The elusive geometry of the Banach space ℓ_{∞} / c_{0}

Piotr Koszmider

IM PAN, Warsaw

Banach spaces and topological preliminaries

Banach spaces and topological preliminaries

(1) $\ell_{\infty}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{R},\left(a_{n}\right)_{n \in \mathbb{N}}\right.$ bounded $\} \equiv C(\beta \mathbb{N})$, sup norm

Banach spaces and topological preliminaries

(1) $\ell_{\infty}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{R},\left(a_{n}\right)_{n \in \mathbb{N}}\right.$ bounded $\} \equiv C(\beta \mathbb{N})$, sup norm
(2) $c_{0}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell_{\infty}: \lim _{n \rightarrow \infty} a_{n}=0\right\} \equiv$

Banach spaces and topological preliminaries

(1) $\ell_{\infty}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{R},\left(a_{n}\right)_{n \in \mathbb{N}}\right.$ bounded $\} \equiv C(\beta \mathbb{N})$, sup norm
(2) $c_{0}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell_{\infty}: \lim _{n \rightarrow \infty} a_{n}=0\right\} \equiv$
(3) $\equiv\{f \in C(\beta \mathbb{N}): f \upharpoonright(\beta \mathbb{N} \backslash \mathbb{N})=0\}$, sup norm

Banach spaces and topological preliminaries

(1) $\ell_{\infty}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{R},\left(a_{n}\right)_{n \in \mathbb{N}}\right.$ bounded $\} \equiv C(\beta \mathbb{N})$, sup norm
(2) $c_{0}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell_{\infty}: \lim _{n \rightarrow \infty} a_{n}=0\right\} \equiv$
(3) $\equiv\{f \in C(\beta \mathbb{N}): f \upharpoonright(\beta \mathbb{N} \backslash \mathbb{N})=0\}$, sup norm
(4) $N^{*}=\beta \mathbb{N} \backslash \mathbb{N}$

Banach spaces and topological preliminaries

(1) $\ell_{\infty}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{R},\left(a_{n}\right)_{n \in \mathbb{N}}\right.$ bounded $\} \equiv C(\beta \mathbb{N})$, sup norm
(2) $c_{0}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell_{\infty}: \lim _{n \rightarrow \infty} a_{n}=0\right\} \equiv$
(3) $\equiv\{f \in C(\beta \mathbb{N}): f \upharpoonright(\beta \mathbb{N} \backslash \mathbb{N})=0\}$, sup norm
(4) $N^{*}=\beta \mathbb{N} \backslash \mathbb{N}$
(5) $\ell_{\infty} / c_{0} \equiv C\left(\mathbb{N}^{*}\right)$

Banach spaces and topological preliminaries

(1) $\ell_{\infty}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{R},\left(a_{n}\right)_{n \in \mathbb{N}}\right.$ bounded $\} \equiv C(\beta \mathbb{N})$, sup norm
(2) $c_{0}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell_{\infty}: \lim _{n \rightarrow \infty} a_{n}=0\right\} \equiv$
(3) $\equiv\{f \in C(\beta \mathbb{N}): f \upharpoonright(\beta \mathbb{N} \backslash \mathbb{N})=0\}$, sup norm
(4) $N^{*}=\beta \mathbb{N} \backslash \mathbb{N}$
(5) $\ell_{\infty} / c_{0} \equiv C\left(\mathbb{N}^{*}\right)$
(6) $\operatorname{Clop}(\beta \mathbb{N}) \equiv \wp(\mathbb{N})$

Banach spaces and topological preliminaries

(1) $\ell_{\infty}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{R},\left(a_{n}\right)_{n \in \mathbb{N}}\right.$ bounded $\} \equiv C(\beta \mathbb{N})$, sup norm
(2) $c_{0}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell_{\infty}: \lim _{n \rightarrow \infty} a_{n}=0\right\} \equiv$
(3) $\equiv\{f \in C(\beta \mathbb{N}): f \upharpoonright(\beta \mathbb{N} \backslash \mathbb{N})=0\}$, sup norm
(4) $N^{*}=\beta \mathbb{N} \backslash \mathbb{N}$
(5) $\ell_{\infty} / c_{0} \equiv C\left(\mathbb{N}^{*}\right)$
(6) $\operatorname{Clop}(\beta \mathbb{N}) \equiv \wp(\mathbb{N})$
(7) $\operatorname{Clop}\left(N^{*}\right) \equiv \wp(\mathbb{N}) /$ Fin

Banach spaces and topological preliminaries

(1) $\ell_{\infty}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{R},\left(a_{n}\right)_{n \in \mathbb{N}}\right.$ bounded $\} \equiv C(\beta \mathbb{N})$, sup norm
(2) $c_{0}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell_{\infty}: \lim _{n \rightarrow \infty} a_{n}=0\right\} \equiv$
(3) $\equiv\{f \in C(\beta \mathbb{N}): f \upharpoonright(\beta \mathbb{N} \backslash \mathbb{N})=0\}$, sup norm
(4) $N^{*}=\beta \mathbb{N} \backslash \mathbb{N}$
(5) $\ell_{\infty} / c_{0} \equiv C\left(\mathbb{N}^{*}\right)$
(6) $\operatorname{Clop}(\beta \mathbb{N}) \equiv \wp(\mathbb{N})$
(7) $\operatorname{Clop}\left(N^{*}\right) \equiv \wp(\mathbb{N}) /$ Fin

Banach spaces and topological preliminaries

(1) $\ell_{\infty}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{R},\left(a_{n}\right)_{n \in \mathbb{N}}\right.$ bounded $\} \equiv C(\beta \mathbb{N})$, sup norm
(2) $c_{0}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell_{\infty}: \lim _{n \rightarrow \infty} a_{n}=0\right\} \equiv$
(3) $\equiv\{f \in C(\beta \mathbb{N}): f \upharpoonright(\beta \mathbb{N} \backslash \mathbb{N})=0\}$, sup norm
(4) $N^{*}=\beta \mathbb{N} \backslash \mathbb{N}$
(5) $\ell_{\infty} / c_{0} \equiv C\left(\mathbb{N}^{*}\right)$
(6) $\operatorname{Clop}(\beta \mathbb{N}) \equiv \wp(\mathbb{N})$
(7) $\operatorname{Clop}\left(N^{*}\right) \equiv \wp(\mathbb{N}) /$ Fin

Set-theoretic and logical preliminaries

Set-theoretic and logical preliminaries

(1) $\mathrm{CH}=$ "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N}^{\prime},

Set-theoretic and logical preliminaries

(1) $\mathrm{CH}=$ "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N}^{\prime},
(2) There is a well ordering of ℓ_{∞} / c_{0} which has all proper initial segments countable,

Set-theoretic and logical preliminaries

(1) $\mathrm{CH}=$ "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N} ",
(2) There is a well ordering of ℓ_{∞} / c_{0} which has all proper initial segments countable,
(3) (2) is useful for transfinite inductive construction of length $\left|\ell_{\infty} / c_{0}\right|=|\wp(\mathbb{N})|=|\mathbb{R}|=\omega_{1}$

Set-theoretic and logical preliminaries

(1) $\mathrm{CH}=$ "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N} ",
(2) There is a well ordering of ℓ_{∞} / c_{0} which has all proper initial segments countable,
(3) (2) is useful for transfinite inductive construction of length $\left|\ell_{\infty} / c_{0}\right|=|\wp(\mathbb{N})|=|\mathbb{R}|=\omega_{1}$
(4) Alternative axioms: MA+not CH, OCA, PFA.

Set-theoretic and logical preliminaries

(1) CH = "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N} ",
(2) There is a well ordering of ℓ_{∞} / c_{0} which has all proper initial segments countable,
(3) (2) is useful for transfinite inductive construction of length $\left|\ell_{\infty} / c_{0}\right|=\left|\gamma_{\wp}(\mathbb{N})\right|=|\mathbb{R}|=\omega_{1}$
(1) Alternative axioms: MA+not CH, OCA, PFA.
(Vocabulary: in ZFC, consistent, cannot be proved

Set-theoretic and logical preliminaries

(1) CH = "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N} ",
(2) There is a well ordering of ℓ_{∞} / c_{0} which has all proper initial segments countable,
(3) (2) is useful for transfinite inductive construction of length $\left|\ell_{\infty} / c_{0}\right|=\left|\gamma_{\wp}(\mathbb{N})\right|=|\mathbb{R}|=\omega_{1}$
(9) Alternative axioms: MA+not CH, OCA, PFA.
(0) Vocabulary: in ZFC, consistent, cannot be proved

Set-theoretic and logical preliminaries

(1) CH = "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N} ",
(2) There is a well ordering of ℓ_{∞} / c_{0} which has all proper initial segments countable,
(3) (2) is useful for transfinite inductive construction of length $\left|\ell_{\infty} / c_{0}\right|=\left|\gamma_{\wp}(\mathbb{N})\right|=|\mathbb{R}|=\omega_{1}$
(9) Alternative axioms: MA+not CH, OCA, PFA.
(0) Vocabulary: in ZFC, consistent, cannot be proved

Outline of the talk

Outline of the talk

(1) The universality of ℓ_{∞} / c_{0}

Outline of the talk

(1) The universality of ℓ_{∞} / c_{0}
(2) Complemented subspaces of ℓ_{∞} / c_{0}

Outline of the talk

(1) The universality of ℓ_{∞} / c_{0}
(2) Complemented subspaces of ℓ_{∞} / c_{0}
(3) Complemented copies of ℓ_{∞} / c_{0} in ℓ_{∞} / c_{0}

Outline of the talk

(1) The universality of ℓ_{∞} / c_{0}
(2) Complemented subspaces of ℓ_{∞} / c_{0}
(3) Complemented copies of ℓ_{∞} / c_{0} in ℓ_{∞} / c_{0}
(4) Infinite decompositions of ℓ_{∞} / c_{0}

Outline of the talk

(1) The universality of ℓ_{∞} / c_{0}
(2) Complemented subspaces of ℓ_{∞} / c_{0}
(3) Complemented copies of ℓ_{∞} / c_{0} in ℓ_{∞} / c_{0}
(4) Infinite decompositions of ℓ_{∞} / c_{0}
(5) The primaryness of ℓ_{∞} / c_{0}

Outline of the talk

(1) The universality of ℓ_{∞} / c_{0}
(2) Complemented subspaces of ℓ_{∞} / c_{0}
(3) Complemented copies of ℓ_{∞} / c_{0} in ℓ_{∞} / c_{0}
(4) Infinite decompositions of ℓ_{∞} / c_{0}
(5) The primaryness of ℓ_{∞} / c_{0}
(6) Automorphisms of ℓ_{∞} / c_{0}

Outline of the talk

(1) The universality of ℓ_{∞} / c_{0}
(2) Complemented subspaces of ℓ_{∞} / c_{0}
(3) Complemented copies of ℓ_{∞} / c_{0} in ℓ_{∞} / c_{0}
(4) Infinite decompositions of ℓ_{∞} / c_{0}
(5) The primaryness of ℓ_{∞} / c_{0}
(6) Automorphisms of ℓ_{∞} / c_{0}

Outline of the talk

(1) The universality of ℓ_{∞} / c_{0}
(2) Complemented subspaces of ℓ_{∞} / c_{0}
(3) Complemented copies of ℓ_{∞} / c_{0} in ℓ_{∞} / c_{0}
(4) Infinite decompositions of ℓ_{∞} / c_{0}
(5) The primaryness of ℓ_{∞} / c_{0}
(6) Automorphisms of ℓ_{∞} / c_{0}

Universality of ℓ_{∞} / c_{0}

Universality of ℓ_{∞} / c_{0}

(1) (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞} / c_{0}

Universality of ℓ_{∞} / c_{0}

(1) (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞} / c_{0}
(2) Spaces of density 2^{ω} which can be embedded into ℓ_{∞} / c_{0} without using CH :

Universality of ℓ_{∞} / c_{0}

(1) (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞} / c_{0}
(2) Spaces of density 2^{ω} which can be embedded into ℓ_{∞} / c_{0} without using CH:
(1) all Banach spaces of density ω_{1},

Universality of ℓ_{∞} / c_{0}

(1) (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞} / c_{0}
(2) Spaces of density 2^{ω} which can be embedded into ℓ_{∞} / c_{0} without using CH:
(1) all Banach spaces of density ω_{1},
(2) $C_{0}\left(2^{\omega}\right)$, many other $C(K) \mathrm{s}$

Universality of ℓ_{∞} / c_{0}

(1) (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞} / c_{0}
(2) Spaces of density 2^{ω} which can be embedded into ℓ_{∞} / c_{0} without using CH:
(1) all Banach spaces of density ω_{1},
(2) $c_{0}\left(2^{\omega}\right)$, many other $C(K) \mathrm{s}$
(3) $\ell_{p}\left(2^{\omega}\right)$ for $1 \leq p<\infty$,

Universality of ℓ_{∞} / c_{0}

(1) (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞} / c_{0}
(2) Spaces of density 2^{ω} which can be embedded into ℓ_{∞} / c_{0} without using CH:
(1) all Banach spaces of density ω_{1},
(2) $c_{0}\left(2^{\omega}\right)$, many other $C(K) \mathrm{s}$
(3) $\ell_{p}\left(2^{\omega}\right)$ for $1 \leq p<\infty$,
(3) (Brech, P.K. - IJM 2012) It is consistent that $C\left(\left[0,2^{\omega}\right]\right)$ does not embed isomorphically into ℓ_{∞} / c_{0}

Universality of ℓ_{∞} / c_{0}

(1) (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞} / c_{0}
(2) Spaces of density 2^{ω} which can be embedded into ℓ_{∞} / c_{0} without using CH :
(1) all Banach spaces of density ω_{1},
(2) $c_{0}\left(2^{\omega}\right)$, many other $C(K) \mathrm{s}$
(3) $\ell_{p}\left(2^{\omega}\right)$ for $1 \leq p<\infty$,
(3) (Brech, P.K. - IJM 2012) It is consistent that $C\left(\left[0,2^{\omega}\right]\right)$ does not embed isomorphically into ℓ_{∞} / c_{0}
(4) (Brech, P.K. - IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^{ω}

Universality of ℓ_{∞} / c_{0}

(1) (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞} / c_{0}
(2) Spaces of density 2^{ω} which can be embedded into ℓ_{∞} / c_{0} without using CH :
0 all Banach spaces of density ω_{1},
(2) $c_{0}\left(2^{\omega}\right)$, many other $C(K) s$
($\ell_{p}\left(2^{\omega}\right)$ for $1 \leq p<\infty$,
(3) (Brech, P.K. - IJM 2012) It is consistent that $C\left(\left[0,2^{\omega}\right]\right)$ does not embed isomorphically into ℓ_{∞} / c_{0}
(9) (Brech, P.K. - IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^{ω}
(0) Some WCG or Hilbert generated $C(K)$ s consistently do not embed in ℓ_{∞} / c_{0} (Todorcevic - JMAA 2012, Krupski, Marciszewski - Coll.M 2012, Brech, P.K. - PAMS 2013)

Universality of ℓ_{∞} / c_{0}

(1) (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞} / c_{0}
(2) Spaces of density 2^{ω} which can be embedded into ℓ_{∞} / c_{0} without using CH :
0 all Banach spaces of density ω_{1},
(2) $c_{0}\left(2^{\omega}\right)$, many other $C(K) s$
($\ell_{p}\left(2^{\omega}\right)$ for $1 \leq p<\infty$,
(3) (Brech, P.K. - IJM 2012) It is consistent that $C\left(\left[0,2^{\omega}\right]\right)$ does not embed isomorphically into ℓ_{∞} / c_{0}
(9) (Brech, P.K. - IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^{ω}
(0) Some WCG or Hilbert generated $C(K)$ s consistently do not embed in ℓ_{∞} / c_{0} (Todorcevic - JMAA 2012, Krupski, Marciszewski - Coll.M 2012, Brech, P.K. - PAMS 2013)

Universality of ℓ_{∞} / c_{0}

(1) (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞} / c_{0}
(2) Spaces of density 2^{ω} which can be embedded into ℓ_{∞} / c_{0} without using CH :
0 all Banach spaces of density ω_{1},
(2) $c_{0}\left(2^{\omega}\right)$, many other $C(K) s$
($\ell_{p}\left(2^{\omega}\right)$ for $1 \leq p<\infty$,
(3) (Brech, P.K. - IJM 2012) It is consistent that $C\left(\left[0,2^{\omega}\right]\right)$ does not embed isomorphically into ℓ_{∞} / c_{0}
(9) (Brech, P.K. - IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^{ω}
(0) Some WCG or Hilbert generated $C(K)$ s consistently do not embed in ℓ_{∞} / c_{0} (Todorcevic - JMAA 2012, Krupski, Marciszewski - Coll.M 2012, Brech, P.K. - PAMS 2013)

Complemented subspaces of ℓ_{∞} / c_{0}

Complemented subspaces of ℓ_{∞} / c_{0}

(1) $\ell_{\infty} / c_{0} \equiv\left(\ell_{\infty} / c_{0}\right) \oplus\left(\ell_{\infty} / c_{0}\right)$

Complemented subspaces of ℓ_{∞} / c_{0}

(1) $\ell_{\infty} / c_{0} \equiv\left(\ell_{\infty} / c_{0}\right) \oplus\left(\ell_{\infty} / c_{0}\right)$
(2) $\ell_{\infty} / c_{0} \equiv \ell_{\infty} \oplus\left(\ell_{\infty} / c_{0}\right)$

Complemented subspaces of ℓ_{∞} / c_{0}

(1) $\ell_{\infty} / c_{0} \equiv\left(\ell_{\infty} / c_{0}\right) \oplus\left(\ell_{\infty} / c_{0}\right)$
(2) $\ell_{\infty} / c_{0} \equiv \ell_{\infty} \oplus\left(\ell_{\infty} / c_{0}\right)$
(8) $(\mathrm{CH}) \ell_{\infty} / c_{0} \equiv L_{\infty}\left([0,1]^{\omega_{1}}\right) \oplus\left(\ell_{\infty} / c_{0}\right)$

Complemented subspaces of ℓ_{∞} / c_{0}

(1) $\ell_{\infty} / c_{0} \equiv\left(\ell_{\infty} / c_{0}\right) \oplus\left(\ell_{\infty} / c_{0}\right)$
(2) $\ell_{\infty} / c_{0} \equiv \ell_{\infty} \oplus\left(\ell_{\infty} / c_{0}\right)$
(3) $(\mathrm{CH}) \ell_{\infty} / c_{0} \equiv L_{\infty}\left([0,1]^{\omega_{1}}\right) \oplus\left(\ell_{\infty} / c_{0}\right)$

Complemented subspaces of ℓ_{∞} / c_{0}

(1) $\ell_{\infty} / c_{0} \equiv\left(\ell_{\infty} / c_{0}\right) \oplus\left(\ell_{\infty} / c_{0}\right)$
(2) $\ell_{\infty} / c_{0} \equiv \ell_{\infty} \oplus\left(\ell_{\infty} / c_{0}\right)$
(3) $(\mathrm{CH}) \ell_{\infty} / c_{0} \equiv L_{\infty}\left([0,1]^{\omega_{1}}\right) \oplus\left(\ell_{\infty} / c_{0}\right)$

Question

Does $L_{\infty}\left([0,1]^{\omega_{1}}\right)$ embed into ℓ_{∞} / c_{0} in ZFC?

Complemented subspaces of ℓ_{∞} / c_{0}

(1) $\ell_{\infty} / c_{0} \equiv\left(\ell_{\infty} / c_{0}\right) \oplus\left(\ell_{\infty} / c_{0}\right)$
(2) $\ell_{\infty} / c_{0} \equiv \ell_{\infty} \oplus\left(\ell_{\infty} / c_{0}\right)$
(3) $(\mathrm{CH}) \ell_{\infty} / c_{0} \equiv L_{\infty}\left([0,1]^{\omega_{1}}\right) \oplus\left(\ell_{\infty} / c_{0}\right)$

Question

Does $L_{\infty}\left([0,1]^{\omega_{1}}\right)$ embed into ℓ_{∞} / c_{0} in ZFC?

Complemented copies of ℓ_{∞} / c_{0}

Complemented copies of ℓ_{∞} / c_{0}

Theorem (Castillo, Plichko; JFA 2010)

(CH) There are uncomplemented subspaces of ℓ_{∞} / c_{0} isomorphic to ℓ_{∞} / c_{0}.

Complemented copies of ℓ_{∞} / c_{0}

Theorem (Castillo, Plichko; JFA 2010)

(CH) There are uncomplemented subspaces of ℓ_{∞} / c_{0} isomorphic to ℓ_{∞} / c_{0}.

Problem

Does every subspace of ℓ_{∞} / c_{0} isomorphic to ℓ_{∞} / c_{0} contains a further subspace isomorphic to ℓ_{∞} / c_{0} which is complemented in the entire ℓ_{∞} / c_{0} ?

Complemented copies of ℓ_{∞} / c_{0}

Theorem (Castillo, Plichko; JFA 2010)

(CH) There are uncomplemented subspaces of ℓ_{∞} / c_{0} isomorphic to ℓ_{∞} / c_{0}.

Problem

Does every subspace of ℓ_{∞} / c_{0} isomorphic to ℓ_{∞} / c_{0} contains a further subspace isomorphic to ℓ_{∞} / c_{0} which is complemented in the entire ℓ_{∞} / c_{0} ?

Theorem (Drewnowski, Roberts - PAMS 1991)

Whenever $\ell_{\infty} / c_{0}=A \oplus B$, then either A or B contains a complemented copy of ℓ_{∞} / c_{0}.

Complemented copies of ℓ_{∞} / c_{0}

Theorem (Castillo, Plichko; JFA 2010)

(CH) There are uncomplemented subspaces of ℓ_{∞} / c_{0} isomorphic to ℓ_{∞} / c_{0}.

Problem

Does every subspace of ℓ_{∞} / c_{0} isomorphic to ℓ_{∞} / c_{0} contains a further subspace isomorphic to ℓ_{∞} / c_{0} which is complemented in the entire ℓ_{∞} / c_{0} ?

Theorem (Drewnowski, Roberts - PAMS 1991)

Whenever $\ell_{\infty} / c_{0}=A \oplus B$, then either A or B contains a complemented copy of ℓ_{∞} / c_{0}.

Pełczyński decomposition method (Studia M. 1960)

Theorem

Suppose that X, Y are Banach spaces and
(1) X is isomorphic to a complemented subspace of Y,
(2) Y is isomorphic to a complemented subspace of X,
(3) X is isomorphic to $\ell_{\infty}(X)$,

Then X and Y are isomorphic.

Pełczyński decomposition method (Studia M. 1960)

Theorem

Suppose that X, Y are Banach spaces and
(1) X is isomorphic to a complemented subspace of Y,
(2) Y is isomorphic to a complemented subspace of X,
(3) X is isomorphic to $\ell_{\infty}(X)$,

Then X and Y are isomorphic.

ℓ_{∞}-sums

ℓ_{∞}-sums
Theorem (Negrepontis - TAMS 1969)
(CH)

$$
\ell_{\infty} / c_{0} \sim \ell_{\infty}\left(\ell_{\infty} / c_{0}\right)
$$

ℓ_{∞}-sums
Theorem (Negrepontis - TAMS 1969)
(CH)

$$
\ell_{\infty} / c_{0} \sim \ell_{\infty}\left(\ell_{\infty} / c_{0}\right)
$$

Theorem (Brech, P.K. - Fund. M. 2014)
It is consistent that ℓ_{∞} / c_{0} is not isomorphic to any Banach space of the form $\ell_{\infty}(X)$
ℓ_{∞}-sums
Theorem (Negrepontis - TAMS 1969)
(CH)

$$
\ell_{\infty} / c_{0} \sim \ell_{\infty}\left(\ell_{\infty} / c_{0}\right)
$$

Theorem (Brech, P.K. - Fund. M. 2014)
It is consistent that ℓ_{∞} / c_{0} is not isomorphic to any Banach space of the form $\ell_{\infty}(X)$

The primariness of ℓ_{∞} / c_{0}

The primariness of ℓ_{∞} / c_{0}

Theorem (Drewnowski, Roberts - PAMS 1991)
(CH) Whenever $\ell_{\infty} / c_{0}=X \oplus Y$, then either X or Y is isomorphic to ℓ_{∞} / C_{0}.

The primariness of ℓ_{∞} / c_{0}

Theorem (Drewnowski, Roberts - PAMS 1991)
(CH) Whenever $\ell_{\infty} / c_{0}=X \oplus Y$, then either X or Y is isomorphic to ℓ_{∞} / c_{0}.

Question

Is ℓ_{∞} / c_{0} primary in ZFC?

The primariness of ℓ_{∞} / c_{0}

Theorem (Drewnowski, Roberts - PAMS 1991)
(CH) Whenever $\ell_{\infty} / c_{0}=X \oplus Y$, then either X or Y is isomorphic to ℓ_{∞} / c_{0}.

Question

Is ℓ_{∞} / c_{0} primary in ZFC?
Theorem (Dow, Shelah - Top. Ap. 2008)
It is consistent that there are two disjoint open subsets $U, V \subseteq N^{*}$ with $\bar{U} \cap \bar{V}=\{x\}$ for some $x \in N^{*}$ and neither \bar{U} nor \bar{V} is homeomorphic to N^{*}.

Automorphisms

Automorphisms

Joint work in preparation with Cristóbal Rodriguez Porras

Automorphisms

Joint work in preparation with Cristóbal Rodriguez Porras

(1) There is an an automorphism of ℓ_{∞} / c_{0} which is not induced by an operator on ℓ_{∞}

Automorphisms

Joint work in preparation with Cristóbal Rodriguez Porras
(1) There is an an automorphism of ℓ_{∞} / c_{0} which is not induced by an operator on ℓ_{∞}
(2) We develop local canonization of some automorphisms under OCA+MA

Automorphisms

Joint work in preparation with Cristóbal Rodriguez Porras
(1) There is an an automorphism of ℓ_{∞} / c_{0} which is not induced by an operator on ℓ_{∞}
(2) We develop local canonization of some automorphisms under OCA+MA

Automorphisms

Joint work in preparation with Cristóbal Rodriguez Porras
(1) There is an an automorphism of ℓ_{∞} / c_{0} which is not induced by an operator on ℓ_{∞}
(2) We develop local canonization of some automorphisms under OCA+MA

Some references:
L. Drewnowski, J. Roberts, On the primariness of the Banach space ℓ_{∞} / c_{0}. Proc. Amer. Math. Soc. 112 (1991), no. 4, 949-957.
C. Brech, P. Koszmider, On universal Banach spaces of density continuum. Israel J. Math. 190 (2012), 93-110.
C. Brech, P. Koszmider, ℓ_{∞}-sums and the Banach space ℓ_{∞} / c_{0}. Fund. Math. 224 (2014), 175-185.
P. Koszmider, C. Rodriguez Porras; in preparation.

