Maximal left ideals of operators acting on a Banach space

Niels Laustsen
Lancaster University
Maresias, 29 ${ }^{\text {th }}$ August 2014
Joint work with Garth Dales (Lancaster),
Tomasz Kania (Lancaster/IMPAN Warsaw),
Tomasz Kochanek (University of Silesia, Poland/IMPAN Warsaw) and
Piotr Koszmider (IMPAN Warsaw)

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
- closed under addition: $a+b \in \mathscr{L} \quad(a, b \in \mathscr{L})$;

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
- closed under addition: $a+b \in \mathscr{L} \quad(a, b \in \mathscr{L})$;
- closed under arbitrary left multiplication: $a b \in \mathscr{L} \quad(a \in \mathscr{A}, b \in \mathscr{L})$;

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
- closed under addition: $a+b \in \mathscr{L} \quad(a, b \in \mathscr{L})$;
- closed under arbitrary left multiplication: $a b \in \mathscr{L} \quad(a \in \mathscr{A}, b \in \mathscr{L})$;
- finitely generated: there exist $n \in \mathbb{N}$ and $b_{1}, \ldots, b_{n} \in \mathscr{L}$ such that

$$
\mathscr{L}=\left\{a_{1} b_{1}+\cdots+a_{n} b_{n}: a_{1}, \ldots, a_{n} \in \mathscr{A}\right\} .
$$

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
- closed under addition: $a+b \in \mathscr{L} \quad(a, b \in \mathscr{L})$;
- closed under arbitrary left multiplication: $a b \in \mathscr{L} \quad(a \in \mathscr{A}, b \in \mathscr{L})$;
- finitely generated: there exist $n \in \mathbb{N}$ and $b_{1}, \ldots, b_{n} \in \mathscr{L}$ such that

$$
\mathscr{L}=\left\{a_{1} b_{1}+\cdots+a_{n} b_{n}: a_{1}, \ldots, a_{n} \in \mathscr{A}\right\} .
$$

Conjecture (Dales-Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that each maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dim.

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
- closed under addition: $a+b \in \mathscr{L} \quad(a, b \in \mathscr{L})$;
- closed under arbitrary left multiplication: $a b \in \mathscr{L} \quad(a \in \mathscr{A}, b \in \mathscr{L})$;
- finitely generated: there exist $n \in \mathbb{N}$ and $b_{1}, \ldots, b_{n} \in \mathscr{L}$ such that

$$
\mathscr{L}=\left\{a_{1} b_{1}+\cdots+a_{n} b_{n}: a_{1}, \ldots, a_{n} \in \mathscr{A}\right\} .
$$

Conjecture (Dales-Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that each maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dim.

Evidence. Ferreira and Tomassini (1978) proved a stronger form of this conjecture for \mathscr{A} commutative.

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
- closed under addition: $a+b \in \mathscr{L} \quad(a, b \in \mathscr{L})$;
- closed under arbitrary left multiplication: $a b \in \mathscr{L} \quad(a \in \mathscr{A}, b \in \mathscr{L})$;
- finitely generated: there exist $n \in \mathbb{N}$ and $b_{1}, \ldots, b_{n} \in \mathscr{L}$ such that

$$
\mathscr{L}=\left\{a_{1} b_{1}+\cdots+a_{n} b_{n}: a_{1}, \ldots, a_{n} \in \mathscr{A}\right\} .
$$

Conjecture (Dales-Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that each maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dim.

Evidence. Ferreira and Tomassini (1978) proved a stronger form of this conjecture for \mathscr{A} commutative.

Question I. Is this conjecture true for $\mathscr{A}=\mathscr{B}(E)$, the Banach algebra of all bounded, linear operators acting on a (complex) Banach space E ?

Background

Theorem (Sinclair-Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
- closed under addition: $a+b \in \mathscr{L} \quad(a, b \in \mathscr{L})$;
- closed under arbitrary left multiplication: $a b \in \mathscr{L} \quad(a \in \mathscr{A}, b \in \mathscr{L})$;
- finitely generated: there exist $n \in \mathbb{N}$ and $b_{1}, \ldots, b_{n} \in \mathscr{L}$ such that

$$
\mathscr{L}=\left\{a_{1} b_{1}+\cdots+a_{n} b_{n}: a_{1}, \ldots, a_{n} \in \mathscr{A}\right\} .
$$

Conjecture (Dales-Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that each maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dim.

Evidence. Ferreira and Tomassini (1978) proved a stronger form of this conjecture for \mathscr{A} commutative.

Question I. Is this conjecture true for $\mathscr{A}=\mathscr{B}(E)$, the Banach algebra of all bounded, linear operators acting on a (complex) Banach space E ?

A refinement

Fact. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal

A refinement

Fact. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with $\operatorname{ker} P=\mathbb{C} x$.

A refinement

Fact. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P=\mathbb{C} x$.

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

A refinement

Fact. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P=\mathbb{C} x$.

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

A refinement

Fact. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P=\mathbb{C} x$.

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
Fact. This is true for E finite-dimensional.

A refinement

Fact. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P=\mathbb{C} x$.

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
Fact. This is true for E finite-dimensional.
Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$.

A refinement

Fact. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P=\mathbb{C} x$.

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
Fact. This is true for E finite-dimensional.
Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$.
Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

A refinement

Fact. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with $\operatorname{ker} P=\mathbb{C} x$.

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
Fact. This is true for E finite-dimensional.
Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$.
Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.
Fact. $\mathscr{F}(E) \nsubseteq \mathscr{M} \mathscr{L}_{\times}$for each $x \in E \backslash\{0\}$.

A refinement

Fact. Let E be a Banach space. For each $x \in E \backslash\{0\}$,

$$
\mathscr{M} \mathscr{L}_{x}=\left\{T \in \mathscr{B}(E): T_{x}=0\right\}
$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with $\operatorname{ker} P=\mathbb{C} x$.

Terminology. A maximal left ideal of the form $\mathscr{M} \mathscr{L}_{x}$ for some $x \in E \backslash\{0\}$ is fixed.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
Fact. This is true for E finite-dimensional.
Let E be an infinite-dimensional Banach space. Then

$$
\mathscr{F}(E)=\{T \in \mathscr{B}(E): \operatorname{dim} T(E)<\infty\}
$$

is a proper, two-sided ideal of $\mathscr{B}(E)$.
Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.
Fact. $\mathscr{F}(E) \nsubseteq \mathscr{M} \mathscr{L}_{\times}$for each $x \in E \backslash\{0\}$.

A further refinement and the Dichotomy Theorem

Corollary. A positive answer to Question II implies a positive answer to Q. I:

A further refinement and the Dichotomy Theorem

Corollary. A positive answer to Question II implies a positive answer to Q. I: Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

A further refinement and the Dichotomy Theorem

Corollary. A positive answer to Question II implies a positive answer to Q. I: Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

A further refinement and the Dichotomy Theorem

Corollary. A positive answer to Question II implies a positive answer to Q. I:
Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or

A further refinement and the Dichotomy Theorem

Corollary. A positive answer to Question II implies a positive answer to Q. I:
Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{F}(E)$.

A further refinement and the Dichotomy Theorem

Corollary. A positive answer to Question II implies a positive answer to Q. I: Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{F}(E)$.

Remark. This result can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

A further refinement and the Dichotomy Theorem

Corollary. A positive answer to Question II implies a positive answer to Q. I: Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{F}(E)$.

Remark. This result can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:

A further refinement and the Dichotomy Theorem

Corollary. A positive answer to Question II implies a positive answer to Q. I: Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{F}(E)$.

Remark. This result can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:
Every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed if and only if no finitely-generated, maximal left ideal of $\mathscr{B}(E)$ contains $\mathscr{F}(E)$.

A further refinement and the Dichotomy Theorem

Corollary. A positive answer to Question II implies a positive answer to Q. I: Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:
(i) \mathscr{L} is fixed; or
(ii) \mathscr{L} contains $\mathscr{F}(E)$.

Remark. This result can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:
Every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed if and only if no finitely-generated, maximal left ideal of $\mathscr{B}(E)$ contains $\mathscr{F}(E)$.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
- $E=c_{0}(\Gamma)$
, where Γ is a non-empty index set

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
- $E=c_{0}(\Gamma), E=H$
, where Γ is a non-empty index set and H is a Hilbert space;

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
- $E=c_{0}(\Gamma), E=H$, or $E=c_{0}(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
- $E=c_{0}(\Gamma), E=H$, or $E=c_{0}(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- E has few operators: $\mathscr{B}(E)=\mathbb{C} I+\mathscr{S}(E)$

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
- $E=c_{0}(\Gamma), E=H$, or $E=c_{0}(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- E has few operators: $\mathscr{B}(E)=\mathbb{C} I+\mathscr{S}(E)$ (examples: hereditarily indecomposable Banach spaces);

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
- $E=c_{0}(\Gamma), E=H$, or $E=c_{0}(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- E has few operators: $\mathscr{B}(E)=\mathbb{C} I+\mathscr{S}(E)$ (examples: hereditarily indecomposable Banach spaces);
- $E=C(K)$, where K is a compact Hausdorff space without isolated points, and each operator on $C(K)$ is a weak multiplication, in the sense that it is a strictly singular perturbation of a multiplication operator.
Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satisfies one of the following conditions:

- E has a basis and is complemented in its bidual (examples: ℓ_{p} and $L_{p}[0,1]$ for $1 \leqslant p<\infty$);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: $\ell_{\infty}(\Gamma)$ for some non-empty index set Γ);
- $E=c_{0}(\Gamma), E=H$, or $E=c_{0}(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- E has few operators: $\mathscr{B}(E)=\mathbb{C} I+\mathscr{S}(E)$ (examples: hereditarily indecomposable Banach spaces);
- $E=C(K)$, where K is a compact Hausdorff space without isolated points, and each operator on $C(K)$ is a weak multiplication, in the sense that it is a strictly singular perturbation of a multiplication operator.
Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

A negative answer to Question II

Theorem (Argyros-Haydon 2011). There is a Banach space $X_{\text {AH }}$ such that:

- X_{AH} has very few operators: $\mathscr{B}\left(X_{\mathrm{AH}}\right)=\mathbb{C} I+\mathscr{K}\left(X_{\mathrm{AH}}\right)$;
- X_{AH} has a basis, and $X_{\mathrm{AH}}^{*} \cong \ell_{1}$.

A negative answer to Question II

Theorem (Argyros-Haydon 2011). There is a Banach space $X_{\text {AH }}$ such that:

- $X_{\text {AH }}$ has very few operators: $\mathscr{B}\left(X_{\text {АН }}\right)=\mathbb{C} I+\mathscr{K}\left(X_{\text {AH }}\right)$;
- $X_{A H}$ has a basis, and $X_{A H}^{*} \cong \ell_{1}$.

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$.

A negative answer to Question II

Theorem (Argyros-Haydon 2011). There is a Banach space X_{AH} such that:

- $X_{\text {AH }}$ has very few operators: $\mathscr{B}\left(X_{\mathrm{AH}}\right)=\mathbb{C l}+\mathscr{K}\left(X_{\mathrm{AH}}\right)$;
- X_{AH} has a basis, and $X_{\mathrm{AH}}^{*} \cong \ell_{1}$.

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

A negative answer to Question II

Theorem (Argyros-Haydon 2011). There is a Banach space X_{AH} such that:

- X_{AH} has very few operators: $\mathscr{B}\left(X_{\mathrm{AH}}\right)=\mathbb{C} I+\mathscr{K}\left(X_{\mathrm{AH}}\right)$;
- X_{AH} has a basis, and $X_{\mathrm{AH}}^{*} \cong \ell_{1}$.

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.

A negative answer to Question II

Theorem (Argyros-Haydon 2011). There is a Banach space X_{AH} such that:

- $X_{\text {AH }}$ has very few operators: $\mathscr{B}\left(X_{\text {АН }}\right)=\mathbb{C} I+\mathscr{K}\left(X_{\text {AH }}\right)$;
- X_{AH} has a basis, and $X_{\mathrm{AH}}^{*} \cong \ell_{1}$.

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.
Theorem (DKKKL). The set

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$

A negative answer to Question II

Theorem (Argyros-Haydon 2011). There is a Banach space $X_{\text {AH }}$ such that:

- $X_{\text {AH }}$ has very few operators: $\mathscr{B}\left(X_{\text {АН }}\right)=\mathbb{C} I+\mathscr{K}\left(X_{\text {AH }}\right)$;
- X_{AH} has a basis, and $X_{\mathrm{AH}}^{*} \cong \ell_{1}$.

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.
Theorem (DKKKL). The set

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal.

A negative answer to Question II

Theorem (Argyros-Haydon 2011). There is a Banach space $X_{\text {AH }}$ such that:

- $X_{\text {AH }}$ has very few operators: $\mathscr{B}\left(X_{\text {АН }}\right)=\mathbb{C} I+\mathscr{K}\left(X_{\text {AH }}\right)$;
- X_{AH} has a basis, and $X_{\mathrm{AH}}^{*} \cong \ell_{1}$.

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.
Theorem (DKKKL). The set

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed

A negative answer to Question II

Theorem (Argyros-Haydon 2011). There is a Banach space $X_{\text {AH }}$ such that:

- $X_{\text {AH }}$ has very few operators: $\mathscr{B}\left(X_{\text {АН }}\right)=\mathbb{C} I+\mathscr{K}\left(X_{\text {AH }}\right)$;
- X_{AH} has a basis, and $X_{\mathrm{AH}}^{*} \cong \ell_{1}$.

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.
Theorem (DKKKL). The set

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed, but it is singly generated as a left ideal.

A negative answer to Question II

Theorem (Argyros-Haydon 2011). There is a Banach space $X_{\text {AH }}$ such that:

- $X_{\text {AH }}$ has very few operators: $\mathscr{B}\left(X_{\text {АН }}\right)=\mathbb{C} I+\mathscr{K}\left(X_{\text {AH }}\right)$;
- X_{AH} has a basis, and $X_{\mathrm{AH}}^{*} \cong \ell_{1}$.

Let $E=X_{\mathrm{AH}} \oplus \ell_{\infty}$. We identify operators T on E with (2×2)-matrices

$$
\left(\begin{array}{cc}
T_{1,1}: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}} & T_{1,2}: \ell_{\infty} \rightarrow X_{\mathrm{AH}} \\
T_{2,1}: X_{\mathrm{AH}} \rightarrow \ell_{\infty} & T_{2,2}: \ell_{\infty} \rightarrow \ell_{\infty}
\end{array}\right) .
$$

Key point: $T_{1,2}$ is necessarily strictly singular.
Theorem (DKKKL). The set

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed, but it is singly generated as a left ideal.

How about Question I?
(Recall: $E=X_{\text {AH }} \oplus \ell_{\infty}$.)

How about Question I?

(Recall: $E=X_{\text {АН }} \oplus \ell_{\infty}$.) Indeed, the operator

$$
L=\left(\begin{array}{cc}
0 & 0 \\
V & W
\end{array}\right)
$$

generates

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

as a left ideal, where $W: \ell_{\infty} \rightarrow \ell_{\infty}(2 \mathbb{N}) \subset \ell_{\infty}$ is an isomorphism, and

$$
V: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}}^{* *} \cong \ell_{\infty} \cong \ell_{\infty}(2 \mathbb{N}-1) \subset \ell_{\infty}
$$

How about Question I?

(Recall: $E=X_{\text {AH }} \oplus \ell_{\infty}$.)
Indeed, the operator

$$
L=\left(\begin{array}{cc}
0 & 0 \\
V & W
\end{array}\right)
$$

generates

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

as a left ideal, where $W: \ell_{\infty} \rightarrow \ell_{\infty}(2 \mathbb{N}) \subset \ell_{\infty}$ is an isomorphism, and

$$
V: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}}^{* *} \cong \ell_{\infty} \cong \ell_{\infty}(2 \mathbb{N}-1) \subset \ell_{\infty}
$$

Theorem (DKKKL). The ideal \mathscr{K}_{1} is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

How about Question I?

(Recall: $E=X_{\text {Ан }} \oplus \ell_{\infty}$.)
Indeed, the operator

$$
L=\left(\begin{array}{cc}
0 & 0 \\
V & W
\end{array}\right)
$$

generates

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

as a left ideal, where $W: \ell_{\infty} \rightarrow \ell_{\infty}(2 \mathbb{N}) \subset \ell_{\infty}$ is an isomorphism, and

$$
V: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}}^{* *} \cong \ell_{\infty} \cong \ell_{\infty}(2 \mathbb{N}-1) \subset \ell_{\infty}
$$

Theorem (DKKKL). The ideal \mathscr{K}_{1} is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$. Hence

$$
\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{2,2} \text { is strictly singular }\right\}
$$

which is a maximal two-sided ideal of $\mathscr{B}(E)$, is not contained in any finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

How about Question I?

(Recall: $E=X_{\text {AH }} \oplus \ell_{\infty}$.)
Indeed, the operator

$$
L=\left(\begin{array}{cc}
0 & 0 \\
V & W
\end{array}\right)
$$

generates

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

as a left ideal, where $W: \ell_{\infty} \rightarrow \ell_{\infty}(2 \mathbb{N}) \subset \ell_{\infty}$ is an isomorphism, and

$$
V: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}}^{* *} \cong \ell_{\infty} \cong \ell_{\infty}(2 \mathbb{N}-1) \subset \ell_{\infty}
$$

Theorem (DKKKL). The ideal \mathscr{K}_{1} is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$. Hence

$$
\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{2,2} \text { is strictly singular }\right\}
$$

which is a maximal two-sided ideal of $\mathscr{B}(E)$, is not contained in any finitely-generated, maximal left ideal of $\mathscr{B}(E)$.
In particular, the answer to Question I is positive for E.

How about Question I?

(Recall: $E=X_{\text {AH }} \oplus \ell_{\infty}$.)
Indeed, the operator

$$
L=\left(\begin{array}{cc}
0 & 0 \\
V & W
\end{array}\right)
$$

generates

$$
\mathscr{K}_{1}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{1,1} \text { is compact }\right\}
$$

as a left ideal, where $W: \ell_{\infty} \rightarrow \ell_{\infty}(2 \mathbb{N}) \subset \ell_{\infty}$ is an isomorphism, and

$$
V: X_{\mathrm{AH}} \rightarrow X_{\mathrm{AH}}^{* *} \cong \ell_{\infty} \cong \ell_{\infty}(2 \mathbb{N}-1) \subset \ell_{\infty}
$$

Theorem (DKKKL). The ideal \mathscr{K}_{1} is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$. Hence

$$
\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{2,2} \text { is strictly singular }\right\}
$$

which is a maximal two-sided ideal of $\mathscr{B}(E)$, is not contained in any finitely-generated, maximal left ideal of $\mathscr{B}(E)$.
In particular, the answer to Question I is positive for E.

A separable example

Theorem (Kania-L). Let $E=X_{\text {AH }} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in $X_{\text {AH }}$ such that:

- $\mathscr{B}\left(Y, X_{\text {АН }}\right)=\mathbb{C} J+\mathscr{K}\left(Y, X_{\text {Ан }}\right)$, where $J: Y \rightarrow X_{\text {Ан }}$ is the inclusion;

A separable example

Theorem (Kania-L). Let $E=X_{\text {AH }} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

- $\mathscr{B}\left(Y, X_{\mathrm{AH}}\right)=\mathbb{C} J+\mathscr{K}\left(Y, X_{\text {Ан }}\right)$, where $J: Y \rightarrow X_{\text {Ан }}$ is the inclusion;
- Y has a basis

A separable example

Theorem (Kania-L). Let $E=X_{\text {AH }} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in $X_{\text {AH }}$ such that:

- $\mathscr{B}\left(Y, X_{\mathrm{AH}}\right)=\mathbb{C} J+\mathscr{K}\left(Y, X_{\text {Ан }}\right)$, where $J: Y \rightarrow X_{\text {Ан }}$ is the inclusion;
- Y has a basis, and $Y^{*} \cong \ell_{1}$.

A separable example

Theorem (Kania-L). Let $E=X_{\text {AH }} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

- $\mathscr{B}\left(Y, X_{\text {Ан }}\right)=\mathbb{C} J+\mathscr{K}\left(Y, X_{\text {Ан }}\right)$, where $J: Y \rightarrow X_{\text {Ан }}$ is the inclusion;
- Y has a basis, and $Y^{*} \cong \ell_{1}$.

Then:

- there are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$
\mathscr{M}_{j}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{j, j} \text { is compact }\right\} \quad(j=1,2) ;
$$

A separable example

Theorem (Kania-L). Let $E=X_{\text {AH }} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

- $\mathscr{B}\left(Y, X_{\text {АН }}\right)=\mathbb{C} J+\mathscr{K}\left(Y, X_{\text {Ан }}\right)$, where $J: Y \rightarrow X_{\text {Ан }}$ is the inclusion;
- Y has a basis, and $Y^{*} \cong \ell_{1}$.

Then:

- there are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$
\mathscr{M}_{j}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{j, j} \text { is compact }\right\} \quad(j=1,2) ;
$$

- \mathscr{M}_{2} is generated as a left ideal by the two operators

$$
\left(\begin{array}{cc}
I_{X_{\Delta H}} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & J \\
0 & 0
\end{array}\right)
$$

A separable example

Theorem (Kania-L). Let $E=X_{\text {AH }} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

- $\mathscr{B}\left(Y, X_{\mathrm{AH}}\right)=\mathbb{C} J+\mathscr{K}\left(Y, X_{\mathrm{AH}}\right)$, where $J: Y \rightarrow X_{\text {АН }}$ is the inclusion;
- Y has a basis, and $Y^{*} \cong \ell_{1}$.

Then:

- there are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$
\mathscr{M}_{j}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{j, j} \text { is compact }\right\} \quad(j=1,2) ;
$$

- \mathscr{M}_{2} is generated as a left ideal by the two operators

$$
\left(\begin{array}{cc}
I_{X_{\mathrm{AH}}} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & J \\
0 & 0
\end{array}\right)
$$

but \mathscr{M}_{2} is not generated as a left ideal by a single operator on E;

A separable example

Theorem (Kania-L). Let $E=X_{\text {AH }} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

- $\mathscr{B}\left(Y, X_{\mathrm{AH}}\right)=\mathbb{C} J+\mathscr{K}\left(Y, X_{\mathrm{AH}}\right)$, where $J: Y \rightarrow X_{\text {АН }}$ is the inclusion;
- Y has a basis, and $Y^{*} \cong \ell_{1}$.

Then:

- there are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$
\mathscr{M}_{j}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{j, j} \text { is compact }\right\} \quad(j=1,2) ;
$$

- \mathscr{M}_{2} is generated as a left ideal by the two operators

$$
\left(\begin{array}{cc}
I_{X_{\Delta H}} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & J \\
0 & 0
\end{array}\right)
$$

but \mathscr{M}_{2} is not generated as a left ideal by a single operator on E;

- \mathscr{M}_{1} is not finitely generated as a left ideal.

A separable example

Theorem (Kania-L). Let $E=X_{\text {AH }} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

- $\mathscr{B}\left(Y, X_{\mathrm{AH}}\right)=\mathbb{C} J+\mathscr{K}\left(Y, X_{\mathrm{AH}}\right)$, where $J: Y \rightarrow X_{\text {АН }}$ is the inclusion;
- Y has a basis, and $Y^{*} \cong \ell_{1}$.

Then:

- there are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$
\mathscr{M}_{j}=\left\{\left(\begin{array}{ll}
T_{1,1} & T_{1,2} \\
T_{2,1} & T_{2,2}
\end{array}\right) \in \mathscr{B}(E): T_{j, j} \text { is compact }\right\} \quad(j=1,2) ;
$$

- \mathscr{M}_{2} is generated as a left ideal by the two operators

$$
\left(\begin{array}{cc}
I_{X_{\Delta H}} & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & J \\
0 & 0
\end{array}\right)
$$

but \mathscr{M}_{2} is not generated as a left ideal by a single operator on E;

- \mathscr{M}_{1} is not finitely generated as a left ideal.

Open problems

- Let $E=C(K)$, where K is any infinite, compact metric space such that $C(K) \neq c_{0}$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
- Let $E=C(K)$, where K is any infinite, compact metric space such that $C(K) \neq c_{0}$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
- What is the situation for maximal right ideals of $\mathscr{B}(E)$?
- Let $E=C(K)$, where K is any infinite, compact metric space such that $C(K) \neq c_{0}$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
- What is the situation for maximal right ideals of $\mathscr{B}(E)$?

Key references

- H. G. Dales, T. Kania, T. Kochanek, P. Koszmider and N. J. Laustsen, Maximal left ideals of the Banach algebra of bounded operators on a Banach space, Studia Math. 218 (2013), 245-286.
- H. G. Dales and W. Żelazko, Generators of maximal left ideals in Banach algebras, Studia Math. 212 (2012), 173-193.
- T. Kania and N. J. Laustsen, Ideal structure of the algebra of bounded operators acting on a Banach space, in preparation.

