Maximal left ideals of operators acting on a Banach space

Niels Laustsen

Lancaster University

Maresias, 29th August 2014

Joint work with Garth Dales (Lancaster), Tomasz Kania (Lancaster/IMPAN Warsaw), Tomasz Kochanek (University of Silesia, Poland/IMPAN Warsaw) and Piotr Koszmider (IMPAN Warsaw)

1

Theorem (Sinclair–Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Theorem (Sinclair–Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

Banach algebra: complex, usually unital;

Theorem (Sinclair–Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- ▶ *left ideal:* a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is

Theorem (Sinclair–Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- left ideal: a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
 - ▶ closed under addition: $a + b \in \mathscr{L}$ $(a, b \in \mathscr{L})$;

Theorem (Sinclair–Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- *left ideal:* a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
 - ▶ closed under addition: $a + b \in \mathscr{L}$ $(a, b \in \mathscr{L})$;
 - ▶ closed under arbitrary left multiplication: $ab \in \mathscr{L}$ $(a \in \mathscr{A}, b \in \mathscr{L})$;

2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Sinclair–Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- *left ideal:* a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
 - closed under addition: $a + b \in \mathscr{L}$ $(a, b \in \mathscr{L})$;
 - ▶ closed under arbitrary left multiplication: $ab \in \mathscr{L}$ $(a \in \mathscr{A}, b \in \mathscr{L})$;
- finitely generated: there exist $n \in \mathbb{N}$ and $b_1, \ldots, b_n \in \mathscr{L}$ such that

$$\mathscr{L} = \{a_1b_1 + \cdots + a_nb_n : a_1, \ldots, a_n \in \mathscr{A}\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Theorem (Sinclair–Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- *left ideal:* a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
 - closed under addition: $a + b \in \mathscr{L}$ $(a, b \in \mathscr{L})$;
 - ▶ closed under arbitrary left multiplication: $ab \in \mathscr{L}$ $(a \in \mathscr{A}, b \in \mathscr{L})$;
- ▶ finitely generated: there exist $n \in \mathbb{N}$ and $b_1, \ldots, b_n \in \mathscr{L}$ such that

$$\mathscr{L} = \{a_1b_1 + \cdots + a_nb_n : a_1, \ldots, a_n \in \mathscr{A}\}.$$

Conjecture (Dales–Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that each maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dim.

Theorem (Sinclair–Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- *left ideal:* a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
 - closed under addition: $a + b \in \mathscr{L}$ $(a, b \in \mathscr{L})$;
 - ▶ closed under arbitrary left multiplication: $ab \in \mathscr{L}$ $(a \in \mathscr{A}, b \in \mathscr{L})$;
- finitely generated: there exist $n \in \mathbb{N}$ and $b_1, \ldots, b_n \in \mathscr{L}$ such that

$$\mathscr{L} = \{a_1b_1 + \cdots + a_nb_n : a_1, \ldots, a_n \in \mathscr{A}\}.$$

Conjecture (Dales–Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that each maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dim.

Evidence. Ferreira and Tomassini (1978) proved a stronger form of this conjecture for \mathscr{A} commutative.

Theorem (Sinclair–Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- *left ideal:* a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
 - closed under addition: $a + b \in \mathscr{L}$ $(a, b \in \mathscr{L})$;
 - ▶ closed under arbitrary left multiplication: $ab \in \mathscr{L}$ $(a \in \mathscr{A}, b \in \mathscr{L})$;
- finitely generated: there exist $n \in \mathbb{N}$ and $b_1, \ldots, b_n \in \mathscr{L}$ such that

$$\mathscr{L} = \{a_1b_1 + \cdots + a_nb_n : a_1, \ldots, a_n \in \mathscr{A}\}.$$

Conjecture (Dales–Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that each maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dim.

Evidence. Ferreira and Tomassini (1978) proved a stronger form of this conjecture for \mathscr{A} commutative.

Question I. Is this conjecture true for $\mathscr{A} = \mathscr{B}(E)$, the Banach algebra of all bounded, linear operators acting on a (complex) Banach space E?

Theorem (Sinclair–Tullo 1974). Let \mathscr{A} be a Banach algebra such that each closed left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dimensional.

Terminology

- Banach algebra: complex, usually unital;
- *left ideal:* a non-empty subset \mathscr{L} of \mathscr{A} such that \mathscr{L} is
 - closed under addition: $a + b \in \mathscr{L}$ $(a, b \in \mathscr{L})$;
 - ▶ closed under arbitrary left multiplication: $ab \in \mathscr{L}$ $(a \in \mathscr{A}, b \in \mathscr{L})$;
- finitely generated: there exist $n \in \mathbb{N}$ and $b_1, \ldots, b_n \in \mathscr{L}$ such that

$$\mathscr{L} = \{a_1b_1 + \cdots + a_nb_n : a_1, \ldots, a_n \in \mathscr{A}\}.$$

Conjecture (Dales–Żelazko 2012). Let \mathscr{A} be a unital Banach algebra such that each maximal left ideal of \mathscr{A} is finitely generated. Then \mathscr{A} is finite-dim.

Evidence. Ferreira and Tomassini (1978) proved a stronger form of this conjecture for \mathscr{A} commutative.

Question I. Is this conjecture true for $\mathscr{A} = \mathscr{B}(E)$, the Banach algebra of all bounded, linear operators acting on a (complex) Banach space E?

Fact. Let E be a Banach space. For each $x \in E \setminus \{0\}$, $\mathscr{ML}_x = \{T \in \mathscr{B}(E) : Tx = 0\}$

is a maximal left ideal

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

$$\mathscr{ML}_x = \{T \in \mathscr{B}(E) : Tx = 0\}$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P = \mathbb{C}x$.

$$\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P = \mathbb{C}x$.

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

▲□▶▲母▶▲目▶▲目▶ 目 うへぐ

$$\mathscr{ML}_x = \{T \in \mathscr{B}(E) : Tx = 0\}$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P = \mathbb{C}x$.

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

$$\mathscr{ML}_x = \{T \in \mathscr{B}(E) : Tx = 0\}$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P = \mathbb{C}x$.

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

Fact. This is true for E finite-dimensional.

$$\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P = \mathbb{C}x$.

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

Fact. This is true for E finite-dimensional.

Let E be an infinite-dimensional Banach space. Then

$$\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$$

is a proper, two-sided ideal of $\mathscr{B}(E)$.

$$\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P = \mathbb{C}x$.

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

Fact. This is true for E finite-dimensional.

Let E be an infinite-dimensional Banach space. Then

$$\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

$$\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P = \mathbb{C}x$.

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

Fact. This is true for E finite-dimensional.

Let E be an infinite-dimensional Banach space. Then

$$\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \not\subseteq \mathscr{ML}_x$ for each $x \in E \setminus \{0\}$.

$$\mathscr{ML}_{x} = \{T \in \mathscr{B}(E) : Tx = 0\}$$

is a maximal left ideal, which is generated by a single projection P, where P is any projection with ker $P = \mathbb{C}x$.

Terminology. A maximal left ideal of the form \mathcal{ML}_x for some $x \in E \setminus \{0\}$ is *fixed*.

Question II. Is every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

Fact. This is true for E finite-dimensional.

Let E be an infinite-dimensional Banach space. Then

$$\mathscr{F}(E) = \{T \in \mathscr{B}(E) : \dim T(E) < \infty\}$$

is a proper, two-sided ideal of $\mathscr{B}(E)$. Hence $\mathscr{F}(E)$ is contained in a maximal left ideal of $\mathscr{B}(E)$.

Fact. $\mathscr{F}(E) \not\subseteq \mathscr{ML}_x$ for each $x \in E \setminus \{0\}$.

Corollary. A positive answer to Question II implies a positive answer to Q. I:

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽♀⊙

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

4

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

▲□▶▲□▶▲≡▶▲≡▶ ≡ りへぐ

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let *E* be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

(i) \mathscr{L} is fixed; or

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

(i) \mathscr{L} is fixed; or

(ii) \mathscr{L} contains $\mathscr{F}(E)$.

Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

(i) \mathscr{L} is fixed; or

(ii) \mathscr{L} contains $\mathscr{F}(E)$.

Remark. This result can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

4

Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

- (i) \mathscr{L} is fixed; or
- (ii) \mathscr{L} contains $\mathscr{F}(E)$.

Remark. This result can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:

Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

- (i) \mathscr{L} is fixed; or
- (ii) \mathscr{L} contains $\mathscr{F}(E)$.

Remark. This result can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:

Every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed if and only if no finitely-generated, maximal left ideal of $\mathscr{B}(E)$ contains $\mathscr{F}(E)$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

Let E be an infinite-dimensional Banach space, and suppose that every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed. Then $\mathscr{B}(E)$ contains a maximal left ideal which is not finitely generated.

Question III. Is $\mathscr{F}(E)$ ever contained in a finitely-generated, maximal left ideal of $\mathscr{B}(E)$?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left ideal \mathscr{L} of $\mathscr{B}(E)$, exactly one of the following two alternatives holds:

- (i) \mathscr{L} is fixed; or
- (ii) \mathscr{L} contains $\mathscr{F}(E)$.

Remark. This result can be viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense that it consists of precisely those subsets of M which contain a fixed element $x \in M$), or it contains the Fréchet filter of all cofinite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:

Every finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed if and only if no finitely-generated, maximal left ideal of $\mathscr{B}(E)$ contains $\mathscr{F}(E)$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

• E has a basis and is complemented in its bidual

 E has a basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);

- E has a basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace

- E has a basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: l_∞(Γ) for some non-empty index set Γ);

- E has a basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: l_∞(Γ) for some non-empty index set Γ);
- $E = c_0(\Gamma)$, where Γ is a non-empty index set

Then each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ is fixed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- E has a basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: l_∞(Γ) for some non-empty index set Γ);
- $E = c_0(\Gamma)$, E = H, where Γ is a non-empty index set and H is a Hilbert space;

- E has a basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: l_∞(Γ) for some non-empty index set Γ);
- $E = c_0(\Gamma)$, E = H, or $E = c_0(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;

- E has a basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: l_∞(Γ) for some non-empty index set Γ);
- $E = c_0(\Gamma)$, E = H, or $E = c_0(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- E has few operators: $\mathscr{B}(E) = \mathbb{C}I + \mathscr{S}(E)$

- E has a basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: l_∞(Γ) for some non-empty index set Γ);
- $E = c_0(\Gamma)$, E = H, or $E = c_0(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- ► E has few operators: B(E) = CI + S(E) (examples: hereditarily indecomposable Banach spaces);

- E has a basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: l_∞(Γ) for some non-empty index set Γ);
- $E = c_0(\Gamma)$, E = H, or $E = c_0(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- E has few operators: B(E) = CI + S(E) (examples: hereditarily indecomposable Banach spaces);
- E = C(K), where K is a compact Hausdorff space without isolated points, and each operator on C(K) is a weak multiplication, in the sense that it is a strictly singular perturbation of a multiplication operator.

- E has a basis and is complemented in its bidual (examples: ℓ_p and L_p[0,1] for 1 ≤ p < ∞);
- E is an injective Banach space, in the sense that E is automatically complemented in any superspace (examples: l_∞(Γ) for some non-empty index set Γ);
- $E = c_0(\Gamma)$, E = H, or $E = c_0(\Gamma) \oplus H$, where Γ is a non-empty index set and H is a Hilbert space;
- E has few operators: B(E) = CI + S(E) (examples: hereditarily indecomposable Banach spaces);
- E = C(K), where K is a compact Hausdorff space without isolated points, and each operator on C(K) is a weak multiplication, in the sense that it is a strictly singular perturbation of a multiplication operator.

A negative answer to Question II

Theorem (Argyros–Haydon 2011). There is a Banach space X_{AH} such that:

6

- X_{AH} has very few operators: $\mathscr{B}(X_{AH}) = \mathbb{C}I + \mathscr{K}(X_{AH});$
- X_{AH} has a basis, and $X_{AH}^* \cong \ell_1$.

A negative answer to Question II

Theorem (Argyros–Haydon 2011). There is a Banach space X_{AH} such that:

- ► X_{AH} has very few operators: $\mathscr{B}(X_{AH}) = \mathbb{C}I + \mathscr{K}(X_{AH});$
- X_{AH} has a basis, and $X_{AH}^* \cong \ell_1$.

Let $E = X_{AH} \oplus \ell_{\infty}$.

- X_{AH} has very few operators: $\mathscr{B}(X_{AH}) = \mathbb{C}I + \mathscr{K}(X_{AH});$
- X_{AH} has a basis, and $X_{AH}^* \cong \ell_1$.

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

6

- ► X_{AH} has very few operators: $\mathscr{B}(X_{AH}) = \mathbb{C}I + \mathscr{K}(X_{AH});$
- X_{AH} has a basis, and $X_{AH}^* \cong \ell_1$.

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

- ► X_{AH} has very few operators: $\mathscr{B}(X_{AH}) = \mathbb{C}I + \mathscr{K}(X_{AH})$;
- X_{AH} has a basis, and $X_{AH}^* \cong \ell_1$.

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

Theorem (DKKKL). *The set*

$$\mathscr{K}_{1} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

6

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$

- ► X_{AH} has very few operators: $\mathscr{B}(X_{AH}) = \mathbb{C}I + \mathscr{K}(X_{AH})$;
- X_{AH} has a basis, and $X_{AH}^* \cong \ell_1$.

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

Theorem (DKKKL). *The set*

$$\mathscr{K}_1 = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal.

- X_{AH} has very few operators: $\mathscr{B}(X_{AH}) = \mathbb{C}I + \mathscr{K}(X_{AH});$
- X_{AH} has a basis, and $X_{AH}^* \cong \ell_1$.

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

Theorem (DKKKL). *The set*

$$\mathscr{K}_1 = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed

- X_{AH} has very few operators: $\mathscr{B}(X_{AH}) = \mathbb{C}I + \mathscr{K}(X_{AH});$
- X_{AH} has a basis, and $X_{AH}^* \cong \ell_1$.

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

Theorem (DKKKL). *The set*

$$\mathscr{K}_{1} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed, but it is singly generated as a left ideal.

- X_{AH} has very few operators: $\mathscr{B}(X_{AH}) = \mathbb{C}I + \mathscr{K}(X_{AH});$
- X_{AH} has a basis, and $X_{AH}^* \cong \ell_1$.

Let $E = X_{AH} \oplus \ell_{\infty}$. We identify operators T on E with (2×2) -matrices

$$\begin{pmatrix} T_{1,1} \colon X_{\mathsf{AH}} \to X_{\mathsf{AH}} & T_{1,2} \colon \ell_{\infty} \to X_{\mathsf{AH}} \\ T_{2,1} \colon X_{\mathsf{AH}} \to \ell_{\infty} & T_{2,2} \colon \ell_{\infty} \to \ell_{\infty} \end{pmatrix}.$$

Key point: $T_{1,2}$ is necessarily strictly singular.

Theorem (DKKKL). *The set*

$$\mathscr{K}_{1} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

is a maximal two-sided ideal of codimension one in $\mathscr{B}(E)$, and hence also a maximal left ideal. It is not fixed, but it is singly generated as a left ideal.

(Recall: $E = X_{AH} \oplus \ell_{\infty}$.)

・ロト < 団ト < 三ト < 三ト 三 のへで

(Recall: $E = X_{AH} \oplus \ell_{\infty}$.) Indeed, the operator

$$L = \begin{pmatrix} 0 & 0 \\ V & W \end{pmatrix}$$

generates

$$\mathscr{K}_1 = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

as a left ideal, where $W\colon\ell_\infty o\ell_\infty(2\mathbb{N})\subset\ell_\infty$ is an isomorphism, and

$$V\colon X_{\mathsf{AH}} o X_{\mathsf{AH}}^{**} \cong \ell_\infty \cong \ell_\infty(2\mathbb{N}-1) \subset \ell_\infty.$$

(Recall: $E = X_{AH} \oplus \ell_{\infty}$.) Indeed, the operator

$$L = \begin{pmatrix} 0 & 0 \\ V & W \end{pmatrix}$$

generates

$$\mathscr{K}_1 = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

as a left ideal, where $W\colon\ell_\infty o\ell_\infty(2\mathbb{N})\subset\ell_\infty$ is an isomorphism, and

$$V \colon X_{\mathsf{AH}} o X_{\mathsf{AH}}^{**} \cong \ell_{\infty} \cong \ell_{\infty}(2\mathbb{N}-1) \subset \ell_{\infty}.$$

Theorem (DKKKL). The ideal \mathscr{K}_1 is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

(Recall: $E = X_{AH} \oplus \ell_{\infty}$.) Indeed, the operator

$$L = \begin{pmatrix} 0 & 0 \\ V & W \end{pmatrix}$$

generates

$$\mathscr{K}_{1} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

as a left ideal, where $W\colon\ell_\infty o\ell_\infty(2\mathbb{N})\subset\ell_\infty$ is an isomorphism, and

$$V \colon X_{\mathsf{AH}} o X_{\mathsf{AH}}^{**} \cong \ell_{\infty} \cong \ell_{\infty}(2\mathbb{N}-1) \subset \ell_{\infty}.$$

Theorem (DKKKL). The ideal \mathscr{K}_1 is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$. Hence

$$\left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{2,2} \text{ is strictly singular} \right\},\$$

which is a maximal two-sided ideal of $\mathscr{B}(E)$, is not contained in any finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

(Recall: $E = X_{AH} \oplus \ell_{\infty}$.) Indeed, the operator

$$L = \begin{pmatrix} 0 & 0 \\ V & W \end{pmatrix}$$

generates

$$\mathscr{K}_{1} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

as a left ideal, where $W\colon\ell_\infty o\ell_\infty(2\mathbb{N})\subset\ell_\infty$ is an isomorphism, and

$$V \colon X_{\mathsf{AH}} o X_{\mathsf{AH}}^{**} \cong \ell_{\infty} \cong \ell_{\infty}(2\mathbb{N}-1) \subset \ell_{\infty}.$$

Theorem (DKKKL). The ideal \mathscr{K}_1 is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$. Hence

$$\left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{2,2} \text{ is strictly singular} \right\},\$$

which is a maximal two-sided ideal of $\mathscr{B}(E)$, is not contained in any finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

In particular, the answer to Question I is positive for E.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目 - のへで

(Recall: $E = X_{AH} \oplus \ell_{\infty}$.) Indeed, the operator

$$L = \begin{pmatrix} 0 & 0 \\ V & W \end{pmatrix}$$

generates

$$\mathscr{K}_{1} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{1,1} \text{ is compact} \right\}$$

as a left ideal, where $W\colon\ell_\infty o\ell_\infty(2\mathbb{N})\subset\ell_\infty$ is an isomorphism, and

$$V \colon X_{\mathsf{AH}} o X_{\mathsf{AH}}^{**} \cong \ell_{\infty} \cong \ell_{\infty}(2\mathbb{N}-1) \subset \ell_{\infty}.$$

Theorem (DKKKL). The ideal \mathscr{K}_1 is the unique non-fixed, finitely-generated, maximal left ideal of $\mathscr{B}(E)$. Hence

$$\left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{2,2} \text{ is strictly singular} \right\},\$$

which is a maximal two-sided ideal of $\mathscr{B}(E)$, is not contained in any finitely-generated, maximal left ideal of $\mathscr{B}(E)$.

In particular, the answer to Question I is positive for E.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目 - のへで

Theorem (Kania–L). Let $E = X_{AH} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

▶ $\mathscr{B}(Y, X_{AH}) = \mathbb{C}J + \mathscr{K}(Y, X_{AH})$, where $J: Y \to X_{AH}$ is the inclusion;

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

Theorem (Kania–L). Let $E = X_{AH} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

- ▶ $\mathscr{B}(Y, X_{AH}) = \mathbb{C}J + \mathscr{K}(Y, X_{AH})$, where $J: Y \to X_{AH}$ is the inclusion;
- ► Y has a basis

▲□▶▲□▶▲□▶▲□▶ □ 少へぐ

Theorem (Kania–L). Let $E = X_{AH} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

- $\mathscr{B}(Y, X_{AH}) = \mathbb{C}J + \mathscr{K}(Y, X_{AH})$, where $J: Y \to X_{AH}$ is the inclusion;
- Y has a basis, and $Y^* \cong \ell_1$.

< ロ > < 母 > < 三 > < 三 > < 三 > < ○ < ○

Theorem (Kania–L). Let $E = X_{AH} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

• $\mathscr{B}(Y, X_{AH}) = \mathbb{C}J + \mathscr{K}(Y, X_{AH})$, where $J: Y \to X_{AH}$ is the inclusion;

• Y has a basis, and
$$Y^* \cong \ell_1$$
.

Then:

• there are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$\mathscr{M}_{j} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{j,j} \text{ is compact} \right\} \qquad (j = 1, 2);$$

Theorem (Kania–L). Let $E = X_{AH} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

• $\mathscr{B}(Y, X_{AH}) = \mathbb{C}J + \mathscr{K}(Y, X_{AH})$, where $J: Y \to X_{AH}$ is the inclusion;

• Y has a basis, and
$$Y^* \cong \ell_1$$
.

Then:

• there are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$\mathscr{M}_{j} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{j,j} \text{ is compact} \right\} \qquad (j = 1, 2);$$

• \mathcal{M}_2 is generated as a left ideal by the two operators

$$\begin{pmatrix} I_{X_{\mathbf{A}\mathbf{H}}} & 0\\ 0 & 0 \end{pmatrix} \quad and \quad \begin{pmatrix} 0 & J\\ 0 & 0 \end{pmatrix},$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぐら

Theorem (Kania–L). Let $E = X_{AH} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

• $\mathscr{B}(Y, X_{AH}) = \mathbb{C}J + \mathscr{K}(Y, X_{AH})$, where $J: Y \to X_{AH}$ is the inclusion;

• Y has a basis, and
$$Y^* \cong \ell_1$$
.

Then:

• there are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$\mathscr{M}_{j} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{j,j} \text{ is compact} \right\} \qquad (j = 1, 2);$$

• \mathcal{M}_2 is generated as a left ideal by the two operators

$$\begin{pmatrix} I_{X_{\mathbf{A}\mathbf{H}}} & 0\\ 0 & 0 \end{pmatrix} \quad and \quad \begin{pmatrix} 0 & J\\ 0 & 0 \end{pmatrix},$$

but \mathcal{M}_2 is not generated as a left ideal by a single operator on E;

Theorem (Kania–L). Let $E = X_{AH} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

• $\mathscr{B}(Y, X_{AH}) = \mathbb{C}J + \mathscr{K}(Y, X_{AH})$, where $J: Y \to X_{AH}$ is the inclusion;

• Y has a basis, and
$$Y^* \cong \ell_1$$
.

Then:

• there are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$\mathscr{M}_{j} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{j,j} \text{ is compact} \right\} \qquad (j = 1, 2);$$

• \mathcal{M}_2 is generated as a left ideal by the two operators

$$\begin{pmatrix} I_{X_{\mathbf{A}\mathbf{H}}} & 0\\ 0 & 0 \end{pmatrix} \quad and \quad \begin{pmatrix} 0 & J\\ 0 & 0 \end{pmatrix},$$

but *M*₂ is not generated as a left ideal by a single operator on E;
*M*₁ is not finitely generated as a left ideal.

Theorem (Kania–L). Let $E = X_{AH} \oplus Y$, where Y is a closed, infinite-dimensional subspace of infinite codimension in X_{AH} such that:

• $\mathscr{B}(Y, X_{AH}) = \mathbb{C}J + \mathscr{K}(Y, X_{AH})$, where $J: Y \to X_{AH}$ is the inclusion;

• Y has a basis, and
$$Y^* \cong \ell_1$$
.

Then:

• there are exactly two non-fixed, maximal left ideals of $\mathscr{B}(E)$, namely

$$\mathscr{M}_{j} = \left\{ \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & T_{2,2} \end{pmatrix} \in \mathscr{B}(E) : T_{j,j} \text{ is compact} \right\} \qquad (j = 1, 2);$$

• \mathcal{M}_2 is generated as a left ideal by the two operators

$$\begin{pmatrix} I_{X_{\mathbf{A}\mathbf{H}}} & 0\\ 0 & 0 \end{pmatrix} \quad and \quad \begin{pmatrix} 0 & J\\ 0 & 0 \end{pmatrix},$$

but *M*₂ is not generated as a left ideal by a single operator on E;
*M*₁ is not finitely generated as a left ideal.

• Let E = C(K), where K is any infinite, compact metric space such that $C(K) \not\cong c_0$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?

- Let E = C(K), where K is any infinite, compact metric space such that $C(K) \not\cong c_0$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
- What is the situation for maximal *right* ideals of $\mathscr{B}(E)$?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

- Let E = C(K), where K is any infinite, compact metric space such that $C(K) \not\cong c_0$. Is each finitely-generated, maximal left ideal of $\mathscr{B}(E)$ fixed?
- What is the situation for maximal *right* ideals of $\mathscr{B}(E)$?

Key references

- H. G. Dales, T. Kania, T. Kochanek, P. Koszmider and N. J. Laustsen, Maximal left ideals of the Banach algebra of bounded operators on a Banach space, *Studia Math.* 218 (2013), 245–286.
- H. G. Dales and W. Żelazko, Generators of maximal left ideals in Banach algebras, Studia Math. 212 (2012), 173–193.
- T. Kania and N. J. Laustsen, Ideal structure of the algebra of bounded operators acting on a Banach space, in preparation.