The elusive geometry of the Banach space ℓ_∞/c_0

Piotr Koszmider

IM PAN, Warsaw

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 1 / 12

DQC

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 2 / 12

э

<ロト < 回ト < 回ト < 回ト

• $\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm}$

3

• $\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm}$ • $c_0 = \{(a_n)_{n \in \mathbb{N}} \in \ell_{\infty} : \lim_{n \to \infty} a_n = 0\} \equiv$

- $\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm}$
- $c_0 = \{ (a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0 \} \equiv$

- $\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm}$
- $c_0 = \{ (a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0 \} \equiv$
- $N^* = \beta \mathbb{N} \setminus \mathbb{N}$

- $\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm}$

- $\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm}$

- $\, {\color{black} \bullet} \, {\color{black} \bullet} \, \ell_{\infty}/c_{0} \equiv {\color{black} C}(\mathbb{N}^{*})$

●
$$\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm}$$

$$2 c_0 = \{(a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0\} \equiv$$

- $M^* = \beta \mathbb{N} \setminus \mathbb{N}$
- $\ \, {\mathfrak O} \ \, \ell_\infty/{\mathfrak C}_0 \equiv {\mathcal C}({\mathbb N}^*)$
- Clop($\beta \mathbb{N}$) $\equiv \wp(\mathbb{N})$
- $O Clop(N^*) \equiv \wp(\mathbb{N})/Fin$

・ 同 ト ・ ヨ ト ・ ヨ ト

●
$$\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm}$$

$$2 c_0 = \{(a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0\} \equiv$$

- $M^* = \beta \mathbb{N} \setminus \mathbb{N}$
- $\, {\color{black} \bullet} \, {\color{black} \bullet} \, \ell_{\infty} / c_{0} \equiv {\color{black} C}(\mathbb{N}^{*})$
- Clop($\beta \mathbb{N}$) $\equiv \wp(\mathbb{N})$
- $O Clop(N^*) \equiv \wp(\mathbb{N})/Fin$

・ 同 ト ・ ヨ ト ・ ヨ ト

●
$$\ell_{\infty} = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm}$$

$$2 c_0 = \{(a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0\} \equiv$$

- $M^* = \beta \mathbb{N} \setminus \mathbb{N}$
- $\, {\color{black} \bullet} \, {\color{black} \bullet} \, \ell_{\infty} / c_{0} \equiv {\color{black} C}(\mathbb{N}^{*})$
- Clop($\beta \mathbb{N}$) $\equiv \wp(\mathbb{N})$
- $O Clop(N^*) \equiv \wp(\mathbb{N})/Fin$

・ 同 ト ・ ヨ ト ・ ヨ ト

Set-theoretic and logical preliminaries

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 3 / 12

э

<ロト < 回ト < 回ト < 回ト

Set-theoretic and logical preliminaries

O CH = "All infinite subsets of ℝ have the cardinality of ℝ or the cardinality of ℕ",

- O CH = "All infinite subsets of ℝ have the cardinality of ℝ or the cardinality of ℕ",
- 2 There is a well ordering of ℓ_{∞}/c_0 which has all proper initial segments countable,

- O CH = "All infinite subsets of ℝ have the cardinality of ℝ or the cardinality of ℕ",
- 2 There is a well ordering of ℓ_{∞}/c_0 which has all proper initial segments countable,
- (2) is useful for transfinite inductive construction of length $|\ell_{\infty}/c_0| = |\wp(\mathbb{N})| = |\mathbb{R}| = \omega_1$

- O CH = "All infinite subsets of ℝ have the cardinality of ℝ or the cardinality of ℕ",
- 2 There is a well ordering of ℓ_{∞}/c_0 which has all proper initial segments countable,
- (2) is useful for transfinite inductive construction of length $|\ell_{\infty}/c_0| = |\wp(\mathbb{N})| = |\mathbb{R}| = \omega_1$
- Alternative axioms: MA+not CH, OCA, PFA.

- O CH = "All infinite subsets of ℝ have the cardinality of ℝ or the cardinality of ℕ",
- 2 There is a well ordering of ℓ_{∞}/c_0 which has all proper initial segments countable,
- (2) is useful for transfinite inductive construction of length $|\ell_{\infty}/c_0| = |\wp(\mathbb{N})| = |\mathbb{R}| = \omega_1$
- Alternative axioms: MA+not CH, OCA, PFA.
- Solution Vocabulary: in ZFC, consistent, cannot be proved

- O CH = "All infinite subsets of ℝ have the cardinality of ℝ or the cardinality of ℕ",
- 2 There is a well ordering of ℓ_{∞}/c_0 which has all proper initial segments countable,
- (2) is useful for transfinite inductive construction of length $|\ell_{\infty}/c_0| = |\wp(\mathbb{N})| = |\mathbb{R}| = \omega_1$
- Alternative axioms: MA+not CH, OCA, PFA.
- Solution Vocabulary: in ZFC, consistent, cannot be proved

- O CH = "All infinite subsets of ℝ have the cardinality of ℝ or the cardinality of ℕ",
- 2 There is a well ordering of ℓ_{∞}/c_0 which has all proper initial segments countable,
- (2) is useful for transfinite inductive construction of length $|\ell_{\infty}/c_0| = |\wp(\mathbb{N})| = |\mathbb{R}| = \omega_1$
- Alternative axioms: MA+not CH, OCA, PFA.
- Solution Vocabulary: in ZFC, consistent, cannot be proved

Outline of the talk

Piotr Koszmider (IM PAN, Warsaw)

æ

DQC

<ロト < 回ト < 回ト < 回ト

æ

DQC

 $\textcircled{0} The universality of <math display="inline">\ell_\infty/c_0$

2 Complemented subspaces of ℓ_{∞}/c_0

э

- 1 The universality of ℓ_∞/c_0
- 2 Complemented subspaces of ℓ_∞/c_0
- **③** Complemented copies of ℓ_{∞}/c_0 in ℓ_{∞}/c_0

- 1 The universality of ℓ_{∞}/c_0
- 2 Complemented subspaces of ℓ_{∞}/c_0
- **③** Complemented copies of ℓ_{∞}/c_0 in ℓ_{∞}/c_0
- Infinite decompositions of ℓ_{∞}/c_0

- 1 The universality of ℓ_∞/c_0
- 2 Complemented subspaces of ℓ_{∞}/c_0
- Complemented copies of ℓ_{∞}/c_0 in ℓ_{∞}/c_0
- Infinite decompositions of ℓ_{∞}/c_0
- **5** The primaryness of ℓ_{∞}/c_0

- 1 The universality of ℓ_∞/c_0
- 2 Complemented subspaces of ℓ_{∞}/c_0
- **③** Complemented copies of ℓ_{∞}/c_0 in ℓ_{∞}/c_0
- Infinite decompositions of ℓ_{∞}/c_0
- **5** The primaryness of ℓ_{∞}/c_0
- **(a)** Automorphisms of ℓ_{∞}/c_0

- 1 The universality of ℓ_∞/c_0
- 2 Complemented subspaces of ℓ_{∞}/c_0
- **③** Complemented copies of ℓ_{∞}/c_0 in ℓ_{∞}/c_0
- Infinite decompositions of ℓ_∞/c_0
- **5** The primaryness of ℓ_{∞}/c_0
- Automorphisms of ℓ_{∞}/c_0

- 1 The universality of ℓ_∞/c_0
- 2 Complemented subspaces of ℓ_{∞}/c_0
- **③** Complemented copies of ℓ_{∞}/c_0 in ℓ_{∞}/c_0
- Infinite decompositions of ℓ_∞/c_0
- **5** The primaryness of ℓ_{∞}/c_0
- Automorphisms of ℓ_{∞}/c_0

Piotr Koszmider (IM PAN, Warsaw)

æ

DQC

 (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c₀

- (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞}/c_0
- Spaces of density 2^{ω} which can be embedded into ℓ_{∞}/c_0 without using CH:

- (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c₀
- ② Spaces of density 2^{ω} which can be embedded into ℓ_{∞}/c_0 without using CH:

• all Banach spaces of density ω_1 ,

- (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c₀
- Spaces of density 2^{ω} which can be embedded into ℓ_{∞}/c_0 without using CH:
 - all Banach spaces of density ω_1 ,
 - 2 $c_0(2^{\omega})$, many other C(K)s

- (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c₀
- ⁽²⁾ Spaces of density 2^{ω} which can be embedded into ℓ_{∞}/c_0 without using CH:
 - all Banach spaces of density ω_1 ,
 - 2 $c_0(2^{\omega})$, many other C(K)s
 - $\ \, {\it l}_{p}(2^{\omega}) \ {\it for} \ 1 \leq p < \infty,$

- (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c₀
- Spaces of density 2^{ω} which can be embedded into ℓ_{∞}/c_0 without using CH:
 - all Banach spaces of density ω_1 ,
 - 2 $c_0(2^{\omega})$, many other C(K)s
 - $\ \, {\it l}_{p}(2^{\omega}) \ {\rm for} \ 1 \leq p < \infty,$
- (Brech, P.K. IJM 2012) It is consistent that $C([0, 2^{\omega}])$ does not embed isomorphically into ℓ_{∞}/c_0

- (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c₀
- Spaces of density 2^{ω} which can be embedded into ℓ_{∞}/c_0 without using CH:
 - all Banach spaces of density ω_1 ,
 - 2 $c_0(2^{\omega})$, many other C(K)s
 - $\ \, {\it l}_{p}(2^{\omega}) \ {\rm for} \ 1 \leq p < \infty,$
- (Brech, P.K. IJM 2012) It is consistent that $C([0, 2^{\omega}])$ does not embed isomorphically into ℓ_{∞}/c_0
- (Brech, P.K. IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^{ω}

Universality of ℓ_{∞}/c_0

- (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_{∞}/c_0
- 2 Spaces of density 2^{ω} which can be embedded into ℓ_{∞}/c_0 without using CH:
 - **1** all Banach spaces of density ω_1 ,
 - 2 $c_0(2^{\omega})$, many other C(K)s
 - 3 $\ell_p(2^{\omega})$ for 1 ,
- (Brech, P.K. IJM 2012) It is consistent that $C([0, 2^{\omega}])$ does not embed isomorphically into ℓ_{∞}/c_{0}
- (Brech, P.K. IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^{ω}
- Some WCG or Hilbert generated C(K)s consistently do not embed in ℓ_{∞}/c_0 (Todorcevic - JMAA 2012, Krupski, Marciszewski • • • • • • • • • э Sac
 - Coll.M 2012, Brech, P.K. PAMS 2013)

Piotr Koszmider (IM PAN, Warsaw)

Universality of ℓ_{∞}/c_0

- (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c₀
- Spaces of density 2^{ω} which can be embedded into ℓ_{∞}/c_0 without using CH:
 - all Banach spaces of density ω_1 ,
 - 2 $c_0(2^{\omega})$, many other C(K)s
 - $\ \, {\it l}_{p}(2^{\omega}) \ {\it for} \ 1 \leq p < \infty,$
- (Brech, P.K. IJM 2012) It is consistent that $C([0, 2^{\omega}])$ does not embed isomorphically into ℓ_{∞}/c_0
- (Brech, P.K. IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^ω
- Some WCG or Hilbert generated C(K)s consistently do not embed in ℓ_{∞}/c_0 (Todorcevic - JMAA 2012, Krupski, Marciszewski
 - Coll.M 2012, Brech, P.K. PAMS 2013)

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

Sac

Universality of ℓ_{∞}/c_0

- (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c₀
- Spaces of density 2^{ω} which can be embedded into ℓ_{∞}/c_0 without using CH:
 - all Banach spaces of density ω_1 ,
 - 2 $c_0(2^{\omega})$, many other C(K)s
 - $\ \, {\it l}_{p}(2^{\omega}) \ {\it for} \ 1 \leq p < \infty,$
- (Brech, P.K. IJM 2012) It is consistent that $C([0, 2^{\omega}])$ does not embed isomorphically into ℓ_{∞}/c_0
- (Brech, P.K. IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^ω
- Some WCG or Hilbert generated C(K)s consistently do not embed in ℓ_{∞}/c_0 (Todorcevic - JMAA 2012, Krupski, Marciszewski
 - Coll.M 2012, Brech, P.K. PAMS 2013)

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

Sac

Complemented subspaces of ℓ_{∞}/c_0

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 6 / 12

э

DQC

Complemented subspaces of ℓ_{∞}/c_0

3

DQC

э

- $2 \ell_{\infty}/c_0 \equiv \ell_{\infty} \oplus (\ell_{\infty}/c_0)$
- (CH) $\ell_{\infty}/c_0 \equiv L_{\infty}([0,1]^{\omega_1}) \oplus (\ell_{\infty}/c_0)$

< ロト < 同ト < ヨト < ヨト

- (CH) $\ell_{\infty}/c_0 \equiv L_{\infty}([0,1]^{\omega_1}) \oplus (\ell_{\infty}/c_0)$

(CH)
$$\ell_{\infty}/c_0 \equiv L_{\infty}([0,1]^{\omega_1}) \oplus (\ell_{\infty}/c_0)$$

Question

Does $L_{\infty}([0,1]^{\omega_1})$ embed into ℓ_{∞}/c_0 in ZFC?

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 6 / 12

э

(CH)
$$\ell_{\infty}/c_0 \equiv L_{\infty}([0,1]^{\omega_1}) \oplus (\ell_{\infty}/c_0)$$

Question

Does $L_{\infty}([0,1]^{\omega_1})$ embed into ℓ_{∞}/c_0 in ZFC?

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 6 / 12

э

Complemented copies of ℓ_{∞}/c_0

Piotr Koszmider (IM PAN, Warsaw)

æ

DQC

(CH) There are uncomplemented subspaces of ℓ_∞/c_0 isomorphic to $\ell_\infty/c_0.$

< ロト < 同ト < ヨト < ヨト

(CH) There are uncomplemented subspaces of ℓ_∞/c_0 isomorphic to $\ell_\infty/c_0.$

Problem

Does every subspace of ℓ_{∞}/c_0 isomorphic to ℓ_{∞}/c_0 contains a further subspace isomorphic to ℓ_{∞}/c_0 which is complemented in the entire ℓ_{∞}/c_0 ?

(CH) There are uncomplemented subspaces of ℓ_∞/c_0 isomorphic to $\ell_\infty/c_0.$

Problem

Does every subspace of ℓ_{∞}/c_0 isomorphic to ℓ_{∞}/c_0 contains a further subspace isomorphic to ℓ_{∞}/c_0 which is complemented in the entire ℓ_{∞}/c_0 ?

Theorem (Drewnowski, Roberts - PAMS 1991)

Whenever $\ell_{\infty}/c_0 = A \oplus B$, then either A or B contains a complemented copy of ℓ_{∞}/c_0 .

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 7 / 12

イロト 不得 トイヨト イヨト 二日

(CH) There are uncomplemented subspaces of ℓ_∞/c_0 isomorphic to $\ell_\infty/c_0.$

Problem

Does every subspace of ℓ_{∞}/c_0 isomorphic to ℓ_{∞}/c_0 contains a further subspace isomorphic to ℓ_{∞}/c_0 which is complemented in the entire ℓ_{∞}/c_0 ?

Theorem (Drewnowski, Roberts - PAMS 1991)

Whenever $\ell_{\infty}/c_0 = A \oplus B$, then either A or B contains a complemented copy of ℓ_{∞}/c_0 .

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 7 / 12

イロト 不得 トイヨト イヨト 二日

Pełczyński decomposition method (Studia M. 1960)

Theorem

Suppose that X, Y are Banach spaces and

- X is isomorphic to a complemented subspace of Y,
- Y is isomorphic to a complemented subspace of X,
- 3 *X* is isomorphic to $\ell_{\infty}(X)$,

Then X and Y are isomorphic.

< ロト < 同ト < ヨト < ヨト

Pełczyński decomposition method (Studia M. 1960)

Theorem

Suppose that X, Y are Banach spaces and

- X is isomorphic to a complemented subspace of Y,
- Y is isomorphic to a complemented subspace of X,
- 3 *X* is isomorphic to $\ell_{\infty}(X)$,

Then X and Y are isomorphic.

< ロト < 同ト < ヨト < ヨト

 ℓ_∞ -sums

æ

900

< ロト < 回 ト < 回 ト < 回 ト</p>

$\ell_\infty\text{-sums}$

Theorem (Negrepontis - TAMS 1969)

(CH)

 $\ell_{\infty}/c_0 \sim \ell_{\infty}(\ell_{\infty}/c_0).$

э

DQC

ℓ_∞ -sums

Theorem (Negrepontis - TAMS 1969)

(CH)

 $\ell_\infty/\mathit{C}_0\sim\ell_\infty(\ell_\infty/\mathit{C}_0).$

Theorem (Brech, P.K. - Fund. M. 2014)

It is consistent that ℓ_∞/c_0 is not isomorphic to any Banach space of the form $\ell_\infty(X)$

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 9 / 12

э

ℓ_∞ -sums

Theorem (Negrepontis - TAMS 1969)

(CH)

 $\ell_\infty/\mathit{C}_0\sim\ell_\infty(\ell_\infty/\mathit{C}_0).$

Theorem (Brech, P.K. - Fund. M. 2014)

It is consistent that ℓ_∞/c_0 is not isomorphic to any Banach space of the form $\ell_\infty(X)$

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 9 / 12

э

Piotr Koszmider (IM PAN, Warsaw)

æ

DQC

Theorem (Drewnowski, Roberts - PAMS 1991)

(CH) Whenever $\ell_{\infty}/c_0 = X \oplus Y$, then either X or Y is isomorphic to ℓ_{∞}/c_0 .

Theorem (Drewnowski, Roberts - PAMS 1991)

(CH) Whenever $\ell_{\infty}/c_0 = X \oplus Y$, then either X or Y is isomorphic to ℓ_{∞}/c_0 .

Question

Is ℓ_{∞}/c_0 primary in ZFC?

Theorem (Drewnowski, Roberts - PAMS 1991)

(CH) Whenever $\ell_{\infty}/c_0 = X \oplus Y$, then either X or Y is isomorphic to ℓ_{∞}/c_0 .

Question

Is ℓ_{∞}/c_0 primary in ZFC?

Theorem (Dow, Shelah - Top. Ap. 2008)

It is consistent that there are two disjoint open subsets $U, V \subseteq N^*$ with $\overline{U} \cap \overline{V} = \{x\}$ for some $x \in N^*$ and neither \overline{U} nor \overline{V} is homeomorphic to N^* .

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_{∞}/c_0

BWB, Maresias, 25-08-2014 10 / 12

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Automorphisms

Piotr Koszmider (IM PAN, Warsaw)

2

900

3

DQC

 \blacksquare There is an an automorphism of ℓ_∞/c_0 which is not induced by an operator on ℓ_∞

- \blacksquare There is an an automorphism of ℓ_∞/c_0 which is not induced by an operator on ℓ_∞
- We develop local canonization of some automorphisms under OCA+MA

- \blacksquare There is an an automorphism of ℓ_∞/c_0 which is not induced by an operator on ℓ_∞
- We develop local canonization of some automorphisms under OCA+MA

- \blacksquare There is an an automorphism of ℓ_∞/c_0 which is not induced by an operator on ℓ_∞
- We develop local canonization of some automorphisms under OCA+MA

Some references:

L. Drewnowski, J. Roberts, *On the primariness of the Banach space* ℓ_{∞}/c_0 . Proc. Amer. Math. Soc. 112 (1991), no. 4, 949–957.

C. Brech, P. Koszmider, *On universal Banach spaces of density continuum*. Israel J. Math. 190 (2012), 93–110.

C. Brech, P. Koszmider, ℓ_{∞} -sums and the Banach space ℓ_{∞}/c_0 . Fund. Math. 224 (2014), 175–185.

P. Koszmider, C. Rodriguez Porras; in preparation.