Products of free spaces and applications

Pedro L. Kaufmann

I BWB - Maresias 2014

Spaces of Lipschitz functions

Let (M, d) be a metric space, $0 \in M$.
Notation

$$
\operatorname{Lip}_{0}(M):=\{f: M \rightarrow \mathbb{R} \mid f \text { is Lipschitz, } f(0)=0\}
$$

is a Banach space when equipped with the norm

$$
\|f\|_{\text {Lip }}:=\sup _{x \neq y} \frac{|f(x)-f(y)|}{d(x, y)} .
$$

A predual for $L i p_{0}(M)$

For each $x \in M$, consider the evaluation functional $\delta_{x} \in \operatorname{Lip} p_{0}(M)^{*}$ por $\delta_{x} f:=f(x)$.

Definition/Proposition

$$
\mathcal{F}(M):=\overline{\operatorname{span}}\left\{\delta_{x} \mid x \in M\right\}
$$

is the free space over M, and it is an isometric predual to $\operatorname{Lip}_{0}(M)$.

- Geometric interpretation: μ, ν finitely supported probabilities $\Rightarrow\|\mu-\nu\|_{\mathcal{F}}$ is the earthmover distance between μ and ν

A predual for $\operatorname{Lip}(M)$

For each $x \in M$, consider the evaluation functional $\delta_{x} \in \operatorname{Lip}(M)^{*}$ por $\delta_{x} f:=f(x)$.

Definition/Proposition

$$
\mathcal{F}(M):=\overline{\operatorname{span}}\left\{\delta_{x} \mid x \in M\right\}
$$

is the free space over M, and it is an isometric predual to $\operatorname{Lip}_{0}(M)$.

- Geometric interpretation: μ, ν finitely supported probabilities $\Rightarrow\|\mu-\nu\|_{\mathcal{F}}$ is the earthmover distance between μ and ν.

Relationship between M and $\mathcal{F}(M)$

Linear interpretation property
$\forall L: M \rightarrow N$ Lipschitz with $L\left(0_{M}\right)=0_{N} \exists!\hat{L}: \mathcal{F}(M) \rightarrow \mathcal{F}(N)$
linear such that te following diagram commutes:

$$
\begin{array}{ccc}
M & \xrightarrow{L} & N \\
\downarrow^{\prime} & & \downarrow^{N} \\
\mathcal{F}(M) & \xrightarrow{\hat{L}} & \mathcal{F}(N)
\end{array}
$$

- In particular, $M \stackrel{L}{\sim} N \Rightarrow F(M) \simeq \mathcal{F}(N)$. The converse does not
hold in general.
- (Godefroy, Kalton 2003) If X is Banach and $\lambda \geq 1, X$ is λ-BAP $\Leftrightarrow \mathcal{F}(X)$ is λ-BAP.

Relationship between M and $\mathcal{F}(M)$

Linear interpretation property

$\forall L: M \rightarrow N$ Lipschitz with $L\left(0_{M}\right)=0_{N} \exists!\hat{L}: \mathcal{F}(M) \rightarrow \mathcal{F}(N)$ linear such that te following diagram commutes:

$$
\begin{array}{ccc}
M & \xrightarrow{L} & N \\
\downarrow^{\prime} & & \downarrow^{M} \\
\mathcal{F}(M) & \xrightarrow[L]{L} & \mathcal{F}(N)
\end{array}
$$

- In particular, $M \stackrel{L}{\sim} N \Rightarrow \mathcal{F}(M) \simeq \mathcal{F}(N)$. The converse does not hold in general.
- (Godefroy, Kalton 2003) If X is Banach and $\lambda \geq 1, X$ is λ-BAP $\Leftrightarrow \mathcal{F}(X)$ is λ-BAP.

Relationship between M and $\mathcal{F}(M)$

Linear interpretation property

$\forall L: M \rightarrow N$ Lipschitz with $L\left(0_{M}\right)=0_{N} \exists!\hat{L}: \mathcal{F}(M) \rightarrow \mathcal{F}(N)$ linear such that te following diagram commutes:

$$
\begin{array}{ccc}
M & \xrightarrow{L} & N \\
\downarrow^{\prime} & & \downarrow^{N} \\
\mathcal{F}(M) & \xrightarrow[L]{L} & \mathcal{F}(N)
\end{array}
$$

- In particular, $M \stackrel{L}{\sim} N \Rightarrow \mathcal{F}(M) \simeq \mathcal{F}(N)$. The converse does not hold in general.
- (Godefroy, Kalton 2003) If X is Banach and $\lambda \geq 1, X$ is λ-BAP $\Leftrightarrow \mathcal{F}(X)$ is λ-BAP.

The structure of the free spaces is still a big mystery

- (Godard 2010) $\mathcal{F}(M)$ is isometric to a subspace of $L_{1} \Leftrightarrow M$ is a subset of an \mathbb{R}-tree;
- (Naor, Schechtman 2007) $\mathcal{F}\left(\mathbb{R}^{2}\right)$ is not isomorphic to any subspace of L_{1};
- Let $(X,\|\cdot\|)$ be a finite dimensional Banach space. Then (Godefroy, Kalton 2003) $\mathcal{F}(X)$ has MAP and (Hájek, Pernecká 2013) $\mathcal{F}(X)$ admits a Schauder basis;
- Problem: (posed by Hájek, Pernecká) $F \subset \mathbb{R}^{n} \Rightarrow F(F)$ has Schauder basis?
- Problem: $\mathcal{F}\left(\mathbb{R}^{2}\right) \simeq \mathcal{F}\left(\mathbb{R}^{3}\right)$???

The structure of the free spaces is still a big mystery

- (Godard 2010) $\mathcal{F}(M)$ is isometric to a subspace of $L_{1} \Leftrightarrow M$ is a subset of an \mathbb{R}-tree;
- (Naor, Schechtman 2007) $\mathcal{F}\left(\mathbb{R}^{2}\right)$ is not isomorphic to any subspace of L_{1};
- Let $(X,\|\cdot\|)$ be a finite dimensional Banach space. Then (Godefroy, Kalton 2003) $\mathcal{F}(X)$ has MAP and (Hájek, Pernecká 2013) $\mathcal{F}(X)$ admits a Schauder basis;
- Problem: (posed by Hájek, Pernecká) $F \subset \mathbb{R}^{n} \Rightarrow \mathcal{F}(F)$ has Schauder basis?

- (Godard 2010) $\mathcal{F}(M)$ is isometric to a subspace of $L_{1} \Leftrightarrow M$ is a subset of an \mathbb{R}-tree;
- (Naor, Schechtman 2007) $\mathcal{F}\left(\mathbb{R}^{2}\right)$ is not isomorphic to any subspace of L_{1};
- Let $(X,\|\cdot\|)$ be a finite dimensional Banach space. Then (Godefroy, Kalton 2003) $\mathcal{F}(X)$ has MAP and (Hájek, Pernecká 2013) $\mathcal{F}(X)$ admits a Schauder basis;
- Problem: (posed by Hájek, Pernecká) $F \subset \mathbb{R}^{n} \Rightarrow \mathcal{F}(F)$ has Schauder basis?
- Problem: $\mathcal{F}\left(\mathbb{R}^{2}\right) \simeq \mathcal{F}\left(\mathbb{R}^{3}\right)$???

The structure of the free spaces is still a big mystery

- (Godard 2010) $\mathcal{F}(M)$ is isometric to a subspace of $L_{1} \Leftrightarrow M$ is a subset of an \mathbb{R}-tree;
- (Naor, Schechtman 2007) $\mathcal{F}\left(\mathbb{R}^{2}\right)$ is not isomorphic to any subspace of L_{1};
- Let $(X,\|\cdot\|)$ be a finite dimensional Banach space. Then (Godefroy, Kalton 2003) $\mathcal{F}(X)$ has MAP and (Hájek, Pernecká 2013) $\mathcal{F}(X)$ admits a Schauder basis;
- Problem: (posed by Hájek, Pernecká) $F \subset \mathbb{R}^{n} \Rightarrow F(F)$ has Schauder basis?
- Problem: $\mathcal{F}\left(\mathbb{R}^{2}\right) \simeq \mathcal{F}\left(\mathbb{R}^{3}\right)$???

The structure of the free spaces is still a big mystery

- (Godard 2010) $\mathcal{F}(M)$ is isometric to a subspace of $L_{1} \Leftrightarrow M$ is a subset of an \mathbb{R}-tree;
- (Naor, Schechtman 2007) $\mathcal{F}\left(\mathbb{R}^{2}\right)$ is not isomorphic to any subspace of L_{1};
- Let $(X,\|\cdot\|)$ be a finite dimensional Banach space. Then (Godefroy, Kalton 2003) $\mathcal{F}(X)$ has MAP and (Hájek, Pernecká 2013) $\mathcal{F}(X)$ admits a Schauder basis;
- Problem: (posed by Hájek, Pernecká) $F \subset \mathbb{R}^{n} \Rightarrow \mathcal{F}(F)$ has Schauder basis?

The structure of the free spaces is still a big mystery

- (Godard 2010) $\mathcal{F}(M)$ is isometric to a subspace of $L_{1} \Leftrightarrow M$ is a subset of an \mathbb{R}-tree;
- (Naor, Schechtman 2007) $\mathcal{F}\left(\mathbb{R}^{2}\right)$ is not isomorphic to any subspace of L_{1};
- Let $(X,\|\cdot\|)$ be a finite dimensional Banach space. Then (Godefroy, Kalton 2003) $\mathcal{F}(X)$ has MAP and (Hájek, Pernecká 2013) $\mathcal{F}(X)$ admits a Schauder basis;
- Problem: (posed by Hájek, Pernecká) $F \subset \mathbb{R}^{n} \Rightarrow \mathcal{F}(F)$ has Schauder basis?
- Problem: $\mathcal{F}\left(\mathbb{R}^{2}\right) \simeq \mathcal{F}\left(\mathbb{R}^{3}\right)$???

Products of free spaces

Main Result

Let X be a Banach space. Then $\mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}$.
Recall: Let M be a metric space, $N \subset M$. N is a Lipschitz retract of M if there is a Lipschitz function $L: M \rightarrow N$ (called Lipschitz retraction) such that $\left.L\right|_{N}=I d . M$ is an absolute Lipschitz retract if it is a Lipschitz retract of any metric space containing it.

Consequence 1: nonlinear Pełczyński's method for free spaces

Let X be a Banach space and M be a metric space, and suppose that X and M admit Lipschitz retracts N_{1} and N_{2}, respectively, such that X is Lipschitz equivalent to N_{2} and M is Lipschitz equivalent to N_{1}. Then $\mathcal{F}(X) \simeq \mathcal{F}(M)$.

Proof: Linear interpretation property + Main Result + classic Pełczyński's method applied to the free spaces.

Products of free spaces

Main Result

Let X be a Banach space. Then $\mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}$.
Recall: Let M be a metric space, $N \subset M . N$ is a Lipschitz retract of M if there is a Lipschitz function $L: M \rightarrow N$ (called Lipschitz retraction) such that $\left.L\right|_{N}=I d . M$ is an absolute Lipschitz retract if it is a Lipschitz retract of any metric space containing it.

```
Consequence 1: nonlinear Petczyński's method for free spaces
Let }X\mathrm{ be a Banach space and }M\mathrm{ be a metric space, and suppose
that X and M admit Lipschitz retracts }\mp@subsup{N}{1}{}\mathrm{ and }\mp@subsup{N}{2}{}\mathrm{ , respectively,
such that }X\mathrm{ is Lipschitz equivalent to }\mp@subsup{N}{2}{}\mathrm{ and }M\mathrm{ is Lipschitz
equivalent to }\mp@subsup{N}{1}{}\mathrm{ . Then }\mathcal{F}(X)\simeq\mathcal{F}(M
Proof: Linear interpretation property + Main Result + classic
Pełczyński's method applied to the free spaces.
```


Products of free spaces

Main Result

Let X be a Banach space. Then $\mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}$.
Recall: Let M be a metric space, $N \subset M . N$ is a Lipschitz retract of M if there is a Lipschitz function $L: M \rightarrow N$ (called Lipschitz retraction) such that $\left.L\right|_{N}=I d . M$ is an absolute Lipschitz retract if it is a Lipschitz retract of any metric space containing it.

Consequence 1: nonlinear Pełczyński's method for free spaces

Let X be a Banach space and M be a metric space, and suppose that X and M admit Lipschitz retracts N_{1} and N_{2}, respectively, such that X is Lipschitz equivalent to N_{2} and M is Lipschitz equivalent to N_{1}. Then $\mathcal{F}(X) \simeq \mathcal{F}(M)$.

Proof: Linear interpretation property + Main Result + classic Pełczyński's method applied to the free spaces.

Products of free spaces

Consequence 2: free space of balls
Let X be a Banach space. Then $\mathcal{F}\left(B_{X}\right) \simeq \mathcal{F}(X)$.
Proof: an adaptation of the proof of the main result.
Consequence 3: about $F\left(c_{0}\right)$
Let M be a separable metric space which is an absolute Lipschitz
retract and $F \subset M$ a Lipschitz retract of M such that $B_{c_{0}} \stackrel{L}{\sim} F$.
Then $\mathcal{F}(M) \simeq \mathcal{F}\left(c_{0}\right)$. In particular, if K is an infinite compact
metric space, then $\mathcal{F}(C(K)) \simeq \mathcal{F}\left(c_{0}\right)$.
Proof: all separable metric spaces are Lipschitz equivalent to
subsets of c_{0} (Aharoni 1974) + linear interpretation property
main result + classic Pełczyński's method.

- The statement in red was already proved by Dutrieux and

Ferenczi via a different method in 2006.

Products of free spaces

Consequence 2: free space of balls

Let X be a Banach space. Then $\mathcal{F}\left(B_{X}\right) \simeq \mathcal{F}(X)$.
Proof: an adaptation of the proof of the main result.

Consequence 3: about $\mathcal{F}\left(c_{0}\right)$

Let M be a separable metric space which is an absolute Lipschitz retract and $F \subset M$ a Lipschitz retract of M such that $B_{c_{0}} \stackrel{L}{\sim} F$. Then $\mathcal{F}(M) \simeq \mathcal{F}\left(c_{0}\right)$. In particular, if K is an infinite compact metric space, then $\mathcal{F}(C(K)) \simeq \mathcal{F}\left(c_{0}\right)$.

Proof: all separable metric spaces are Lipschitz equivalent to subsets of c_{0} (Aharoni 1974) + linear interpretation property + main result + classic Pełczyński's method.

- The statement in red was already proved by Dutrieux and Ferenczi via a different method in 2006.

Products of free spaces

Consequence 2: free space of balls

Let X be a Banach space. Then $\mathcal{F}\left(B_{X}\right) \simeq \mathcal{F}(X)$.
Proof: an adaptation of the proof of the main result.

Consequence 3: about $\mathcal{F}\left(c_{0}\right)$

Let M be a separable metric space which is an absolute Lipschitz retract and $F \subset M$ a Lipschitz retract of M such that $B_{c_{0}} \stackrel{L}{\sim} F$. Then $\mathcal{F}(M) \simeq \mathcal{F}\left(c_{0}\right)$. In particular, if K is an infinite compact metric space, then $\mathcal{F}(C(K)) \simeq \mathcal{F}\left(c_{0}\right)$.

Proof: all separable metric spaces are Lipschitz equivalent to subsets of c_{0} (Aharoni 1974) + linear interpretation property + main result + classic Pełczyński's method.

- The statement in red was already proved by Dutrieux and Ferenczi via a different method in 2006.

Ingredient 1 to prove that $\mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}:$ linear extensions of Lipschitz functions

Definition

Given a pointed metric space $(M, d, 0)$ and a subset F containing 0 , let us denote by $E x t_{0}(F, M)$ the set of all extensions $E: \operatorname{Lip}_{0}(F) \rightarrow \operatorname{Lip}_{0}(M)$ which are linear and continuous. Let $E x t_{0}^{p t}(F, M)$ be the subset of $E x t_{0}(F, M)$ consisting of all pointwise-to-pointwise continuous elements.

- (Brudnyi, Brudnyi 2007) There exists a 2-dimensional

Riemannian manifold M and a subset F such that $E x t_{0}(F, M)=\emptyset$

- (Banach space example) Let $X \subset c_{0}$ be a subspace failing AP.

Then $\mathcal{F}(X)$ is not complemented in $\mathcal{F}\left(c_{0}\right)$, thus Ext ${ }_{0}^{p t}\left(X, c_{0}\right)=\emptyset$.

- (Lancien, Pernecká 2013/Lee Naor 2005) $0 \in F \subset \mathbb{R}^{n} \Rightarrow$
$E x t_{0}^{p t}\left(F, \mathbb{R}^{n}\right) \neq \emptyset$.

Ingredient 1 to prove that $\mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}:$ linear extensions of Lipschitz functions

Definition

Given a pointed metric space $(M, d, 0)$ and a subset F containing 0 , let us denote by $E x t_{0}(F, M)$ the set of all extensions
$E: \operatorname{Lip}_{0}(F) \rightarrow \operatorname{Lip}_{0}(M)$ which are linear and continuous. Let $E x t_{0}^{p t}(F, M)$ be the subset of $E x t_{0}(F, M)$ consisting of all pointwise-to-pointwise continuous elements.

- (Brudnyi, Brudnyi 2007) There exists a 2-dimensional Riemannian manifold M and a subset F such that $E x t_{0}(F, M)=\emptyset$.
- (Banach space example) Let $X \subset c_{0}$ be a subspace failing AP. Then $\mathcal{F}(X)$ is not complemented in $\mathcal{F}\left(c_{0}\right)$, thus Ext ${ }_{0}^{p t}\left(X, c_{0}\right)=\emptyset$ - (Lancien, Pernecká 2013/Lee Naor 2005) $0 \in F \subset \mathbb{R}^{n} \Rightarrow$ $E x t_{0}^{p t}\left(F, \mathbb{R}^{n}\right) \neq \emptyset$.

Ingredient 1 to prove that $\mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}$: linear extensions of Lipschitz functions

Definition

Given a pointed metric space $(M, d, 0)$ and a subset F containing 0 , let us denote by $E x t_{0}(F, M)$ the set of all extensions
$E: \operatorname{Lip}_{0}(F) \rightarrow \operatorname{Lip}_{0}(M)$ which are linear and continuous. Let $E x t_{0}^{p t}(F, M)$ be the subset of $E x t_{0}(F, M)$ consisting of all pointwise-to-pointwise continuous elements.

- (Brudnyi, Brudnyi 2007) There exists a 2-dimensional

Riemannian manifold M and a subset F such that $\operatorname{Ext}_{0}(F, M)=\emptyset$.

- (Banach space example) Let $X \subset c_{0}$ be a subspace failing AP.

Then $\mathcal{F}(X)$ is not complemented in $\mathcal{F}\left(c_{0}\right)$, thus $E x t_{0}^{p t}\left(X, c_{0}\right)=\emptyset$.
$\bullet\left(\right.$ Lancien, Pernecká 2013/Lee Naor 2005) $0 \in F \subset \mathbb{R}^{n} \Rightarrow$
$\operatorname{Ext}_{0}^{p t}\left(F, \mathbb{R}^{n}\right) \neq \emptyset$.

Ingredient 1 to prove that $\mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}:$ linear

 extensions of Lipschitz functions
Definition

Given a pointed metric space $(M, d, 0)$ and a subset F containing 0 , let us denote by $E x t_{0}(F, M)$ the set of all extensions
$E: \operatorname{Lip}_{0}(F) \rightarrow \operatorname{Lip}_{0}(M)$ which are linear and continuous. Let $E x t_{0}^{p t}(F, M)$ be the subset of $E x t_{0}(F, M)$ consisting of all pointwise-to-pointwise continuous elements.

- (Brudnyi, Brudnyi 2007) There exists a 2-dimensional Riemannian manifold M and a subset F such that $\operatorname{Ext}_{0}(F, M)=\emptyset$.
- (Banach space example) Let $X \subset c_{0}$ be a subspace failing AP.

Then $\mathcal{F}(X)$ is not complemented in $\mathcal{F}\left(c_{0}\right)$, thus $E x t_{0}^{p t}\left(X, c_{0}\right)=\emptyset$.

- (Lancien, Pernecká 2013/Lee Naor 2005) $0 \in F \subset \mathbb{R}^{n} \Rightarrow$ $E x t_{0}^{p t}\left(F, \mathbb{R}^{n}\right) \neq \emptyset$.

Ingredient 2: Metric quotients and a decomposition result

Definition: metric quotient

Let (M, d) be a metric space, $F \subset M$ be closed and nonempty, and let \sim_{F} the equivalence relation on M which identifies all elements of F. Then

$$
\tilde{d}(\tilde{x}, \tilde{y}):=\min \{d(x, y), d(x, F)+d(y, F)\}, \tilde{x}, \tilde{y} \in M / \sim_{F}
$$

is a distance on M / \sim_{F}, and $\left(M / \sim_{F}, \tilde{d}\right)$ is called the quotient metric space of M by \sim_{F}, which we denote by M / F.

Lemma (quotient decomposition)
Let $(M, d, 0)$ be a pointed metric space and F be a subset containing 0 , and suppose that there exists $E \in E x t_{0}^{p t}(F, M)$. Then $\mathcal{F}(M) \simeq \mathcal{F}(F) \oplus_{1} \mathcal{F}(M / F)$.

Ingredient 2: Metric quotients and a decomposition result

Definition: metric quotient

Let (M, d) be a metric space, $F \subset M$ be closed and nonempty, and let \sim_{F} the equivalence relation on M which identifies all elements of F. Then

$$
\tilde{d}(\tilde{x}, \tilde{y}):=\min \{d(x, y), d(x, F)+d(y, F)\}, \tilde{x}, \tilde{y} \in M / \sim_{F}
$$

is a distance on M / \sim_{F}, and $\left(M / \sim_{F}, \tilde{d}\right)$ is called the quotient metric space of M by \sim_{F}, which we denote by M / F.

- $\operatorname{Lip}_{0}(M / F) \cong\left\{f \in \operatorname{Lip}(M):\left.f\right|_{F}=\right.$ constant $\}$.
\square
Lemma (quotient decomposition)
Let $(M, d, 0)$ be a pointed metric space and F be a subset
containing 0 , and suppose that there exists $E \in E x t_{0}^{p t}(F, M)$. Then
$\mathcal{F}(M) \simeq \mathcal{F}(F) \oplus_{1} \mathcal{F}(M / F)$.

Ingredient 2: Metric quotients and a decomposition result

Definition: metric quotient

Let (M, d) be a metric space, $F \subset M$ be closed and nonempty, and let \sim_{F} the equivalence relation on M which identifies all elements of F. Then

$$
\tilde{d}(\tilde{x}, \tilde{y}):=\min \{d(x, y), d(x, F)+d(y, F)\}, \tilde{x}, \tilde{y} \in M / \sim_{F}
$$

is a distance on M / \sim_{F}, and $\left(M / \sim_{F}, \tilde{d}\right)$ is called the quotient metric space of M by \sim_{F}, which we denote by M / F.

- $\operatorname{Lip}_{0}(M / F) \cong\left\{f \in \operatorname{Lip}(M):\left.f\right|_{F}=\right.$ constant $\}$.

Lemma (quotient decomposition)

Let $(M, d, 0)$ be a pointed metric space and F be a subset containing 0 , and suppose that there exists $E \in E x t_{0}^{p t}(F, M)$. Then $\mathcal{F}(M) \simeq \mathcal{F}(F) \oplus_{1} \mathcal{F}(M / F)$.

Ingredient 3: Kalton's approximation results

Let $(M, d, 0)$ be a pointed metric space, and denote $B_{r}:=B_{r}(0)$.

K1

Given $r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{n} \in \mathbb{Z}, r_{1}<s_{1}<r_{2}<\cdots<s_{n}$ and $\gamma_{k} \in \mathcal{F}\left(B_{2^{s_{k}}} \backslash B_{2^{r_{k}}}\right)$ and writing $\theta:=\min _{k=1, \ldots, n-1}\left\{r_{k+1}-s_{k}\right\}$, then

$$
\left\|\gamma_{1}+\cdots+\gamma_{n}\right\|_{\mathcal{F}} \geq \frac{2^{\theta}-1}{2^{\theta}+1} \sum_{k=1}^{n}\left\|\gamma_{k}\right\|_{\mathcal{F}}
$$

Ingredient 3: Kalton's approximation results

K2

Consider, for each $k \in \mathbb{Z}$, the linear operator $T_{k}: \mathcal{F}(M) \rightarrow \mathcal{F}\left(B_{2^{k+1}} \backslash B_{2^{k-1}}\right)$ defined by

$$
T_{k} \delta_{x}:= \begin{cases}0, & \text { if } x \in B_{2^{k-1}} \\ \left(\log _{2} d(x, 0)-k+1\right) \delta_{x}, & \text { if } x \in B_{2^{k} \backslash} \backslash B_{2^{k-1}} \\ \left(k+1-\log _{2} d(x, 0)\right) \delta_{x}, & \text { if } x \in B_{2^{k+1}} \backslash B_{2^{k}} \\ 0, & \text { if } x \notin B_{2^{k+1}}\end{cases}
$$

Then, for each $\gamma \in \mathcal{F}(M)$, we have that $\gamma=\sum_{k \in \mathbb{Z}} T_{k} \gamma$ unconditionally and

$$
\sum_{k \in \mathbb{Z}}\left\|T_{k} \gamma\right\|_{\mathcal{F}} \leq 72\|\gamma\|_{\mathcal{F}}
$$

Proof that X Banach $\Rightarrow \mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}$

- First, note that, for each $k \in \mathbb{Z}$,
$\mathcal{F}\left(B_{2^{k+1}} \backslash B_{2^{k}}\right) \cong \mathcal{F}\left(B_{2} \backslash B_{1}\right) \simeq \mathcal{F}\left(B_{4} \backslash B_{1}\right) \cong \mathcal{F}\left(B_{2^{k+1}} \backslash B_{2^{k-1}}\right)$.
Strategy: Show that $\mathcal{F}(X) \stackrel{C}{\hookrightarrow}\left(\sum_{n=1}^{\infty} \mathcal{F}\left(B_{2} \backslash B_{1}\right)\right)_{\ell_{1}}$ and that
$\mathcal{F}(X) \stackrel{C}{\hookleftarrow}\left(\sum_{n=1}^{\infty} \mathcal{F}\left(B_{2} \backslash B_{1}\right)\right)_{\ell_{1}}$, then apply Pełczyński's method.
- (${ }^{c}$) Define T and S as follows:

Then $T \circ S$ is a projection onto $T(\mathcal{F}(X)) \simeq \mathcal{F}(X)$.
o(${ }^{c}$) The speaker will explain. \square

Proof that X Banach $\Rightarrow \mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}$

- First, note that, for each $k \in \mathbb{Z}$,
$\mathcal{F}\left(B_{2^{k+1}} \backslash B_{2^{k}}\right) \cong \mathcal{F}\left(B_{2} \backslash B_{1}\right) \simeq \mathcal{F}\left(B_{4} \backslash B_{1}\right) \cong \mathcal{F}\left(B_{2^{k+1}} \backslash B_{2^{k-1}}\right)$.
Strategy: Show that $\mathcal{F}(X) \stackrel{C}{\hookrightarrow}\left(\sum_{n=1}^{\infty} \mathcal{F}\left(B_{2} \backslash B_{1}\right)\right)_{\ell_{1}}$ and that $\mathcal{F}(X) \stackrel{c}{\hookleftarrow}\left(\sum_{n=1}^{\infty} \mathcal{F}\left(B_{2} \backslash B_{1}\right)\right)_{\ell_{1}}$, then apply Petczyński's method.

Then $T \circ S$ is a projection onto $T(\mathcal{F}(X)) \simeq \mathcal{F}(X)$.
o(${ }^{c}$) The speaker will explain. \square

Proof that X Banach $\Rightarrow \mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}$

- First, note that, for each $k \in \mathbb{Z}$,
$\mathcal{F}\left(B_{2^{k+1}} \backslash B_{2^{k}}\right) \cong \mathcal{F}\left(B_{2} \backslash B_{1}\right) \simeq \mathcal{F}\left(B_{4} \backslash B_{1}\right) \cong \mathcal{F}\left(B_{2^{k+1}} \backslash B_{2^{k-1}}\right)$.
Strategy: Show that $\mathcal{F}(X) \stackrel{C}{\hookrightarrow}\left(\sum_{n=1}^{\infty} \mathcal{F}\left(B_{2} \backslash B_{1}\right)\right)_{\ell_{1}}$ and that $\mathcal{F}(X) \stackrel{c}{\hookleftarrow}\left(\sum_{n=1}^{\infty} \mathcal{F}\left(B_{2} \backslash B_{1}\right)\right)_{\ell_{1}}$, then apply Pełczyński's method.
- $(\stackrel{c}{\hookrightarrow})$ Define T and S as follows:

$$
\begin{array}{rlll}
\mathcal{F}(X) & \stackrel{T}{\hookrightarrow}\left(\sum_{n=1}^{\infty} \mathcal{F}\left(B_{2^{k+1}}\right) \backslash \mathcal{F}\left(B_{2^{k-1}}\right)\right)_{\ell_{1}} & \xrightarrow{S} \mathcal{F}(X) \\
& \mapsto \sum_{k \in \mathbb{Z}} \gamma_{k} \\
\gamma & \mapsto & \left(\gamma_{k} \gamma\right) &
\end{array}
$$

Then $T \circ S$ is a projection onto $T(\mathcal{F}(X)) \simeq \mathcal{F}(X)$.
$\bullet(\stackrel{c}{\leftarrow})$ The speaker will explain. \square

Proof that X Banach $\Rightarrow \mathcal{F}(X) \simeq\left(\sum_{n=1}^{\infty} \mathcal{F}(X)\right)_{\ell_{1}}$

- First, note that, for each $k \in \mathbb{Z}$,
$\mathcal{F}\left(B_{2^{k+1}} \backslash B_{2^{k}}\right) \cong \mathcal{F}\left(B_{2} \backslash B_{1}\right) \simeq \mathcal{F}\left(B_{4} \backslash B_{1}\right) \cong \mathcal{F}\left(B_{2^{k+1}} \backslash B_{2^{k-1}}\right)$.
Strategy: Show that $\mathcal{F}(X) \stackrel{C}{\hookrightarrow}\left(\sum_{n=1}^{\infty} \mathcal{F}\left(B_{2} \backslash B_{1}\right)\right)_{\ell_{1}}$ and that $\mathcal{F}(X) \stackrel{c}{\hookleftarrow}\left(\sum_{n=1}^{\infty} \mathcal{F}\left(B_{2} \backslash B_{1}\right)\right)_{\ell_{1}}$, then apply Pełczyński's method.
- $(\stackrel{c}{\hookrightarrow})$ Define T and S as follows:

$$
\begin{array}{rlll}
\mathcal{F}(X) & \stackrel{T}{\hookrightarrow}\left(\sum_{n=1}^{\infty} \mathcal{F}\left(B_{2^{k+1}}\right) \backslash \mathcal{F}\left(B_{2^{k-1}}\right)\right)_{\ell_{1}} & \xrightarrow{S} \mathcal{F}(X) \\
& \mapsto \sum_{k \in \mathbb{Z}} \gamma_{k} \\
\gamma & \mapsto & \left(\gamma_{k} \gamma\right) &
\end{array}
$$

Then $T \circ S$ is a projection onto $T(\mathcal{F}(X)) \simeq \mathcal{F}(X)$.
$\bullet(\stackrel{c}{\hookleftarrow})$ The speaker will explain. \square

An application

Theorem (free spaces over compact riemannian manifolds)

Let M be a compact metric space such that each $x \in M$ admits a neighborhood which is bi-Lipschitz embeddable in \mathbb{R}^{n}. Then there is a complemented copy of $\mathcal{F}(M)$ in $\mathcal{F}\left(\mathbb{R}^{n}\right)$.
If moreover the unit ball of \mathbb{R}^{n} is bi-Lipschitz equivalent to a Lipschitz retract of M, then $\mathcal{F}(M) \simeq \mathcal{F}\left(\mathbb{R}^{n}\right)$. In particular, the Lipschitz-free space over any n-dimensional compact Riemannian manifold equipped with its geodesic metric is isomorphic to $\mathcal{F}\left(\mathbb{R}^{n}\right)$.

For the proof we make use of the following:

> Lang, Plaut 2001 (bi-Lipchitz embeddability into \mathbb{R}^{n})
Let M be a compact metric space such that each point of M admits a neighborhood which is bi-Lipschitz embeddable in \mathbb{R}^{n}. Then M is bi-Lipschitz embeddable in \mathbb{R}^{n}.

An application

Theorem (free spaces over compact riemannian manifolds)

Let M be a compact metric space such that each $x \in M$ admits a neighborhood which is bi-Lipschitz embeddable in \mathbb{R}^{n}. Then there is a complemented copy of $\mathcal{F}(M)$ in $\mathcal{F}\left(\mathbb{R}^{n}\right)$.
If moreover the unit ball of \mathbb{R}^{n} is bi-Lipschitz equivalent to a Lipschitz retract of M, then $\mathcal{F}(M) \simeq \mathcal{F}\left(\mathbb{R}^{n}\right)$. In particular, the Lipschitz-free space over any n-dimensional compact Riemannian manifold equipped with its geodesic metric is isomorphic to $\mathcal{F}\left(\mathbb{R}^{n}\right)$.

For the proof we make use of the following:
Lang, Plaut 2001 (bi-Lipchitz embeddability into \mathbb{R}^{n})
Let M be a compact metric space such that each point of M admits a neighborhood which is bi-Lipschitz embeddable in \mathbb{R}^{n}. Then M is bi-Lipschitz embeddable in \mathbb{R}^{n}.

Muito obrigado!

