is denoted by $K(X)$.
- Remark: It follows that if for some p, X admits a spreading model equivalent to the unit vector basis of ℓ_{p}, then p is in the Krivine set of X.

Krivine's theorem

Theorem (J. L. Krivine)

Let X be a Banach space with a Schauder basis. Then there exists a $p \in[1, \infty]$ such that the unit vector basis of ℓ_{p} is finitely block represented in X (the case $p=\infty$ refers to the unit vector basis of c_{0}).

- The set of all p's that are finitely block represented in X is called the Krivine set of X and is denoted by $K(X)$.
- Remark: It follows that if for some p, X admits a spreading model equivalent to the unit vector basis of ℓ_{p}, then p is in the Krivine set of X.

Krivine Set

- In his paper on Krivine's theorem, H. P. Rosenthal observed the following:
- On some block subspace Y of X, the Krivine set is stabilized, i.e.
- if Z is a further block subspace of Y then the sets $K(Y)$ and $K(Z)$ coincide.
- Rosenthal concluded his paper with the following question:
- Is such a stabilized Krivine set necessarily always a singleton?

Krivine Set

- In his paper on Krivine's theorem, H. P. Rosenthal observed the following:
- On some block subspace Y of X, the Krivine set is stabilized, i.e.
- if Z is a further block subspace of Y then the sets $K(Y)$ and $K(Z)$ coincide.
- Rosenthal concluded his paper with the following question:
- Is such a stabilized Krivine set necessarily always a singleton?

Krivine Set

- In his paper on Krivine's theorem, H. P. Rosenthal observed the following:
- On some block subspace Y of X, the Krivine set is stabilized, i.e.
- if Z is a further block subspace of Y then the sets $K(Y)$ and $K(Z)$ coincide.
- Rosenthal concluded his paper with the following question:
- Is such a stabilized Krivine set necessarily always a singleton?

Krivine Set

- In his paper on Krivine's theorem, H. P. Rosenthal observed the following:
- On some block subspace Y of X, the Krivine set is stabilized, i.e.
- if Z is a further block subspace of Y then the sets $K(Y)$ and $K(Z)$ coincide.
- Rosenthal concluded his paper with the following question:
- Is such a stabilized Krivine set necessarily always a singleton?

Krivine Set

- In his paper on Krivine's theorem, H. P. Rosenthal observed the following:
- On some block subspace Y of X, the Krivine set is stabilized, i.e.
- if Z is a further block subspace of Y then the sets $K(Y)$ and $K(Z)$ coincide.
- Rosenthal concluded his paper with the following question:
- Is such a stabilized Krivine set necessarily always a singleton?

Krivine Set

- E. Odell and Th. Schlumprecht constructed a space X with the property that every 1 -unconditional basic sequence is finitely block represented in every block subspace Y of X.
- This space has $[1, \infty]$ as its stabilized Krivine set and hence the answer the above question is negative.

Krivine Set

- E. Odell and Th. Schlumprecht constructed a space X with the property that every 1 -unconditional basic sequence is finitely block represented in every block subspace Y of X.
- This space has $[1, \infty]$ as its stabilized Krivine set and hence the answer the above question is negative.

Krivine Set

- Next Question: Let X be a Banach space with a basis, with a stabilized Krivine set F.
- Is F necessarily connected?
- This question first appeared in a paper by P. Habala and N. Tomczak-Jaegermann and was also later mentioned by Odell as one of 15 open problems in Banach spaces.
- İn their paper Habala and Tomczak-Jaegermann prove the following:
- if $p<a$ are in the stabilized Krivine set of X, then X admits a block quotient Z such that every $r \in[p, q]$ is finitely block represented in Z.

Krivine Set

- Next Question: Let X be a Banach space with a basis, with a stabilized Krivine set F.
- Is F necessarily connected?
- This question first appeared in a paper by P. Habala and N. Tomczak-Jaegermann and was also later mentioned by Odell as one of 15 open problems in Banach spaces.
- In their paper Habala and Tomczak-Jaegermann prove the following:
- if $p<q$ are in the stabilized Krivine set of X, then X admits a block quotient Z such that every $r \in[p, q]$ is finitely block represented in Z.

Krivine Set

- Next Question: Let X be a Banach space with a basis, with a stabilized Krivine set F.
- Is F necessarily connected?
- This question first appeared in a paper by P. Habala and N. Tomczak-Jaegermann and was also later mentioned by Odell as one of 15 open problems in Banach spaces.
- In their paper Habala and Tomczak-Jaegermann prove the following:
- if $p<a$ are in the stabilized Krivine set of X, then X admits a block quotient Z such that every $r \in[p, q]$ is finitely block represented in Z.

Krivine Set

- Next Question: Let X be a Banach space with a basis, with a stabilized Krivine set F.
- Is F necessarily connected?
- This question first appeared in a paper by P. Habala and N. Tomczak-Jaegermann and was also later mentioned by Odell as one of 15 open problems in Banach spaces.
- In their paper Habala and Tomczak-Jaegermann prove the following:
- if $p<q$ are in the stabilized Krivine set of X, then X admits a block quotient Z such that every $r \in[p, q]$ is finitely block represented in Z.

Krivine Set

- Next Question: Let X be a Banach space with a basis, with a stabilized Krivine set F.
- Is F necessarily connected?
- This question first appeared in a paper by P. Habala and N. Tomczak-Jaegermann and was also later mentioned by Odell as one of 15 open problems in Banach spaces.
- In their paper Habala and Tomczak-Jaegermann prove the following:
- if $p<q$ are in the stabilized Krivine set of X, then X admits a block quotient Z such that every $r \in[p, q]$ is finitely block represented in Z.

The main result

Theorem

Let $F \subset[1, \infty]$ be either a finite set or a set consisting of an increasing sequence and its limit. Then there exists a reflexive Banach space X with an unconditional basis such that for every infinite dimensional block subspace Y of X :

The main result

Theorem

Let $F \subset[1, \infty]$ be either a finite set or a set consisting of an increasing sequence and its limit. Then there exists a reflexive Banach space X with an unconditional basis such that for every infinite dimensional block subspace Y of X :
(i) For all $1 \leqslant p \leqslant \infty$, the space ℓ_{p} is finitely block represented in Y if and only if $p \in F$.
If F is finite then the spreading models admitted by Y are exactly the spaces ℓ_{p} for $p \in F$
If F is an increasing sequence with limit p_{ω} then every spreading model admitted by Y is isomorphic to ℓ_{p} for some $p \in F$ and for every $p \in F \backslash\left\{p_{\omega}\right\} \ell_{p}$ is admitted as a spreading model by Y

The main result

Theorem

Let $F \subset[1, \infty]$ be either a finite set or a set consisting of an increasing sequence and its limit. Then there exists a reflexive Banach space X with an unconditional basis such that for every infinite dimensional block subspace Y of X :
(i) For all $1 \leqslant p \leqslant \infty$, the space ℓ_{p} is finitely block represented in Y if and only if $p \in F$.
(ii) If F is finite then the spreading models admitted by Y are exactly the spaces ℓ_{p} for $p \in F$.
If F is an increasing sequence with limit p_{ω} then every spreading model admitted by Y is isomorphic to ℓ_{p} for some $p \in F$ and for every $p \in F \backslash\left\{p_{\omega}\right\} \ell_{n}$ is admitted as a
spreading model by Y.

The main result

Theorem

Let $F \subset[1, \infty]$ be either a finite set or a set consisting of an increasing sequence and its limit. Then there exists a reflexive Banach space X with an unconditional basis such that for every infinite dimensional block subspace Y of X :
(i) For all $1 \leqslant p \leqslant \infty$, the space ℓ_{p} is finitely block represented in Y if and only if $p \in F$.
(ii) If F is finite then the spreading models admitted by Y are exactly the spaces ℓ_{p} for $p \in F$.
(iii) If F is an increasing sequence with limit p_{ω} then every spreading model admitted by Y is isomorphic to ℓ_{p} for some $p \in F$ and for every $p \in F \backslash\left\{p_{\omega}\right\} \ell_{p}$ is admitted as a spreading model by Y.

Disconnected Krivine Set

- In particular, the stabilized Krivine set of X is F (which is either finite or consists of an increasing sequence and its limit) and hence not connected.
- This space also answers some questions concerning spreading models, which were asked by G. Androulakis, Odell, Schlumprecht and Tomczak-Jaegermann.

Disconnected Krivine Set

- In particular, the stabilized Krivine set of X is F (which is either finite or consists of an increasing sequence and its limit) and hence not connected.
- This space also answers some questions concerning spreading models, which were asked by G. Androulakis, Odell, Schlumprecht and Tomczak-Jaegermann.

Spreading models

- Question: Let n be a natural number. Does there exists a Banach space X such that every subspace admits n-many spreading models?
- Answer: Yes, and they can be chosen to be ℓ_{p} 's for $p \in F$ for any n-set $F \subset[1, \infty]$
- Question: Does there exists a Banach space X such that every subspace admits countably infinite many spreading models?
- Answer: Yes, for F an increasing sequence the space constructed has this property.
- Question: Let X be a Banach spaces such that every subspace admits both ℓ_{1} and ℓ_{2} spreading models. Does X admit uncountably many spreading models?
- Answer: No, for $F=\{1,2\}$ the space constructed admits only ℓ_{1} and ℓ_{2} spreading models in every subspace.

Spreading models

- Question: Let n be a natural number. Does there exists a Banach space X such that every subspace admits n-many spreading models?
- Answer: Yes, and they can be chosen to be ℓ_{p} 's for $p \in F$ for any n-set $F \subset[1, \infty]$.
- Question: Does there exists a Banach space X such that every subspace admits countably infinite many spreading models?
- Answer: Yes, for F an increasing sequence the space constructed has this property.
- Question: Let X be a Banach spaces such that every subspace admits both ℓ_{1} and ℓ_{2} spreading models. Does X admit uncountably many spreading models?
- Answer:: No, for $F=\{1,2\}$ the space constructed admits only ℓ_{1} and ℓ_{2} spreading models in every subspace.

Spreading models

- Question: Let n be a natural number. Does there exists a Banach space X such that every subspace admits n-many spreading models?
- Answer: Yes, and they can be chosen to be ℓ_{p} 's for $p \in F$ for any n-set $F \subset[1, \infty]$.
- Question: Does there exists a Banach space X such that every subspace admits countably infinite many spreading models?
- Answer: Yes, for F an increasing sequence the space constructed has this property.
- Question: Let X be a Banach spaces such that every subspace admits both ℓ_{1} and ℓ_{2} spreading models. Does X admit uncountably many spreading models?
 only ℓ_{1} and ℓ_{2} spreading models in every subspace.

Spreading models

- Question: Let n be a natural number. Does there exists a Banach space X such that every subspace admits n-many spreading models?
- Answer: Yes, and they can be chosen to be ℓ_{p} 's for $p \in F$ for any n-set $F \subset[1, \infty]$.
- Question: Does there exists a Banach space X such that every subspace admits countably infinite many spreading models?
- Answer: Yes, for F an increasing sequence the space constructed has this property.
- Question: Let X be a Banach spaces such that every subspace admits both ℓ_{1} and ℓ_{2} spreading models. Does X admit uncountably many spreading models?

Spreading models

- Question: Let n be a natural number. Does there exists a Banach space X such that every subspace admits n-many spreading models?
- Answer: Yes, and they can be chosen to be ℓ_{p} 's for $p \in F$ for any n-set $F \subset[1, \infty]$.
- Question: Does there exists a Banach space X such that every subspace admits countably infinite many spreading models?
- Answer: Yes, for F an increasing sequence the space constructed has this property.
- Question: Let X be a Banach spaces such that every subspace admits both ℓ_{1} and ℓ_{2} spreading models. Does X admit uncountably many spreading models?
- Answer: No, for $F=\{1,2\}$ the space constructed admits only ℓ_{1} and ℓ_{2} spreading models in every subspace.

Spreading models

- Question: Let n be a natural number. Does there exists a Banach space X such that every subspace admits n-many spreading models?
- Answer: Yes, and they can be chosen to be ℓ_{p} 's for $p \in F$ for any n-set $F \subset[1, \infty]$.
- Question: Does there exists a Banach space X such that every subspace admits countably infinite many spreading models?
- Answer: Yes, for F an increasing sequence the space constructed has this property.
- Question: Let X be a Banach spaces such that every subspace admits both ℓ_{1} and ℓ_{2} spreading models. Does X admit uncountably many spreading models?
- Answer: No, for $F=\{1,2\}$ the space constructed admits only ℓ_{1} and ℓ_{2} spreading models in every subspace.

Spreading models

- It is worth pointing out that the previously stated theorem is false if stated for F a decreasing sequence and its limit.
- Indeed, as B. Sari has proved, if a Banach space admits a strictly increasing, with respect to domination, sequence of spreading models, then it admits uncountably many spreading models.

Spreading models

- It is worth pointing out that the previously stated theorem is false if stated for F a decreasing sequence and its limit.
- Indeed, as B. Sari has proved, if a Banach space admits a strictly increasing, with respect to domination, sequence of spreading models, then it admits uncountably many spreading models.

The construction

- The definition of the norm uses the method of saturation under constraints, a method initialized by Odell and Schlumprecht to construct the earlier mentioned space with $[1, \infty]$ as its stabilized Krivine set.
- The construction method used in the preset case is more related to the one used by S. Argyros, K. Beanland and P. M. to construct Tsirelson like reflexive spaces. Among the properties of these spaces is that they admit only ℓ_{1} and c_{0} as a spreading model in every subspace.
- Actually, the space X we construct for $F=\{1, \infty\}$ is a slight modification of the simplest case presented in that paper.

The construction

- The definition of the norm uses the method of saturation under constraints, a method initialized by Odell and Schlumprecht to construct the earlier mentioned space with $[1, \infty]$ as its stabilized Krivine set.
- The construction method used in the preset case is more related to the one used by S. Argyros, K. Beanland and P. M . to construct Tsirelson like reflexive spaces. Among the properties of these spaces is that they admit only ℓ_{1} and c_{0} as a spreading model in every subspace.
- Actually, the space X we construct for $F=\{1, \infty\}$ is a slight modification of the simplest case presented in that paper.

The construction

- The definition of the norm uses the method of saturation under constraints, a method initialized by Odell and Schlumprecht to construct the earlier mentioned space with $[1, \infty]$ as its stabilized Krivine set.
- The construction method used in the preset case is more related to the one used by S. Argyros, K. Beanland and P. M . to construct Tsirelson like reflexive spaces. Among the properties of these spaces is that they admit only ℓ_{1} and c_{0} as a spreading model in every subspace.
- Actually, the space X we construct for $F=\{1, \infty\}$ is a slight modification of the simplest case presented in that paper.

The construction

- From now on let us assume that F consists of a strictly increasing sequence $\left(p_{k}\right)_{k=1}^{\infty}$ and its limit p_{ω}. (The case in which F is finite is the same)
- We fix a constant $0<\theta \leqslant 1 / 4$.
- The norm $\|\cdot\|_{*}$ of the space X satisfies an implicit formula which is based on countably infinite many layers.
- Each layer also comes in various sizes.

The construction

- From now on let us assume that F consists of a strictly increasing sequence $\left(p_{k}\right)_{k=1}^{\infty}$ and its limit p_{ω}. (The case in which F is finite is the same)
- We fix a constant $0<\theta \leqslant 1 / 4$.
- The norm $\|\cdot\|_{*}$ of the space X satisfies an implicit formula which is based on countably infinite many layers.
- Each layer also comes in various sizes.

The construction

- From now on let us assume that F consists of a strictly increasing sequence $\left(p_{k}\right)_{k=1}^{\infty}$ and its limit p_{ω}. (The case in which F is finite is the same)
- We fix a constant $0<\theta \leqslant 1 / 4$.
- The norm $\|\cdot\|_{*}$ of the space X satisfies an implicit formula which is based on countably infinite many layers.
- Each layer also comes in various sizes.

The construction

- From now on let us assume that F consists of a strictly increasing sequence $\left(p_{k}\right)_{k=1}^{\infty}$ and its limit p_{ω}. (The case in which F is finite is the same)
- We fix a constant $0<\theta \leqslant 1 / 4$.
- The norm $\|\cdot\|_{*}$ of the space X satisfies an implicit formula which is based on countably infinite many layers.
- Each layer also comes in various sizes.

The implicit formula

- The base layer: for $m \in \mathbb{N}$ and $x \in c_{00}(\mathbb{N})$ define

where p_{ω}^{\prime} denotes the conjugate exponent of p_{ω} and the supremum is taken over all successive subsets of the natural number $E_{1}<\cdots<E_{m}$.
- The index 0 states that this is the base layer of the norm, which comes in many sizes, indicated by the index m.

The implicit formula

- The base layer: for $m \in \mathbb{N}$ and $x \in c_{00}(\mathbb{N})$ define

$$
\|x\|_{0, m}=\theta \sup \frac{1}{m^{1 / p_{\omega}^{\prime}}} \sum_{q=1}^{m}\left\|E_{q} x\right\|_{*}
$$

where p_{ω}^{\prime} denotes the conjugate exponent of p_{ω} and the supremum is taken over all successive subsets of the natural number $E_{1}<\cdots<E_{m}$.

- The index 0 states that this is the base layer of the norm, which comes in many sizes, indicated by the index m.

The implicit formula

- The base layer: for $m \in \mathbb{N}$ and $x \in c_{00}(\mathbb{N})$ define

$$
\|x\|_{0, m}=\theta \sup \frac{1}{m^{1 / p_{\omega}^{\prime}}} \sum_{q=1}^{m}\left\|E_{q} x\right\|_{*}
$$

where p_{ω}^{\prime} denotes the conjugate exponent of p_{ω} and the supremum is taken over all successive subsets of the natural number $E_{1}<\cdots<E_{m}$.

- The index 0 states that this is the base layer of the norm, which comes in many sizes, indicated by the index m.

The implicit formula

- The base layer: for $m \in \mathbb{N}$ and $x \in c_{00}(\mathbb{N})$ define

$$
\|x\|_{0, m}=\theta \sup \frac{1}{m^{1 / p_{\omega}^{\prime}}} \sum_{q=1}^{m}\left\|E_{q} x\right\|_{*}
$$

where p_{ω}^{\prime} denotes the conjugate exponent of p_{ω} and the supremum is taken over all successive subsets of the natural number $E_{1}<\cdots<E_{m}$.

- The index 0 states that this is the base layer of the norm, which comes in many sizes, indicated by the index m.

The implicit formula

We assume that for some k, the layers $0, \ldots, k-1$ have been defined, i.e. for every layer $0 \leqslant i<k$ and every size $m \in \mathbb{N}$, the norm $\|\cdot\|_{i, m}$ has been defined.

The implicit formula

- The k 'th layer: for $m \in \mathbb{N}$ and $x \in c_{00}(\mathbb{N})$ define

$$
\|x\|_{k, m}=\theta \sup \left(\sum_{q=1}^{d}\left\|E_{q} \times\right\|_{i_{q}, m_{q}}^{p_{k}}\right)^{1 / p_{k}}
$$

where the supremum is taken over all $d \in \mathbb{N}, 0 \leqslant i_{q}<k$ and all admissible and very fast growing $\left(E_{q}\right)_{q=1}^{d},\left(m_{q}\right)_{q=1}^{d}$, i.e. they satisfy
$d \leqslant E_{1}<\cdots<E_{d}, \quad \min E_{i}>\left(\max E_{i-1}\right)^{2}$ and
$m_{i}>\max E_{i-1}$ and $m_{i} \geqslant m$ for $i=2, \ldots, d$.

The implicit formula

- The k 'th layer: for $m \in \mathbb{N}$ and $x \in c_{00}(\mathbb{N})$ define

$$
\|x\|_{k, m}=\theta \sup \left(\sum_{q=1}^{d}\left\|E_{q} x\right\|_{i_{q}, m_{q}}^{p_{k}}\right)^{1 / p_{k}}
$$

where the supremum is taken over all $d \in \mathbb{N}, 0$ and all admissible and very fast growing $\left(E_{q}\right)_{q=1}^{d},\left(m_{q}\right)_{q=1}^{d}$, i.e. they satisfy
$d \leqslant E_{1}<\cdots<E_{d}, \quad \min E_{i}>\left(\max E_{i-1}\right)^{2}$ and
$m_{i}>\max E_{i-1}$ and $m_{i} \geqslant m$ for $i=2, \ldots, d$.

The implicit formula

- The k 'th layer: for $m \in \mathbb{N}$ and $x \in c_{00}(\mathbb{N})$ define

$$
\|x\|_{k, m}=\theta \sup \left(\sum_{q=1}^{d}\left\|E_{q} x\right\|_{i_{q}, m_{q}}^{p_{k}}\right)^{1 / p_{k}}
$$

where the supremum is taken over all $d \in \mathbb{N}, 0 \leqslant i_{q}<k$ and all admissible and very fast growing $\left(E_{q}\right)_{q=1}^{d},\left(m_{q}\right)_{q=1}^{d}$, i.e. they satisfy
$d \leqslant E_{1}<\cdots<E_{d}, \quad \min E_{i}>\left(\max E_{i-1}\right)^{2}$ and
$m_{i}>\max E_{i-1}$ and $m_{i} \geqslant m$ for $i=2, \ldots, d$.

The implicit formula

- The k 'th layer: for $m \in \mathbb{N}$ and $x \in c_{00}(\mathbb{N})$ define

$$
\|x\|_{k, m}=\theta \sup \left(\sum_{q=1}^{d}\left\|E_{q} x\right\|_{i_{q}, m_{q}}^{p_{k}}\right)^{1 / p_{k}}
$$

where the supremum is taken over all $d \in \mathbb{N}, 0 \leqslant i_{q}<k$ and all admissible and very fast growing $\left(E_{q}\right)_{q=1}^{d},\left(m_{q}\right)_{q=1}^{d}$,
i.e. they satisfy
$d \leqslant E_{1}<\cdots<E_{d}, \quad \min E_{i}>\left(\max E_{i-1}\right)^{2}$ and
$m_{i}>\max E_{i-1}$ and $m_{i} \geqslant m$ for $i=2, \ldots, d$.

The implicit formula

- The k 'th layer: for $m \in \mathbb{N}$ and $x \in c_{00}(\mathbb{N})$ define

$$
\|x\|_{k, m}=\theta \sup \left(\sum_{q=1}^{d}\left\|E_{q} x\right\|_{i_{q}, m_{q}}^{p_{k}}\right)^{1 / p_{k}}
$$

where the supremum is taken over all $d \in \mathbb{N}, 0 \leqslant i_{q}<k$ and all admissible and very fast growing $\left(E_{q}\right)_{q=1}^{d},\left(m_{q}\right)_{q=1}^{d}$, i.e. they satisfy
$d \leqslant E_{1}<\cdots<E_{d}, \quad \min E_{i}>\left(\max E_{i-1}\right)^{2}$ and $m_{i}>\max E_{i-1}$ and $m_{i} \geqslant m$ for $i=2, \ldots, d$.

The implicit formula

- For $x \in c_{00}(\mathbb{N})$ we also define

$$
\|x\|_{\omega}=\theta \sup \left(\sum_{q=1}^{d}\left\|E_{q} x\right\|_{*}^{p_{\omega}}\right)^{1 / p_{\omega}}
$$

where the supremum is taken over all $d \in \mathbb{N}$ and all successive subsets of the natural number $E_{1}<\cdots<E_{d}$.

The implicit formula

- For $x \in c_{00}(\mathbb{N})$ we also define

$$
\|x\|_{\omega}=\theta \sup \left(\sum_{q=1}^{d}\left\|E_{q} x\right\|_{*}^{p_{\omega}}\right)^{1 / p_{\omega}}
$$

where the supremum is taken over all $d \in \mathbb{N}$ and all successive subsets of the natural number $E_{1}<\cdots<E_{d}$.

The implicit formula

- The norm $\|\cdot\|_{*}$ satisfies the following implicit formula for every $x \in c_{00}(\mathbb{N})$:
- For every block vectors $x_{1}<\cdots<x_{n}$ the following estimate holds:

The implicit formula

- The norm $\|\cdot\|_{*}$ satisfies the following implicit formula for every $x \in c_{00}(\mathbb{N})$:

$$
\|x\|_{*}=\max \left\{\|x\|_{\infty},\|x\|_{\omega}, \sup _{k, m}\|x\|_{k, m}\right\}
$$

- For every block vectors $x_{1}<\cdots<x_{n}$ the following estimate holds:

The implicit formula

- The norm $\|\cdot\|_{*}$ satisfies the following implicit formula for every $x \in c_{00}(\mathbb{N})$:

$$
\|x\|_{*}=\max \left\{\|x\|_{\infty},\|x\|_{\omega}, \sup _{k, m}\|x\|_{k, m}\right\}
$$

- For every block vectors $x_{1}<\cdots<x_{n}$ the following estimate holds:

The implicit formula

- The norm $\|\cdot\|_{*}$ satisfies the following implicit formula for every $x \in c_{00}(\mathbb{N})$:

$$
\|x\|_{*}=\max \left\{\|x\|_{\infty},\|x\|_{\omega}, \sup _{k, m}\|x\|_{k, m}\right\}
$$

- For every block vectors $x_{1}<\cdots<x_{n}$ the following estimate holds:

$$
\theta\left(\sum_{i=1}^{m}\left\|x_{i}\right\|^{p_{\omega}}\right)^{1 / p_{\omega}} \leqslant\left\|\sum_{i=1}^{m} x_{i}\right\| \leqslant 2\left(\sum_{i=1}^{m}\left\|x_{i}\right\|^{p_{1}}\right)^{1 / p_{1}} .
$$

The α-indices

- To show that the set F is contained in the Krivine set of every block subspace of X, we show that for every $k, \ell_{p_{k}}$ is admitted as a spreading model by all subspaces of X.
- In the present construction we use the α-indices of a block sequence.
- The α-index is a tool that has been used in earlier works related to the method of constraints.
- These indices determine the spreading models admitted by a block sequence.

The α-indices

- To show that the set F is contained in the Krivine set of every block subspace of X, we show that for every $k, \ell_{p_{k}}$ is admitted as a spreading model by all subspaces of X.
- In the present construction we use the α-indices of a block sequence.
- The α-index is a tool that has been used in earlier works related to the method of constraints.
- These indices determine the spreading models admitted by a block sequence.

The α-indices

- To show that the set F is contained in the Krivine set of every block subspace of X, we show that for every $k, \ell_{p_{k}}$ is admitted as a spreading model by all subspaces of X.
- In the present construction we use the α-indices of a block sequence.
- The α-index is a tool that has been used in earlier works related to the method of constraints.
- These indices determine the spreading models admitted by a block sequence.

The α-indices

- To show that the set F is contained in the Krivine set of every block subspace of X, we show that for every $k, \ell_{p_{k}}$ is admitted as a spreading model by all subspaces of X.
- In the present construction we use the α-indices of a block sequence.
- The α-index is a tool that has been used in earlier works related to the method of constraints.
- These indices determine the spreading models admitted by a block sequence.

The α-indices: definition of the $\alpha_{<k}$-index

- Let k be a natural number and $\left(x_{i}\right)_{i}$ be a block sequence.

If for every layer $0 \leqslant k^{\prime}<k$ and strictly increasing
sequence of sizes $\left(m_{q}\right)_{q}$, for every $\left(x_{i_{q}}\right)_{q}$ subsequence of $\left(x_{i}\right)_{i}$ we have that

then we say that the $\alpha_{<k}$-index of $\left(x_{i}\right)_{i}$ is zero.

The α-indices: definition of the $\alpha_{<k}$-index

- Let k be a natural number and $\left(x_{i}\right)_{i}$ be a block sequence.

If for every layer $0 \leqslant k^{\prime}<k$ and strictly increasing sequence of sizes $\left(m_{q}\right)_{q}$, for every $\left(x_{i_{q}}\right)_{q}$ subsequence of $\left(x_{i}\right)_{i}$ we have that

then we say that the $\alpha_{<k}$-index of $\left(x_{i}\right)_{i}$ is zero.

The α-indices: definition of the $\alpha_{<k}$-index

- Let k be a natural number and $\left(x_{i}\right)_{i}$ be a block sequence.

If for every layer $0 \leqslant k^{\prime}<k$ and strictly increasing sequence of sizes $\left(m_{q}\right)_{q}$, for every $\left(x_{i_{q}}\right)_{q}$ subsequence of $\left(x_{i}\right)_{i}$ we have that

$$
\lim _{q}\left\|x_{i_{q}}\right\|_{k^{\prime}, m_{q}}=0
$$

then we say that the $\alpha_{<k}$-index of $\left(x_{i}\right)_{i}$ is zero.

The α-indices: definition of the $\alpha_{<k}$-index

- Let k be a natural number and $\left(x_{i}\right)_{i}$ be a block sequence.

If for every layer $0 \leqslant k^{\prime}<k$ and strictly increasing sequence of sizes $\left(m_{q}\right)_{q}$, for every $\left(x_{i_{q}}\right)_{q}$ subsequence of $\left(x_{i}\right)_{i}$ we have that

$$
\lim _{q}\left\|x_{i_{q}}\right\|_{k^{\prime}, m_{q}}=0
$$

then we say that the $\alpha_{<k}$-index of $\left(x_{i}\right)_{i}$ is zero.

The α-indices

Proposition

Let $\left(x_{i}\right)_{i}$ be a seminormalized block sequence in X generating a spreading model $\left(y_{j}\right)_{j}$.

- The spreading model $\left(y_{j}\right)_{j}$ of $\left(x_{i}\right)_{i}$ is equivalent to the unit vector basis of $\ell_{p_{\omega}}$ if and only if the $\alpha_{<k}$ index of $\left(x_{i}\right)_{i}$ is zero for every k.
- For every $k \in \mathbb{N}$, the spreading model $\left(y_{j}\right)_{j}$ of $\left(x_{i}\right)_{i}$ is equivalent to the unit vector basis of $\ell_{p_{k}}$ if and only if the $\alpha_{<k}$ index of $\left(x_{i}\right)_{i}$ is not zero, while the $\alpha_{<k^{\prime}}$ index is zero for all $k^{\prime}<k$.

The α-indices

Proposition

Let $\left(x_{i}\right)_{i}$ be a seminormalized block sequence in X generating a spreading model $\left(y_{j}\right)_{j}$.

- The spreading model $\left(y_{j}\right)_{j}$ of $\left(x_{i}\right)_{i}$ is equivalent to the unit vector basis of $\ell_{p_{\omega}}$ if and only if the $\alpha_{<k}$ index of $\left(x_{i}\right)_{i}$ is zero for every k.
- For every $k \in \mathbb{N}$, the spreading model $\left(y_{j}\right)_{j}$ of $\left(x_{i}\right)_{i}$ is equivalent to the unit vector basis of $\ell_{p_{k}}$ if and only if the $\alpha_{<k}$ index of $\left(x_{i}\right)_{i}$ is not zero, while the $\alpha_{<k^{\prime}}$ index is zero

The α-indices

Proposition

Let $\left(x_{i}\right)_{i}$ be a seminormalized block sequence in X generating a spreading model $\left(y_{j}\right)_{j}$.

- The spreading model $\left(y_{j}\right)_{j}$ of $\left(x_{i}\right)_{i}$ is equivalent to the unit vector basis of $\ell_{p_{\omega}}$ if and only if the $\alpha_{<k}$ index of $\left(x_{i}\right)_{i}$ is zero for every k.
- For every $k \in \mathbb{N}$, the spreading model $\left(y_{j}\right)_{j}$ of $\left(x_{i}\right)_{i}$ is equivalent to the unit vector basis of $\ell_{p_{k}}$ if and only if the $\alpha_{<k}$ index of $\left(x_{i}\right)_{i}$ is not zero, while the $\alpha_{<k^{\prime}}$ index is zero for all $k^{\prime}<k$.

Spreading models admitted by block subspaces of X.

- We conclude that every spreading model admitted by X has to be ℓ_{p}, for some $p \in F$.
- It is also shown that all p's in F, with the possible exception of p_{ω}, occur as spreading models in every block subspace

Spreading models admitted by block subspaces of X.

- We conclude that every spreading model admitted by X has to be ℓ_{p}, for some $p \in F$.
- It is also shown that all p 's in F, with the possible exception of p_{ω}, occur as spreading models in every block subspace of X.

The stabilized Krivine set of X

- Since for every $p \in F \backslash\left\{p_{\omega}\right\}$, every block subspace of X admits an ℓ_{p} spreading model,
> we conclude that $F \backslash\left\{p_{\omega}\right\}$ and hence also F, is in the Krivine set of every block subspace of X
- We also show, by contradiction, that for every $p \notin F$, the unit vector basis of ℓ_{p} is not finitely block represented in X.
- We derive that the Krivine set of every block subspace of X is precisely F.
- Let us note that it is not known to us whether every block subspace of X admits an ℓ_{n}. spreading model.

The stabilized Krivine set of X

- Since for every $p \in F \backslash\left\{p_{\omega}\right\}$, every block subspace of X admits an ℓ_{p} spreading model,
we conclude that $F \backslash\left\{p_{\omega}\right\}$ and hence also F, is in the Krivine set of every block subspace of X
- We also show, by contradiction, that for every $p \notin F$, the unit vector basis of ℓ_{p} is not finitely block represented in X.
- We derive that the Krivine set of every block subspace of X is precisely F.
- Let us note that it is not known to us whether every block subspace of X admits an ℓ_{0}. spreading model.

The stabilized Krivine set of X

- Since for every $p \in F \backslash\left\{p_{\omega}\right\}$, every block subspace of X admits an ℓ_{p} spreading model,
we conclude that $F \backslash\left\{p_{\omega}\right\}$ and hence also F, is in the Krivine set of every block subspace of X
- We also show, by contradiction, that for every $p \notin F$, the unit vector basis of ℓ_{p} is not finitely block represented in X.
- We derive that the Krivine set of every block subspace of X is precisely F.
- Let us note that it is not known to us whether every block subspace of X admits an ℓ_{p}, spreading model.

The stabilized Krivine set of X

- Since for every $p \in F \backslash\left\{p_{\omega}\right\}$, every block subspace of X admits an ℓ_{p} spreading model,
we conclude that $F \backslash\left\{p_{\omega}\right\}$ and hence also F, is in the Krivine set of every block subspace of X
- We also show, by contradiction, that for every $p \notin F$, the unit vector basis of ℓ_{p} is not finitely block represented in X.
- We derive that the Krivine set of every block subspace of X is precisely F.
- Let us note that it is not known to us whether every block subspace of X admits an ℓ_{0}. spreading model.

The stabilized Krivine set of X

- Since for every $p \in F \backslash\left\{p_{\omega}\right\}$, every block subspace of X admits an ℓ_{p} spreading model,
we conclude that $F \backslash\left\{p_{\omega}\right\}$ and hence also F, is in the Krivine set of every block subspace of X
- We also show, by contradiction, that for every $p \notin F$, the unit vector basis of ℓ_{p} is not finitely block represented in X.
- We derive that the Krivine set of every block subspace of X is precisely F.
- Let us note that it is not known to us whether every block subspace of X admits an $\ell_{p_{\omega}}$ spreading model.

Spreading models admitted by block subspaces of X.

- Some words on how to obtain the desired spreading models in a a block subspace.
- We use the following: if a block sequence generates an $\ell_{p_{k}}$ spreading model, then an appropriate blocking of this sequence generates an $\ell_{p_{k+1}}$ spreading model. This blocking can be chosen to be increasing p_{k}-averages.
- It is therefore sufficient to prove that every block subspace of X admits an $\ell_{p_{1}}$ spreading model.
- We start with a block sequence $\left(x_{i}\right)_{i}$ in a block subspace of X and distinguish two cases:

Spreading models admitted by block subspaces of X.

- Some words on how to obtain the desired spreading models in a a block subspace.
- We use the following: if a block sequence generates an $\ell_{p_{k}}$ spreading model, then an appropriate blocking of this sequence generates an $\ell_{p_{k+1}}$ spreading model. This blocking can be chosen to be increasing p_{k}-averages.
- It is therefore sufficient to prove that every block subspace of X admits an $\ell_{p_{1}}$ spreading model.
- We start with a block sequence $\left(x_{i}\right)_{i}$ in a block subspace of X and distinguish two cases:
- Some words on how to obtain the desired spreading models in a a block subspace.
- We use the following: if a block sequence generates an $\ell_{p_{k}}$ spreading model, then an appropriate blocking of this sequence generates an $\ell_{p_{k+1}}$ spreading model. This blocking can be chosen to be increasing p_{k}-averages.
- It is therefore sufficient to prove that every block subspace of X admits an $\ell_{p_{1}}$ spreading model.
- We start with a block sequence $\left(x_{i}\right)_{i}$ in a block subspace of X and distinguish two cases:

Spreading models admitted by block subspaces of X.

- Some words on how to obtain the desired spreading models in a a block subspace.
- We use the following: if a block sequence generates an $\ell_{p_{k}}$ spreading model, then an appropriate blocking of this sequence generates an $\ell_{p_{k+1}}$ spreading model. This blocking can be chosen to be increasing p_{k}-averages.
- It is therefore sufficient to prove that every block subspace of X admits an $\ell_{p_{1}}$ spreading model.
- We start with a block sequence $\left(x_{i}\right)_{i}$ in a block subspace of X and distinguish two cases:

Spreading models admitted by block subspaces of X.

- Case 1: The block sequence $\left(x_{i}\right)_{i}$ admits an $\ell_{p_{\omega}}$ spreading model.

In this case by appropriately blocking the sequence we pass to an other one generating an $\ell_{n_{1}}$ spreading model. This blocking can be chosen to be increasing p_{ω}-averages.

- Case 1: The block sequence $\left(x_{i}\right)_{i}$ admits an $\ell_{p_{\omega}}$ spreading model.

In this case by appropriately blocking the sequence we pass to an other one generating an $\ell_{p_{1}}$ spreading model. This blocking can be chosen to be increasing p_{ω}-averages.

Spreading models admitted by block subspaces of X.

- Case 2: The block sequence $\left(x_{i}\right)_{i}$ admits an $\ell_{p_{k}}$ spreading model for some k.

We may then take block sequencences $\left(x_{i}^{m}\right)_{i}$, $m=k, k+1, \ldots$ each one generating an $\ell_{p_{m}}$ spreading model.

By carefully choosing block vectors, such that each one is an $\ell_{p_{m}}$ average of elements of the sequence
we arrive at a sequence that generates an $\ell_{p_{1}}$ spreading model.

Spreading models admitted by block subspaces of X.

- Case 2: The block sequence $\left(x_{i}\right)_{i}$ admits an $\ell_{p_{k}}$ spreading model for some k.

We may then take block sequencences $\left(x_{i}^{m}\right)_{i}$, $m=k, k+1, \ldots$ each one generating an $\ell_{p_{m}}$ spreading model.

By carefully choosing block vectors, such that each one is an $\ell_{p_{m}}$ average of elements of the sequence
we arrive at a sequence that generates an $\ell_{p_{1}}$ spreading model.

- Case 2: The block sequence $\left(x_{i}\right)_{i}$ admits an $\ell_{p_{k}}$ spreading model for some k.

We may then take block sequencences $\left(x_{i}^{m}\right)_{i}$, $m=k, k+1, \ldots$ each one generating an $\ell_{p_{m}}$ spreading model.

By carefully choosing block vectors, such that each one is an $\ell_{p_{m}}$ average of elements of the sequence
we arrive at a sequence that generates an $\ell_{p_{1}}$ spreading
model.

- Case 2: The block sequence $\left(x_{i}\right)_{i}$ admits an $\ell_{p_{k}}$ spreading model for some k.

We may then take block sequencences $\left(x_{i}^{m}\right)_{i}$, $m=k, k+1, \ldots$ each one generating an $\ell_{p_{m}}$ spreading model.

By carefully choosing block vectors, such that each one is an $\ell_{p_{m}}$ average of elements of the sequence
we arrive at a sequence that generates an $\ell_{p_{1}}$ spreading model.

The Krivine set of block subspaces of X.

- Some words on how to prove that for $p \notin F, \ell_{p}$ is not finitely block represented in X.
- If $p \notin\left[p_{1}, p_{\omega}\right]$ then the result follows easily from the fact that block vectors in X
satisfy a lower $\ell_{p_{\omega}}$ estimate with constant θ and
and upper $\ell_{p_{1}}$ estimate with constant 2.

The Krivine set of block subspaces of X.

- Some words on how to prove that for $p \notin F, \ell_{p}$ is not finitely block represented in X.
- If $p \notin\left[p_{1}, p_{\omega}\right]$ then the result follows easily from the fact that block vectors in X
satisfy a lower $\ell_{p_{\omega}}$ estimate with constant θ and
and upper $\ell_{p_{1}}$ estimate with constant 2.

The Krivine set of block subspaces of X.

- Some words on how to prove that for $p \notin F, \ell_{p}$ is not finitely block represented in X.
- If $p \notin\left[p_{1}, p_{\omega}\right]$ then the result follows easily from the fact that block vectors in X
satisfy a lower $\ell_{p_{\omega}}$ estimate with constant θ and
and upper $\ell_{p_{1}}$ estimate with constant 2.

The Krivine set of block subspaces of X.

- Some words on how to prove that for $p \notin F, \ell_{p}$ is not finitely block represented in X.
- If $p \notin\left[p_{1}, p_{\omega}\right]$ then the result follows easily from the fact that block vectors in X
satisfy a lower $\ell_{p_{\omega}}$ estimate with constant θ and
and upper $\ell_{p_{1}}$ estimate with constant 2.

The Krivine set of BLock subspaces of X.

- If $p \in\left[p_{1}, p_{\omega}\right] \backslash F$ then the proof is more technical.

Roughly speaking, let us assume that k is such that
$p_{k}<p<p_{k+1}, N$ is sufficiently large, ε is sufficiently small and
$\left(x_{i}\right)_{i=1}^{N}$ is a block sequence $(1+\varepsilon)$-equivalent to the unit vector basis of ℓ_{p}^{N},

- The $k+1$ layer of the norm provides $\ell_{p_{k+1}}$ structure to the space and hence
the k'th level is the one that has to be used to provide the ℓ_{p} estimate on some vectors.
- It turns out however that the $\ell_{p_{k}}$ structure imposed by the k'th level demolishes the ℓ_{p} one of the sequence.

The Krivine set of BLock subspaces of X.

- If $p \in\left[p_{1}, p_{\omega}\right] \backslash F$ then the proof is more technical.

Roughly speaking, let us assume that k is such that
$p_{k}<p<p_{k+1}, N$ is sufficiently large, ε is sufficiently small and
$\left(x_{i}\right)_{i=1}^{N}$ is a block sequence $(1+\varepsilon)$-equivalent to the unit
vector basis of ℓ_{p}^{N},

- The $k+1$ layer of the norm provides $\ell_{p_{k+1}}$ structure to the space and hence
the k^{\prime} 'th level is the one that has to be used to provide the ℓ_{p} estimate on some vectors.
- It turns out however that the $\ell_{p_{k}}$ structure imposed by the k 'th level demolishes the ℓ_{p} one of the sequence.

The Krivine set of BLock subspaces of X.

- If $p \in\left[p_{1}, p_{\omega}\right] \backslash F$ then the proof is more technical.

Roughly speaking, let us assume that k is such that
$p_{k}<p<p_{k+1}, N$ is sufficiently large, ε is sufficiently small and
$\left(x_{i}\right)_{i=1}^{N}$ is a block sequence $(1+\varepsilon)$-equivalent to the unit vector basis of ℓ_{p}^{N},

- The $k+1$ layer of the norm provides $\ell_{p_{k+1}}$ structure to the space and hence
the k^{\prime} th level is the one that has to be used to provide the ℓ_{p} estimate on some vectors.
- It turns out however that the $\ell_{p_{k}}$ structure imposed by the k 'th level demolishes the ℓ_{p} one of the sequence.

The Krivine set of BLock subspaces of X.

- If $p \in\left[p_{1}, p_{\omega}\right] \backslash F$ then the proof is more technical.

Roughly speaking, let us assume that k is such that
$p_{k}<p<p_{k+1}, N$ is sufficiently large, ε is sufficiently small and
$\left(x_{i}\right)_{i=1}^{N}$ is a block sequence $(1+\varepsilon)$-equivalent to the unit vector basis of ℓ_{p}^{N},

- The $k+1$ layer of the norm provides $\ell_{p_{k+1}}$ structure to the space and hence
the k'th level is the one that has to be used to provide the ℓ_{p} estimate on some vectors.
- It turns out however that the $\ell_{p_{k}}$ structure imposed by the k'th level demolishes the ℓ_{p} one of the sequence.

The Krivine set of BLock subspaces of X.

- If $p \in\left[p_{1}, p_{\omega}\right] \backslash F$ then the proof is more technical.

Roughly speaking, let us assume that k is such that
$p_{k}<p<p_{k+1}, N$ is sufficiently large, ε is sufficiently small and
$\left(x_{i}\right)_{i=1}^{N}$ is a block sequence $(1+\varepsilon)$-equivalent to the unit vector basis of ℓ_{p}^{N},

- The $k+1$ layer of the norm provides $\ell_{p_{k+1}}$ structure to the space and hence
the k^{\prime} 'th level is the one that has to be used to provide the ℓ_{p} estimate on some vectors.
- It turns out however that the $\ell_{p_{k}}$ structure imposed by the k 'th level demolishes the ℓ_{p} one of the sequence.

The Krivine set of BLock subspaces of X.

- If $p \in\left[p_{1}, p_{\omega}\right] \backslash F$ then the proof is more technical.

Roughly speaking, let us assume that k is such that
$p_{k}<p<p_{k+1}, N$ is sufficiently large, ε is sufficiently small and
$\left(x_{i}\right)_{i=1}^{N}$ is a block sequence $(1+\varepsilon)$-equivalent to the unit vector basis of ℓ_{p}^{N},

- The $k+1$ layer of the norm provides $\ell_{p_{k+1}}$ structure to the space and hence
the k^{\prime} 'th level is the one that has to be used to provide the ℓ_{p} estimate on some vectors.
- It turns out however that the $\ell_{p_{k}}$ structure imposed by the k 'th level demolishes the ℓ_{p} one of the sequence.

The Krivine set of BLock subspaces of X.

- If $p \in\left[p_{1}, p_{\omega}\right] \backslash F$ then the proof is more technical.

Roughly speaking, let us assume that k is such that
$p_{k}<p<p_{k+1}, N$ is sufficiently large, ε is sufficiently small and
$\left(x_{i}\right)_{i=1}^{N}$ is a block sequence $(1+\varepsilon)$-equivalent to the unit vector basis of ℓ_{p}^{N},

- The $k+1$ layer of the norm provides $\ell_{p_{k+1}}$ structure to the space and hence
the k^{\prime} 'th level is the one that has to be used to provide the ℓ_{p} estimate on some vectors.
- It turns out however that the $\ell_{p_{k}}$ structure imposed by the k 'th level demolishes the ℓ_{p} one of the sequence.

Thank you!

