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Spaces of Lipschitz functions

Let (M, d) be a metric space, 0 € M.

Lipo(M) := {f : M — R|f is Lipschitz, f(0) = 0}

is a Banach space when equipped with the norm

]l Lip == sup ————Z1
i XAy d(Xv)/)
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A predual for Lipy(M)

For each x € M, consider the evaluation functional dx € Lipo(M)*
por Oxf 1= f(x).

Definition /Proposition

F(M) = span{ox|x € M}

is the free space over M, and it is an isometric predual to Lipo(M).
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A predual for Lipy(M)

*

For each x € M, consider the evaluation functional dx € Lipo(M)
por Oxf 1= f(x).

Definition /Proposition

F(M) = span{ox|x € M}

is the free space over M, and it is an isometric predual to Lipo(M).

e Geometric interpretation: ., v finitely supported probabilities
= ||u — v|| 7 is the earthmover distance between p and v.
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Relationship between M and F(M)

Linear interpretation property

V L: M — N Lipschitz with L(0y) = Oy 3! L : F(M) — F(N)
linear such that te following diagram commutes:

M o —Lt N

N L

Fmy —E 7w
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Relationship between M and F(M)

Linear interpretation property

V L: M — N Lipschitz with L(0y) = Oy 3! L : F(M) — F(N)
linear such that te following diagram commutes:

M o —Lt N

N L

Fmy —E 7w

o In particular, M £ N = F(M) ~ F(N). The converse does not
hold in general.
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Relationship between M and F(M)

Linear interpretation property

V L: M — N Lipschitz with L(0y) = Oy 3! L : F(M) — F(N)
linear such that te following diagram commutes:

M o —Lt N

N L

Fmy —E 7w

o In particular, M £ N = F(M) ~ F(N). The converse does not

hold in general.
e (Godefroy, Kalton 2003) If X is Banach and A > 1, X is \-BAP
< F(X) is »-BAP.
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The structure of the free spaces is still a big mystery
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The structure of the free spaces is still a big mystery

e (Godard 2010) F(M) is isometric to a subspace of L; < M is a
subset of an R-tree;
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The structure of the free spaces is still a big mystery

e (Godard 2010) F(M) is isometric to a subspace of L; < M is a
subset of an R-tree;

e (Naor, Schechtman 2007) F(R?) is not isomorphic to any
subspace of Ly;
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The structure of the free spaces is still a big mystery

e (Godard 2010) F(M) is isometric to a subspace of L; < M is a
subset of an R-tree;

e (Naor, Schechtman 2007) F(R?) is not isomorphic to any
subspace of Ly;

e Let (X, | - ||) be a finite dimensional Banach space. Then
(Godefroy, Kalton 2003) F(X) has MAP and (Héjek, Pernecka
2013) F(X) admits a Schauder basis;
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The structure of the free spaces is still a big mystery

e (Godard 2010) F(M) is isometric to a subspace of L; < M is a
subset of an R-tree;

e (Naor, Schechtman 2007) F(R?) is not isomorphic to any
subspace of Ly;

e Let (X, | - ||) be a finite dimensional Banach space. Then
(Godefroy, Kalton 2003) F(X) has MAP and (Héjek, Pernecka
2013) F(X) admits a Schauder basis;

e Problem: (posed by Hajek, Perneckd) F C R" = F(F) has
Schauder basis?
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The structure of the free spaces is still a big mystery

e (Godard 2010) F(M) is isometric to a subspace of L; < M is a
subset of an R-tree;

e (Naor, Schechtman 2007) F(R?) is not isomorphic to any
subspace of Ly;

e Let (X, | - ||) be a finite dimensional Banach space. Then
(Godefroy, Kalton 2003) F(X) has MAP and (Héjek, Pernecka
2013) F(X) admits a Schauder basis;

e Problem: (posed by Hajek, Perneckd) F C R" = F(F) has
Schauder basis?

e Problem: F(R?) ~ F(R3)?7?
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Products of free spaces

Let X be a Banach space. Then F(X) ~ (3_72; F(X)),, -
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Products of free spaces

Let X be a Banach space. Then F(X) ~ (3_72; F(X)),, -

Recall: Let M be a metric space, N C M. N is a Lipschitz retract
of M if there is a Lipschitz function L : M — N (called Lipschitz
retraction) such that L|y = Id. M is an absolute Lipschitz retract if
it is a Lipschitz retract of any metric space containing it.
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Products of free spaces

Let X be a Banach space. Then F(X) ~ (3_72; F(X)),, -

Recall: Let M be a metric space, N C M. N is a Lipschitz retract
of M if there is a Lipschitz function L : M — N (called Lipschitz
retraction) such that L|y = Id. M is an absolute Lipschitz retract if
it is a Lipschitz retract of any metric space containing it.

Consequence 1: nonlinear Petczynski's method for free spaces

Let X be a Banach space and M be a metric space, and suppose
that X and M admit Lipschitz retracts Ny and Nb, respectively,
such that X is Lipschitz equivalent to N> and M is Lipschitz
equivalent to Ny. Then F(X) ~ F(M).

Proof: Linear interpretation property + Main Result 4 classic
Petczynski's method applied to the free spaces.
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Products of free spaces

Consequence 2: free space of balls
Let X be a Banach space. Then F(Bx) ~ F(X).

Proof: an adaptation of the proof of the main result.
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Products of free spaces

Consequence 2: free space of balls
Let X be a Banach space. Then F(Bx) ~ F(X).

Proof: an adaptation of the proof of the main result.

Consequence 3: about F(cp)

Let M be a separable metric space which is an absolute Lipschitz
retract and F C M a Lipschitz retract of M such that B, L F.
Then F(M) ~ F(cp). In particular, if K is an infinite compact
metric space, then F(C(K)) ~ F(c).

Proof: all separable metric spaces are Lipschitz equivalent to
subsets of ¢y (Aharoni 1974) + linear interpretation property +
main result 4 classic Petczynski's method.
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Products of free spaces

Consequence 2: free space of balls
Let X be a Banach space. Then F(Bx) ~ F(X).

Proof: an adaptation of the proof of the main result.

Consequence 3: about F(cp)

Let M be a separable metric space which is an absolute Lipschitz
retract and F C M a Lipschitz retract of M such that B, L F.
Then F(M) ~ F(cp). In particular, if K is an infinite compact
metric space, then F(C(K)) ~ F(c).

Proof: all separable metric spaces are Lipschitz equivalent to
subsets of ¢y (Aharoni 1974) + linear interpretation property +
main result 4 classic Petczynski's method.

e The statement in red was already proved by Dutrieux and
Ferenczi via a different method in 2006.
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Ingredient 1 to prove that F(X) ~ (3.2, F(X)),,: linear
extensions of Lipschitz functions

Definition

Given a pointed metric space (M, d,0) and a subset F containing
0, let us denote by Exto(F, M) the set of all extensions

E : Lipo(F) — Lipo(M) which are linear and continuous. Let
ExtP*(F, M) be the subset of Exto(F, M) consisting of all
pointwise-to-pointwise continuous elements.
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Ingredient 1 to prove that F(X) ~ (3.2, F(X)),,: linear
extensions of Lipschitz functions

Definition

Given a pointed metric space (M, d,0) and a subset F containing
0, let us denote by Exto(F, M) the set of all extensions

E : Lipo(F) — Lipo(M) which are linear and continuous. Let
ExtP*(F, M) be the subset of Exto(F, M) consisting of all
pointwise-to-pointwise continuous elements.

e (Brudnyi, Brudnyi 2007) There exists a 2-dimensional
Riemannian manifold M and a subset F such that Exty(F, M) = {).
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Ingredient 1 to prove that F(X) ~ (3.2, F(X)),,: linear
extensions of Lipschitz functions

Definition

Given a pointed metric space (M, d,0) and a subset F containing
0, let us denote by Exto(F, M) the set of all extensions

E : Lipo(F) — Lipo(M) which are linear and continuous. Let
ExtP*(F, M) be the subset of Exto(F, M) consisting of all
pointwise-to-pointwise continuous elements.

e (Brudnyi, Brudnyi 2007) There exists a 2-dimensional
Riemannian manifold M and a subset F such that Exty(F, M) = {).
e (Banach space example) Let X C ¢y be a subspace failing AP.
Then F(X) is not complemented in F(cp), thus Ext§ (X, co) = 0.
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Ingredient 1 to prove that F(X) ~ (3.2, F(X)),,: linear
extensions of Lipschitz functions

Definition

Given a pointed metric space (M, d,0) and a subset F containing
0, let us denote by Exto(F, M) the set of all extensions

E : Lipo(F) — Lipo(M) which are linear and continuous. Let
ExtP*(F, M) be the subset of Exto(F, M) consisting of all
pointwise-to-pointwise continuous elements.

e (Brudnyi, Brudnyi 2007) There exists a 2-dimensional
Riemannian manifold M and a subset F such that Exty(F, M) = {).
e (Banach space example) Let X C ¢y be a subspace failing AP.
Then F(X) is not complemented in F(cp), thus Ext§ (X, co) = 0.
e (Lancien, Perneckd 2013/Lee Naor 2005) 0 € F C R" =
Extf*(F,R") # 0.
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Ingredient 2: Metric quotients and a decomposition result

Definition: metric quotient

Let (M, d) be a metric space, F C M be closed and nonempty, and
let ~fF the equivalence relation on M which identifies all elements
of F. Then

d(%,7) = min{d(x,y),d(x, F)+ d(y, F)},%,7 € M/ ~¢

is a distance on M/ ~f, and (M/ ~F, d) is called the quotient
metric space of M by ~f, which we denote by M/F.

Pedro L. Kaufmann Products of free spaces and applications



Ingredient 2: Metric quotients and a decomposition result

Definition: metric quotient

Let (M, d) be a metric space, F C M be closed and nonempty, and
let ~fF the equivalence relation on M which identifies all elements
of F. Then

d(%,7) = min{d(x,y),d(x, F)+ d(y, F)},%,7 € M/ ~¢

is a distance on M/ ~f, and (M/ ~F, d) is called the quotient
metric space of M by ~f, which we denote by M/F.

o Lipg(M/F) = {f € Lipo(M) : f|g = constant}.
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Ingredient 2: Metric quotients and a decomposition result

Definition: metric quotient

Let (M, d) be a metric space, F C M be closed and nonempty, and
let ~fF the equivalence relation on M which identifies all elements
of F. Then

d(%,7) = min{d(x,y),d(x, F)+ d(y, F)},%,7 € M/ ~¢

is a distance on M/ ~f, and (M/ ~F, d) is called the quotient
metric space of M by ~f, which we denote by M/F.

o Lipg(M/F) = {f € Lipo(M) : f|g = constant}.

Lemma (quotient decomposition)

Let (M, d,0) be a pointed metric space and F be a subset
containing 0, and suppose that there exists E € Extgt(F, M). Then
F(M) ~ F(F)®1 F(M/F).
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Ingredient 3: Kalton's approximation results

Let (M, d,0) be a pointed metric space, and denote B, := B,(0).

Given r,...,rm,S1,...,Sn €EZ, 1 <s1 < rn <---<s,and
Yk € F(Bosi \ Bor) and writing 6 := ming=1_ p—1{rk+1 — sk},
then W _ 1"
lva+-+wmlr= 01 Z vkl 7.
+iia
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Ingredient 3: Kalton's approximation results

Consider, for each k € 7Z, the linear operator
: .7:(/\/7) — .F(sz+1 \ szq) defined by

0, if x € Bok—1;
(Iog2 d(x,0) — k +1)dx, if x € By \ Bok-1;
(k+1—logy d(x,0))dx, if x € Bokr1 \ Bok;
0, if X & Bykin.

Oy 1=

Then, for each v € F(M), we have that v = 3", ., 7.y
unconditionally and

S ITAllF < 72l 7
kEZ
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Proof that X Banach = F(X) ~ (3_,2, F(X)),,

e First, note that, for each k € Z,
F(Byki1 \ Box) =2 F(By \ B1) ~ F(Ba \ B1) = F(Byks1 \ Byk-1).
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Proof that X Banach = F(X) ~ (3_,2, F(X)),,

e First, note that, for each k € Z,

F(Byki1 \ Box) =2 F(By \ B1) ~ F(Ba \ B1) = F(Byks1 \ Byk-1).
Strategy: Show that F(X)= (3252, F(B2 \ Br)),, and that
F(X)&E (3_nz1 F(B2\ B1)),,, then apply Petczyiski's method.
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Proof that X Banach = F(X) ~ (3_,2, F(X)),,

e First, note that, for each k € Z,

F(Byki1 \ Box) =2 F(By \ B1) ~ F(Ba \ B1) = F(Byks1 \ Byk-1).
Strategy: Show that F(X)= (3252, F(B2 \ Br)),, and that
F(X)&E (3_nz1 F(B2\ B1)),,, then apply Petczyiski's method.

o(<) Define T and S as follows:

FX) 5 (502 F(Byn) \ F(Byr)),, — F(X)
(r}/k) = ZkeZ'Yk
v o= (Te)

Then T o S is a projection onto T(F(X)) ~ F(X).
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Proof that X Banach = F(X) ~ (3_,2, F(X)),,

e First, note that, for each k € Z,

F(Byki1 \ Box) =2 F(By \ B1) ~ F(Ba \ B1) = F(Byks1 \ Byk-1).
Strategy: Show that F(X)= (3252, F(B2 \ Br)),, and that
F(X)&E (3_nz1 F(B2\ B1)),,, then apply Petczyiski's method.

o(<) Define T and S as follows:

FX) 5 (502 F(Byn) \ F(Byr)),, — F(X)
(r}/k) = ZkeZ'Yk
v o= (Te)

Then T o S is a projection onto T(F(X)) ~ F(X).

o(<i’) The speaker will explain. [J
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An application

Theorem (free spaces over compact riemannian manifolds)

Let M be a compact metric space such that each x € M admits a
neighborhood which is bi-Lipschitz embeddable in R”. Then there
is a complemented copy of F(M) in F(R").

If moreover the unit ball of R” is bi-Lipschitz equivalent to a
Lipschitz retract of M, then F(M) ~ F(R"). In particular, the
Lipschitz-free space over any n-dimensional compact Riemannian
manifold equipped with its geodesic metric is isomorphic to F(R").
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An application

Theorem (free spaces over compact riemannian manifolds)

Let M be a compact metric space such that each x € M admits a
neighborhood which is bi-Lipschitz embeddable in R”. Then there
is a complemented copy of F(M) in F(R").

If moreover the unit ball of R” is bi-Lipschitz equivalent to a
Lipschitz retract of M, then F(M) ~ F(R"). In particular, the
Lipschitz-free space over any n-dimensional compact Riemannian
manifold equipped with its geodesic metric is isomorphic to F(R").

For the proof we make use of the following:

Lang, Plaut 2001 (bi-Lipchitz embeddability into R")

Let M be a compact metric space such that each point of M
admits a neighborhood which is bi-Lipschitz embeddable in R”".
Then M is bi-Lipschitz embeddable in R”.
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Muito obrigado!
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