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Background

Theorem (Sinclair�Tullo 1974). Let A be a Banach algebra such that each
closed left ideal of A is �nitely generated. Then A is �nite-dimensional.

Terminology

I Banach algebra: complex, usually unital;

I left ideal: a non-empty subset L of A such that L is

I closed under addition: a+ b ∈ L (a, b ∈ L );
I closed under arbitrary left multiplication: ab ∈ L (a ∈ A , b ∈ L );

I �nitely generated: there exist n ∈ N and b1, . . . , bn ∈ L such that

L = {a1b1 + · · ·+ anbn : a1, . . . , an ∈ A }.

Conjecture (Dales��elazko 2012). Let A be a unital Banach algebra such that
each maximal left ideal of A is �nitely generated. Then A is �nite-dim.

Evidence. Ferreira and Tomassini (1978) proved a stronger form of this
conjecture for A commutative.

Question I. Is this conjecture true for A = B(E), the Banach algebra of all
bounded, linear operators acting on a (complex) Banach space E?
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A re�nement

Fact. Let E be a Banach space. For each x ∈ E \ {0},

ML x = {T ∈ B(E) : Tx = 0}

is a maximal left ideal

, which is generated by a single projection P, where P is
any projection with kerP = Cx.

Terminology. A maximal left ideal of the form ML x for some x ∈ E \ {0} is
�xed.

Question II. Is every �nitely-generated, maximal left ideal of B(E) �xed?

Fact. This is true for E �nite-dimensional.

Let E be an in�nite-dimensional Banach space. Then

F (E) = {T ∈ B(E) : dimT (E) <∞}

is a proper, two-sided ideal of B(E).
Hence F (E) is contained in a maximal left ideal of B(E).

Fact. F (E) 6⊆ML x for each x ∈ E \ {0}.
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A further re�nement and the Dichotomy Theorem

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an in�nite-dimensional Banach space, and suppose that every
�nitely-generated, maximal left ideal of B(E) is �xed. Then B(E) contains a
maximal left ideal which is not �nitely generated.

Question III. Is F (E) ever contained in a �nitely-generated, maximal left ideal
of B(E)?

Theorem (DKKKL). Let E be a non-zero Banach space. For each maximal left
ideal L of B(E), exactly one of the following two alternatives holds:

(i) L is �xed; or

(ii) L contains F (E).

Remark. This result can be viewed as the analogue of the fact that an
ultra�lter on a set M is either �xed (in the sense that it consists of precisely
those subsets of M which contain a �xed element x ∈ M), or it contains the
Fréchet �lter of all co�nite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:

Every �nitely-generated, maximal left ideal of B(E) is �xed if and only if no
�nitely-generated, maximal left ideal of B(E) contains F (E).

4
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Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satis�es one of the
following conditions:

I E has a basis and is complemented in its bidual

(examples: `p and Lp[0, 1] for 1 6 p <∞);

I E is an injective Banach space, in the sense that E is automatically
complemented in any superspace

(examples: `∞(Γ) for some non-empty index set Γ);

I E = c0(Γ)

, E = H, or E = c0(Γ)⊕ H, where Γ is a non-empty index set
and H is a Hilbert space;

I E has few operators: B(E) = CI + S (E)

(examples: hereditarily indecomposable Banach spaces);

I E = C(K), where K is a compact Hausdor� space without isolated points,
and each operator on C(K) is a weak multiplication, in the sense that it is
a strictly singular perturbation of a multiplication operator.

Then each �nitely-generated, maximal left ideal of B(E) is �xed.
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A negative answer to Question II

Theorem (Argyros�Haydon 2011). There is a Banach space XAH such that:

I XAH has very few operators: B(XAH) = CI + K (XAH);
I XAH has a basis, and X ∗AH ∼= `1.

Let E = XAH ⊕ `∞. We identify operators T on E with (2× 2)-matrices(
T1,1 : XAH → XAH T1,2 : `∞ → XAH

T2,1 : XAH → `∞ T2,2 : `∞ → `∞

)
.

Key point: T1,2 is necessarily strictly singular.

Theorem (DKKKL). The set

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
is a maximal two-sided ideal of codimension one in B(E), and hence also a
maximal left ideal. It is not �xed, but it is singly generated as a left ideal.
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How about Question I?

(Recall: E = XAH ⊕ `∞.)

Indeed, the operator

L =

(
0 0
V W

)
generates

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
as a left ideal, where W : `∞ → `∞(2N) ⊂ `∞ is an isomorphism, and

V : XAH → X ∗∗AH ∼= `∞ ∼= `∞(2N− 1) ⊂ `∞.

Theorem (DKKKL). The ideal K1 is the unique non-�xed, �nitely-generated,
maximal left ideal of B(E). Hence{(

T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T2,2 is strictly singular

}
,

which is a maximal two-sided ideal of B(E), is not contained in any
�nitely-generated, maximal left ideal of B(E).

In particular, the answer to Question I is positive for E .
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A separable example

Theorem (Kania�L). Let E = XAH ⊕ Y , where Y is a closed,
in�nite-dimensional subspace of in�nite codimension in XAH such that:

I B(Y ,XAH) = CJ + K (Y ,XAH), where J : Y → XAH is the inclusion;

I Y has a basis

, and Y ∗ ∼= `1.

Then:

I there are exactly two non-�xed, maximal left ideals of B(E), namely

Mj =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : Tj,j is compact

}
(j = 1, 2);

I M2 is generated as a left ideal by the two operators(
IXAH 0
0 0

)
and

(
0 J
0 0

)
,

but M2 is not generated as a left ideal by a single operator on E ;

I M1 is not �nitely generated as a left ideal.

8



A separable example

Theorem (Kania�L). Let E = XAH ⊕ Y , where Y is a closed,
in�nite-dimensional subspace of in�nite codimension in XAH such that:

I B(Y ,XAH) = CJ + K (Y ,XAH), where J : Y → XAH is the inclusion;

I Y has a basis

, and Y ∗ ∼= `1.

Then:

I there are exactly two non-�xed, maximal left ideals of B(E), namely

Mj =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : Tj,j is compact

}
(j = 1, 2);

I M2 is generated as a left ideal by the two operators(
IXAH 0
0 0

)
and

(
0 J
0 0

)
,

but M2 is not generated as a left ideal by a single operator on E ;

I M1 is not �nitely generated as a left ideal.

8



A separable example

Theorem (Kania�L). Let E = XAH ⊕ Y , where Y is a closed,
in�nite-dimensional subspace of in�nite codimension in XAH such that:

I B(Y ,XAH) = CJ + K (Y ,XAH), where J : Y → XAH is the inclusion;

I Y has a basis, and Y ∗ ∼= `1.

Then:

I there are exactly two non-�xed, maximal left ideals of B(E), namely

Mj =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : Tj,j is compact

}
(j = 1, 2);

I M2 is generated as a left ideal by the two operators(
IXAH 0
0 0

)
and

(
0 J
0 0

)
,

but M2 is not generated as a left ideal by a single operator on E ;

I M1 is not �nitely generated as a left ideal.

8



A separable example

Theorem (Kania�L). Let E = XAH ⊕ Y , where Y is a closed,
in�nite-dimensional subspace of in�nite codimension in XAH such that:

I B(Y ,XAH) = CJ + K (Y ,XAH), where J : Y → XAH is the inclusion;

I Y has a basis, and Y ∗ ∼= `1.

Then:

I there are exactly two non-�xed, maximal left ideals of B(E), namely

Mj =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : Tj,j is compact

}
(j = 1, 2);

I M2 is generated as a left ideal by the two operators(
IXAH 0
0 0

)
and

(
0 J
0 0

)
,

but M2 is not generated as a left ideal by a single operator on E ;

I M1 is not �nitely generated as a left ideal.

8



A separable example

Theorem (Kania�L). Let E = XAH ⊕ Y , where Y is a closed,
in�nite-dimensional subspace of in�nite codimension in XAH such that:

I B(Y ,XAH) = CJ + K (Y ,XAH), where J : Y → XAH is the inclusion;

I Y has a basis, and Y ∗ ∼= `1.

Then:

I there are exactly two non-�xed, maximal left ideals of B(E), namely

Mj =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : Tj,j is compact

}
(j = 1, 2);

I M2 is generated as a left ideal by the two operators(
IXAH 0
0 0

)
and

(
0 J
0 0

)
,

but M2 is not generated as a left ideal by a single operator on E ;

I M1 is not �nitely generated as a left ideal.

8



A separable example

Theorem (Kania�L). Let E = XAH ⊕ Y , where Y is a closed,
in�nite-dimensional subspace of in�nite codimension in XAH such that:

I B(Y ,XAH) = CJ + K (Y ,XAH), where J : Y → XAH is the inclusion;

I Y has a basis, and Y ∗ ∼= `1.

Then:

I there are exactly two non-�xed, maximal left ideals of B(E), namely

Mj =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : Tj,j is compact

}
(j = 1, 2);

I M2 is generated as a left ideal by the two operators(
IXAH 0
0 0

)
and

(
0 J
0 0

)
,

but M2 is not generated as a left ideal by a single operator on E ;

I M1 is not �nitely generated as a left ideal.

8



A separable example

Theorem (Kania�L). Let E = XAH ⊕ Y , where Y is a closed,
in�nite-dimensional subspace of in�nite codimension in XAH such that:

I B(Y ,XAH) = CJ + K (Y ,XAH), where J : Y → XAH is the inclusion;

I Y has a basis, and Y ∗ ∼= `1.

Then:

I there are exactly two non-�xed, maximal left ideals of B(E), namely

Mj =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : Tj,j is compact

}
(j = 1, 2);

I M2 is generated as a left ideal by the two operators(
IXAH 0
0 0

)
and

(
0 J
0 0

)
,

but M2 is not generated as a left ideal by a single operator on E ;

I M1 is not �nitely generated as a left ideal.

8



A separable example

Theorem (Kania�L). Let E = XAH ⊕ Y , where Y is a closed,
in�nite-dimensional subspace of in�nite codimension in XAH such that:

I B(Y ,XAH) = CJ + K (Y ,XAH), where J : Y → XAH is the inclusion;

I Y has a basis, and Y ∗ ∼= `1.

Then:

I there are exactly two non-�xed, maximal left ideals of B(E), namely

Mj =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : Tj,j is compact

}
(j = 1, 2);

I M2 is generated as a left ideal by the two operators(
IXAH 0
0 0

)
and

(
0 J
0 0

)
,

but M2 is not generated as a left ideal by a single operator on E ;

I M1 is not �nitely generated as a left ideal.

8



Open problems

and references

I Let E = C(K), where K is any in�nite, compact metric space such that
C(K) 6∼= c0. Is each �nitely-generated, maximal left ideal of B(E) �xed?

I What is the situation for maximal right ideals of B(E)?

Key references

I H. G. Dales, T. Kania, T. Kochanek, P. Koszmider and N. J. Laustsen,
Maximal left ideals of the Banach algebra of bounded operators on a
Banach space, Studia Math. 218 (2013), 245�286.

I H. G. Dales and W. �elazko, Generators of maximal left ideals in Banach
algebras, Studia Math. 212 (2012), 173�193.

I T. Kania and N. J. Laustsen, Ideal structure of the algebra of bounded
operators acting on a Banach space, in preparation.
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