Spaceability in Banach and quasi-Banach spaces of vector-valued sequences

Vinícius Vieira Fávaro

Brazilian Workshop on Geometry of Banach Spaces Maresias, 25-29 August 2014

Table of Contents

(1) Introduction
(2) Main result
(3) Applications
4) Bibliography

Introduction

- In this work we continue the research initiated in $[1,3]$ on the existence of infinite dimensional closed subspaces of Banach or quasi-Banach sequence spaces formed by sequences with special properties.
- Given a Banach space X, in [3] the authors introduce a large class of Banach or quasi-Banach spaces formed by X-valued sequences, called invariant sequences spaces, which encompasses several classical sequences spaces as particular cases.

Introduction

- In this work we continue the research initiated in $[1,3]$ on the existence of infinite dimensional closed subspaces of Banach or quasi-Banach sequence spaces formed by sequences with special properties.
- Given a Banach space X, in [3] the authors introduce a large class of Banach or quasi-Banach spaces formed by X-valued sequences, called invariant sequences spaces, which encompasses several classical sequences spaces as particular cases.
- Roughly speaking, the main results of $[1,3]$ prove that, for every invariant sequence space E of X-valued sequences and every subset Γ of $(0, \infty]$, there exists a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $\bigcup_{q \in \Gamma} \ell_{q}(X)$;
infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $c_{0}(X)$.
- Roughly speaking, the main results of $[1,3]$ prove that, for every invariant sequence space E of X-valued sequences and every subset Γ of $(0, \infty]$, there exists a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $\bigcup_{q \in \Gamma} \ell_{q}(X)$; as well as a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $c_{0}(X)$.
- In other words we can say that $E-$ $E-c_{0}(X)$ are spaceable
- Roughly speaking, the main results of $[1,3]$ prove that, for every invariant sequence space E of X-valued sequences and every subset Γ of $(0, \infty]$, there exists a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $\bigcup_{q \in \Gamma} \ell_{q}(X)$; as well as a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $c_{0}(X)$.
- In other words we can say that $E-\bigcup_{q \in \Gamma} \ell_{q}(X)$ and $E-c_{0}(X)$ are spaceable.
closed infinite dimensional subspace of V.
- Roughly speaking, the main results of $[1,3]$ prove that, for every invariant sequence space E of X-valued sequences and every subset Γ of $(0, \infty]$, there exists a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $\bigcup_{q \in \Gamma} \ell_{q}(X)$; as well as a closed infinite dimensional subspace of E formed, up to the null vector, by sequences not belonging to $c_{0}(X)$.
- In other words we can say that $E-\bigcup_{q \in \Gamma} \ell_{q}(X)$ and $E-c_{0}(X)$ are spaceable. Remember that a subset A of a topological vector space V is spaceable if $A \cup\{0\}$ contains a closed infinite dimensional subspace of V.
- In this talk we consider the following much more general situation: given Banach spaces X and Y, a map $f: X \longrightarrow Y$, a set $\Gamma \subseteq(0,+\infty]$ and an invariant sequence space E of X-valued sequences, we investigate the existence of closed infinite dimensional subspaces of E formed, up to the origin, by sequences $\left(x_{j}\right)_{j=1}^{\infty} \in E$ such that either
- In this talk we consider the following much more general situation: given Banach spaces X and Y, a map $f: X \longrightarrow Y$, a set $\Gamma \subseteq(0,+\infty]$ and an invariant sequence space E of X-valued sequences, we investigate the existence of closed infinite dimensional subspaces of E formed, up to the origin, by sequences $\left(x_{j}\right)_{j=1}^{\infty} \in E$ such that either

$$
\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y) \text { or }
$$

- In this talk we consider the following much more general situation: given Banach spaces X and Y, a map $f: X \longrightarrow Y$, a set $\Gamma \subseteq(0,+\infty]$ and an invariant sequence space E of X-valued sequences, we investigate the existence of closed infinite dimensional subspaces of E formed, up to the origin, by sequences $\left(x_{j}\right)_{j=1}^{\infty} \in E$ such that either

$$
\begin{aligned}
& \left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y) \text { or } \\
& \left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}^{w}(Y) \text { or }
\end{aligned}
$$

$\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)$.

- In this talk we consider the following much more general situation: given Banach spaces X and Y, a map $f: X \longrightarrow Y$, a set $\Gamma \subseteq(0,+\infty]$ and an invariant sequence space E of X-valued sequences, we investigate the existence of closed infinite dimensional subspaces of E formed, up to the origin, by sequences $\left(x_{j}\right)_{j=1}^{\infty} \in E$ such that either

$$
\begin{aligned}
& \left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y) \text { or } \\
& \left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}^{w}(Y) \text { or } \\
& \left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y) .
\end{aligned}
$$

- As usual, $\ell_{p}(X)$ and $\ell_{p}^{w}(X)$ are the Banach spaces (p-Banach spaces if $0<p<1$) of p-summable and weakly p-summable X-valued sequences, respectively,
- As usual, $\ell_{p}(X)$ and $\ell_{p}^{w}(X)$ are the Banach spaces (p-Banach spaces if $0<p<1$) of p-summable and weakly p-summable X-valued sequences, respectively, and $c_{0}(X)$ is the Banach space of norm null X-valued sequences.
recover the situation investigated in $[1,3]$
- As usual, $\ell_{p}(X)$ and $\ell_{p}^{w}(X)$ are the Banach spaces (p-Banach spaces if $0<p<1$) of p-summable and weakly p-summable X-valued sequences, respectively, and $c_{0}(X)$ is the Banach space of norm null X-valued sequences. Letting f be the identity on X, the cases of sequences $\left(x_{j}\right)_{j=1}^{\infty} \in E$ such that $\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)$ or $\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)$ recover the situation investigated in $[1,3]$.
- As usual, $\ell_{p}(X)$ and $\ell_{p}^{w}(X)$ are the Banach spaces (p-Banach spaces if $0<p<1$) of p-summable and weakly p-summable X-valued sequences, respectively, and $c_{0}(X)$ is the Banach space of norm null X-valued sequences. Letting f be the identity on X, the cases of sequences $\left(x_{j}\right)_{j=1}^{\infty} \in E$ such that $\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)$ or $\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)$
recover the situation investigated in $[1,3]$. So, the results of this talk generalize the previous results in two directions:
we consider f belonging to a large class of functions and we consider spaces formed by sequences $\left(x_{j}\right)_{j=1}^{\infty} \in E$ such that $\left(f\left(x_{j}\right)\right)_{j=1}^{\infty}$ does not belong to $\bigcup \ell_{q}^{w}(Y)$, a condition much
- In this talk X and Y are always Banach spaces.
- As usual, $\ell_{p}(X)$ and $\ell_{p}^{w}(X)$ are the Banach spaces (p-Banach spaces if $0<p<1$) of p-summable and weakly p-summable X-valued sequences, respectively, and $c_{0}(X)$ is the Banach space of norm null X-valued sequences. Letting f be the identity on X, the cases of sequences $\left(x_{j}\right)_{j=1}^{\infty} \in E$ such that $\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)$ or $\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)$
recover the situation investigated in $[1,3]$. So, the results of this talk generalize the previous results in two directions: we consider f belonging to a large class of functions and we consider spaces formed by sequences $\left(x_{j}\right)_{j=1}^{\infty} \in E$ such that $\left(f\left(x_{j}\right)\right)_{j=1}^{\infty}$ does not belong to $\bigcup_{q \in \Gamma} \ell_{q}^{w}(Y)$, a condition much more restrictive than not to belong to $\bigcup_{q \in \Gamma} \ell_{q}(Y)$.
- In this talk X and Y are always Banach spaces.

Main result

Definition

Let $X \neq\{0\}$.
(a) Given $x \in X^{\mathbb{N}}$, by x^{0} we mean the zerofree version of x, that

Main result

Definition

Let $X \neq\{0\}$.
(a) Given $x \in X^{\mathbb{N}}$, by x^{0} we mean the zerofree version of x, that is: many non-zero coordinates, then

Main result

Definition

Let $X \neq\{0\}$.
(a) Given $x \in X^{\mathbb{N}}$, by x^{0} we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^{0}=0$;

[^0]
Main result

Definition

Let $X \neq\{0\}$.
(a) Given $x \in X^{\mathbb{N}}$, by x^{0} we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^{0}=0$; otherwise, $x^{0}=\left(x_{j}\right)_{j=1}^{\infty}$ where x_{j} is the j-th non-zero coordinate of x.
(b) By an invariant sequence space over X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions:

Main result

Definition

Let $X \neq\{0\}$.
(a) Given $x \in X^{\mathbb{N}}$, by x^{0} we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then
$x^{0}=0$; otherwise, $x^{0}=\left(x_{j}\right)_{j=1}^{\infty}$ where x_{j} is the j-th non-zero coordinate of x.
(b) By an invariant sequence space over X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions:

Main result

Definition

Let $X \neq\{0\}$.
(a) Given $x \in X^{\mathbb{N}}$, by x^{0} we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^{0}=0$; otherwise, $x^{0}=\left(x_{j}\right)_{j=1}^{\infty}$ where x_{j} is the j-th non-zero coordinate of x.
(b) By an invariant sequence space over X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions: (b1) For $x \in X^{\mathbb{N}}$ such that $x^{0} \neq 0, x \in E$ if and only if $x^{0} \in E$, and in this case $\|x\|_{E} \leq K\left\|x^{0}\right\|_{E}$ for some constant K depending only on E.

Main result

Definition

Let $X \neq\{0\}$.
(a) Given $x \in X^{\mathbb{N}}$, by x^{0} we mean the zerofree version of x, that is: if x has only finitely many non-zero coordinates, then $x^{0}=0$; otherwise, $x^{0}=\left(x_{j}\right)_{j=1}^{\infty}$ where x_{j} is the j-th non-zero coordinate of x.
(b) By an invariant sequence space over X we mean an infinite-dimensional Banach or quasi-Banach space E of X-valued sequences enjoying the following conditions:
(b1) For $x \in X^{\mathbb{N}}$ such that $x^{0} \neq 0, x \in E$ if and only if $x^{0} \in E$, and in this case $\|x\|_{E} \leq K\left\|x^{0}\right\|_{E}$ for some constant K depending only on E.
(b2) $\left\|x_{j}\right\|_{X} \leq\|x\|_{E}$ for every $x=\left(x_{j}\right)_{j=1}^{\infty} \in E$ and every $j \in \mathbb{N}$. An invariant sequence space is an invariant sequence space over some Banach space X.

Example

$$
\text { (a) For } 0<p \leq \infty, \ell_{p}(X) \text {, }
$$

Example

(a) For $0<p \leq \infty, \ell_{p}(X), \ell_{p}^{w}(X), \ell_{p}^{u}(X)$ (unconditionally p-summable X-valued sequences) and ℓ_{m} (sp) (X) (mixed

Example

(a) For $0<p \leq \infty, \ell_{p}(X), \ell_{p}^{w}(X), \ell_{p}^{u}(X)$ (unconditionally p-summable X-valued sequences) and

Example

(a) For $0<p \leq \infty, \ell_{p}(X), \ell_{p}^{w}(X), \ell_{p}^{u}(X)$ (unconditionally p-summable X-valued sequences) and $\ell_{m(s ; p)}(X)$ (mixed sequence space)
respective usual norms (p-norms if $0<p<1$).
(b) The Lorentz sequence spaces,

Example

(a) For $0<p \leq \infty, \ell_{p}(X), \ell_{p}^{w}(X), \ell_{p}^{u}(X)$ (unconditionally p-summable X-valued sequences) and $\ell_{m(s ; p)}(X)$ (mixed sequence space) are invariant sequence spaces over X with their respective usual norms (p-norms if $0<p<1$).

Example

(a) For $0<p \leq \infty, \ell_{p}(X), \ell_{p}^{w}(X), \ell_{p}^{u}(X)$ (unconditionally p-summable X-valued sequences) and $\ell_{m(s ; p)}(X)$ (mixed sequence space) are invariant sequence spaces over X with their respective usual norms (p-norms if $0<p<1$).
(b) The Lorentz sequence spaces,

Example

(a) For $0<p \leq \infty, \ell_{p}(X), \ell_{p}^{w}(X), \ell_{p}^{u}(X)$ (unconditionally p-summable X-valued sequences) and $\ell_{m(s ; p)}(X)$ (mixed sequence space) are invariant sequence spaces over X with their respective usual norms (p-norms if $0<p<1$).
(b) The Lorentz sequence spaces, Orlicz sequence space,

Example

(a) For $0<p \leq \infty, \ell_{p}(X), \ell_{p}^{w}(X), \ell_{p}^{u}(X)$ (unconditionally p-summable X-valued sequences) and $\ell_{m(s ; p)}(X)$ (mixed sequence space) are invariant sequence spaces over X with their respective usual norms (p-norms if $0<p<1$).
(b) The Lorentz sequence spaces, Orlicz sequence space, Nakano sequence spaces,

Definition

Let E be an invariant sequence space over $X, \Gamma \subseteq(0,+\infty]$ and $f: X \longrightarrow Y$ be a function. We define the sets:

Definition

Let E be an invariant sequence space over $X, \Gamma \subseteq(0,+\infty]$ and $f: X \longrightarrow Y$ be a function. We define the sets:

$$
C(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)\right\}
$$

Definition

Let E be an invariant sequence space over $X, \Gamma \subseteq(0,+\infty]$ and $f: X \longrightarrow Y$ be a function. We define the sets:

$$
\begin{gathered}
C(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)\right\}, \\
C^{w}(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}^{w}(Y)\right\} \text { and }
\end{gathered}
$$

Definition

Let E be an invariant sequence space over $X, \Gamma \subseteq(0,+\infty]$ and $f: X \longrightarrow Y$ be a function. We define the sets:

$$
\begin{gathered}
C(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)\right\}, \\
C^{w}(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}^{w}(Y)\right\} \text { and } \\
C(E, f, 0)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)\right\} .
\end{gathered}
$$

Definition

A map $f: X \longrightarrow Y$ is said to be:
(a) Non-contractive if $f(0)=0$ and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha)>0$ such that

$$
\|f(\alpha x)\|_{Y} \geq K(\alpha) \cdot\|f(x)\|_{Y}
$$

for every $x \in X$.
(b) Strongly non-contractive if $f(0)=0$ and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha)>0$ such that

Definition

A map $f: X \longrightarrow Y$ is said to be:
(a) Non-contractive if $f(0)=0$ and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha)>0$ such that

$$
\|f(\alpha x)\|_{Y} \geq K(\alpha) \cdot\|f(x)\|_{Y}
$$

for every $x \in X$.
(b) Strongly non-contractive if $f(0)=0$ and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha)>0$ such that

$$
|\varphi(f(\alpha x))| \geq K(\alpha) \cdot|\varphi(f(x))|
$$

for all $x \in X$ and $\varphi \in Y^{\prime}$.
By the Hahn-Banach theorem, strongly non-contractive
functions are non-contractive.

Definition

A map $f: X \longrightarrow Y$ is said to be:
(a) Non-contractive if $f(0)=0$ and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha)>0$ such that

$$
\|f(\alpha x)\|_{Y} \geq K(\alpha) \cdot\|f(x)\|_{Y}
$$

for every $x \in X$.
(b) Strongly non-contractive if $f(0)=0$ and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha)>0$ such that

$$
|\varphi(f(\alpha x))| \geq K(\alpha) \cdot|\varphi(f(x))|
$$

for all $x \in X$ and $\varphi \in Y^{\prime}$.
By the Hahn-Banach theorem, strongly non-contractive
functions are non-contractive.

Definition

A map $f: X \longrightarrow Y$ is said to be:
(a) Non-contractive if $f(0)=0$ and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha)>0$ such that

$$
\|f(\alpha x)\|_{Y} \geq K(\alpha) \cdot\|f(x)\|_{Y}
$$

for every $x \in X$.
(b) Strongly non-contractive if $f(0)=0$ and for every scalar $\alpha \neq 0$ there is a constant $K(\alpha)>0$ such that

$$
|\varphi(f(\alpha x))| \geq K(\alpha) \cdot|\varphi(f(x))|
$$

for all $x \in X$ and $\varphi \in Y^{\prime}$.
By the Hahn-Banach theorem, strongly non-contractive functions are non-contractive.

Example

- Subhomogeneous functions (with $f(0)=0$) are non-contractive;
- bounded and unbounded linear operators are strongly non-contractive (hence non-contractive); and

- homocroneonc nolrmamiale (eontinuouc or not) sire strongly

 non-contractive (hence non-contractive).
Example

- Subhomogeneous functions (with $f(0)=0$) are non-contractive;
- bounded and unbounded linear operators are strongly non-contractive (hence non-contractive); and
- homogeneous polynomials (continuous or not) are strongly non-contractive (hence non-contractive).

Example

- Subhomogeneous functions (with $f(0)=0$) are non-contractive;
- bounded and unbounded linear operators are strongly non-contractive (hence non-contractive); and
- homogeneous polynomials (continuous or not) are strongly non-contractive (hence non-contractive).

Theorem

Let E be an invariant sequence space over X, function and I

Theorem

Let E be an invariant sequence space over $X, f: X \longrightarrow Y$ be a function and

Theorem

Let E be an invariant sequence space over $X, f: X \longrightarrow Y$ be a function and $\Gamma \subseteq(0,+\infty]$.
(a) If f is non-contractive, then $C(E, f, \Gamma)$ and $C(E, f, 0)$ are either empty or spaceable.

Theorem

Let E be an invariant sequence space over $X, f: X \longrightarrow Y$ be a function and $\Gamma \subseteq(0,+\infty]$.
(a) If f is non-contractive, then $C(E, f, \Gamma)$ and $C(E, f, 0)$ are either empty or spaceable.
empty or spaceable.

Theorem

Let E be an invariant sequence space over $X, f: X \longrightarrow Y$ be a function and $\Gamma \subseteq(0,+\infty]$.
(a) If f is non-contractive, then $C(E, f, \Gamma)$ and $C(E, f, 0)$ are either empty or spaceable.
(b) If f is strongly non-contractive, then $C^{w}(E, f, \Gamma)$ is either empty or spaceable.

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$
C(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)\right\}
$$

Let us fix a notation.

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$
C(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)\right\}
$$

Let us fix a notation.

Assume that $C(E, f, \Gamma)$ is non-empty and choose $x \in C(E, f, \Gamma)$

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$
C(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)\right\}
$$

Let us fix a notation. For $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

$$
w \otimes \alpha=\alpha \otimes w:=\left(\alpha_{n} w\right)_{n=1}^{\infty} \in X^{\mathbb{N}}
$$

Assume that $C(E, f, \Gamma)$ is non-empty and choose $x \in C(E, f, \Gamma)$. Since E is an invariant sequence space, then $x^{0} \in E$ and the

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$
C(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)\right\}
$$

Let us fix a notation. For $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

$$
w \otimes \alpha=\alpha \otimes w:=\left(\alpha_{n} w\right)_{n=1}^{\infty} \in X^{\mathbb{N}}
$$

Assume that $C(E, f, \Gamma)$ is non-empty and choose $x \in C(E, f, \Gamma)$.

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$
C(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)\right\}
$$

Let us fix a notation. For $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

$$
w \otimes \alpha=\alpha \otimes w:=\left(\alpha_{n} w\right)_{n=1}^{\infty} \in X^{\mathbb{N}}
$$

Assume that $C(E, f, \Gamma)$ is non-empty and choose $x \in C(E, f, \Gamma)$. Since E is an invariant sequence space, then $x^{0} \in E$ and the condition $f(0)=0$ guarantees that $x^{0} \in C(E, f, \Gamma)$.

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$
C(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)\right\}
$$

Let us fix a notation. For $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

$$
w \otimes \alpha=\alpha \otimes w:=\left(\alpha_{n} w\right)_{n=1}^{\infty} \in X^{\mathbb{N}}
$$

Assume that $C(E, f, \Gamma)$ is non-empty and choose $x \in C(E, f, \Gamma)$. Since E is an invariant sequence space, then $x^{0} \in E$ and the condition $f(0)=0$ guarantees that $x^{0} \in C(E, f, \Gamma)$. Writing $x^{0}=\left(x_{j}\right)_{j=1}^{\infty}$ we have that $x_{j} \neq 0$ for every j.
Step 1: Split \mathbb{N} into countably many infinite pairwise disjoint
subsets $\left(\mathbb{N}_{i}\right)_{i=1}^{\infty}$. For every $i \in \mathbb{N}$ set $\mathbb{N}_{i}=\left\{i_{1}<i_{2}<\ldots\right\}$ and
define

Sketch of the proof for the case $C(E, f, \Gamma)$.

Remember that

$$
C(E, f, \Gamma)=\left\{\left(x_{j}\right)_{j=1}^{\infty} \in E:\left(f\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)\right\}
$$

Let us fix a notation. For $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ and $w \in X$ we denote

$$
w \otimes \alpha=\alpha \otimes w:=\left(\alpha_{n} w\right)_{n=1}^{\infty} \in X^{\mathbb{N}}
$$

Assume that $C(E, f, \Gamma)$ is non-empty and choose $x \in C(E, f, \Gamma)$. Since E is an invariant sequence space, then $x^{0} \in E$ and the condition $f(0)=0$ guarantees that $x^{0} \in C(E, f, \Gamma)$. Writing $x^{0}=\left(x_{j}\right)_{j=1}^{\infty}$ we have that $x_{j} \neq 0$ for every j.
Step 1: Split \mathbb{N} into countably many infinite pairwise disjoint subsets $\left(\mathbb{N}_{i}\right)_{i=1}^{\infty}$. For every $i \in \mathbb{N}$ set $\mathbb{N}_{i}=\left\{i_{1}<i_{2}<\ldots\right\}$ and define

$$
y_{i}=\sum_{i=1}^{\infty} x_{j} \otimes e_{i_{j}} \in X^{\mathbb{N}}
$$

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_{i}^{0}=x^{0}$, so $0 \neq y_{i}^{0} \in E$, hence $y_{i} \in E$ for every i because E is an invariant sequence space.

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_{i}^{0}=x^{0}$, so $0 \neq y_{i}^{0} \in E$, hence $y_{i} \in E$ for every i because E is an invariant sequence space. For $q \in \Gamma, q<+\infty$, we have $\sum_{j=1}^{\infty}\left\|f\left(x_{j}\right)\right\|_{Y}^{q}=+\infty$ because $x^{0} \in C(E, f, \Gamma)$.

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_{i}^{0}=x^{0}$, so $0 \neq y_{i}^{0} \in E$, hence $y_{i} \in E$ for every i because E is an invariant sequence space. For $q \in \Gamma, q<+\infty$, we have $\sum_{j=1}^{\infty}\left\|f\left(x_{j}\right)\right\|_{Y}^{q}=+\infty$ because $x^{0} \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have sup $\left\|f\left(x_{i}\right)\right\|_{Y}=+\infty$.
follows that each $y_{i} \in C(E, f, \Gamma)$.

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_{i}^{0}=x^{0}$, so $0 \neq y_{i}^{0} \in E$, hence $y_{i} \in E$ for every i because E is an invariant sequence space. For $q \in \Gamma, q<+\infty$, we have $\sum_{j=1}^{\infty}\left\|f\left(x_{j}\right)\right\|_{Y}^{q}=+\infty$ because $x^{0} \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have $\sup \left\|f\left(x_{i}\right)\right\|_{Y}=+\infty$. It follows that each $y_{i} \in C(E, f, \Gamma)$.
Step 2: Define $\tilde{s}=1$ if E is a Banach space and $\tilde{s}=s$ if E is an s-Banach space, $0<s<1$.

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_{i}^{0}=x^{0}$, so $0 \neq y_{i}^{0} \in E$, hence $y_{i} \in E$ for every i because E is an invariant sequence space. For $q \in \Gamma, q<+\infty$, we have $\sum_{j=1}^{\infty}\left\|f\left(x_{j}\right)\right\|_{Y}^{q}=+\infty$ because $x^{0} \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have sup $\left\|f\left(x_{i}\right)\right\|_{Y}=+\infty$. It follows that each $y_{i} \in C(E, f, \Gamma)$.
Step 2: Define $\tilde{s}=1$ if E is a Banach space and $\tilde{s}=s$ if E is an s-Banach space, $0<s<1$.
is well defined. It is possible
E is a Banach space and \sum^{∞}

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_{i}^{0}=x^{0}$, so $0 \neq y_{i}^{0} \in E$, hence $y_{i} \in E$ for every i because E is an invariant sequence space. For $q \in \Gamma, q<+\infty$, we have $\sum_{j=1}^{\infty}\left\|f\left(x_{j}\right)\right\|_{Y}^{q}=+\infty$ because $x^{0} \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have sup $\left\|f\left(x_{i}\right)\right\|_{Y}=+\infty$. It follows that each $y_{i} \in C(E, f, \Gamma)$.
Step 2: Define $\tilde{s}=1$ if E is a Banach space and $\tilde{s}=s$ if E is an s-Banach space, $0<s<1$. We need to prove that the operator

$$
T: \ell_{\tilde{s}} \longrightarrow E \quad, \quad T\left(\left(a_{i}\right)_{i=1}^{\infty}\right)=\sum_{i=1}^{\infty} a_{i} y_{i}
$$

is well defined.
E is a Banach space and $\sum^{\infty}\left\|a_{i} y_{i}\right\|_{E}^{s}<+\infty$ if E is an s-Banach

Sketch of the proof for the case $C(E, f, \Gamma)$.

Observe that $y_{i}^{0}=x^{0}$, so $0 \neq y_{i}^{0} \in E$, hence $y_{i} \in E$ for every i because E is an invariant sequence space. For $q \in \Gamma, q<+\infty$, we have $\sum_{j=1}^{\infty}\left\|f\left(x_{j}\right)\right\|_{Y}^{q}=+\infty$ because $x^{0} \in C(E, f, \Gamma)$. If $+\infty \in \Gamma$, by the same reason we have sup $\left\|f\left(x_{i}\right)\right\|_{Y}=+\infty$. It follows that each $y_{i} \in C(E, f, \Gamma)$.

Step 2: Define $\tilde{s}=1$ if E is a Banach space and $\tilde{s}=s$ if E is an s-Banach space, $0<s<1$. We need to prove that the operator

$$
T: \ell_{\tilde{s}} \longrightarrow E \quad, \quad T\left(\left(a_{i}\right)_{i=1}^{\infty}\right)=\sum_{i=1}^{\infty} a_{i} y_{i}
$$

is well defined. It is possible to prove that $\sum_{i=1}^{\infty}\left\|a_{i} y_{i}\right\|_{E}<+\infty$ if E is a Banach space and $\sum_{i=1}^{\infty}\left\|a_{i} y_{i}\right\|_{E}^{s}<+\infty$ if E is an s-Banach space, $0<s<1$.

Sketch of the proof for the case $C(E, f, \Gamma)$.

In both cases the series $\sum_{i=1}^{\infty} a_{i} y_{i}$ converges in E, hence the operator is well defined.

Sketch of the proof for the case $C(E, f, \Gamma)$.

In both cases the series $\sum_{i=1}^{\infty} a_{i} y_{i}$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective.

Sketch of the proof for the case $C(E, f, \Gamma)$.

In both cases the series $\sum_{i=1}^{\infty} a_{i} y_{i}$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective. Thus $\overline{T\left(\ell_{\tilde{s}}\right)}$ is a closed infinite-dimensional subspace of E.

Step 3: We have to show that if $z=\left(z_{n}\right)_{n=1}^{\infty} \in \overline{T\left(\ell_{\tilde{s}}\right)}, z \neq 0$,

Sketch of the proof for the case $C(E, f, \Gamma)$.

In both cases the series $\sum_{i=1}^{\infty} a_{i} y_{i}$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective. Thus $\overline{T\left(\ell_{\tilde{s}}\right)}$ is a closed infinite-dimensional subspace of E.

Step 3: We have to show that if $z=\left(z_{n}\right)_{n=1}^{\infty} \in \overline{T\left(\ell_{\tilde{s}}\right)}, z \neq 0$, then $\left(f\left(z_{n}\right)\right)_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)$.

Sketch of the proof for the case $C(E, f, \Gamma)$.

In both cases the series $\sum_{i=1}^{\infty} a_{i} y_{i}$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective. Thus $\overline{T\left(\ell_{\tilde{s}}\right)}$ is a closed infinite-dimensional subspace of E.

Step 3: We have to show that if $z=\left(z_{n}\right)_{n=1}^{\infty} \in \overline{T\left(\ell_{\tilde{s}}\right)}, z \neq 0$, then $\left(f\left(z_{n}\right)\right)_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)$. Given such a z, there are
sequences $\left(a_{i}^{(k)}\right)_{i=1}^{\infty} \in \ell_{\tilde{s}}, k \in \mathbb{N}$, such that
$z=\lim _{k \rightarrow \infty} T\left(\left(a_{i}^{(k)}\right)_{i=1}^{\infty}\right)$ in E.
Using the convergence below and the fact that f is
non-contractive, it is possible to prove (hardwork) that there is
a subsequence $\left(z_{m j}\right)^{\infty}$ of $z=\left(z_{m}\right)^{\infty}$, satisfving:

Sketch of the proof for the case $C(E, f, \Gamma)$.

In both cases the series $\sum_{i=1}^{\infty} a_{i} y_{i}$ converges in E, hence the operator is well defined. It is easy to see that T is linear and injective. Thus $\overline{T\left(\ell_{\tilde{s}}\right)}$ is a closed infinite-dimensional subspace of E.

Step 3: We have to show that if $z=\left(z_{n}\right)_{n=1}^{\infty} \in \overline{T\left(\ell_{\tilde{s}}\right)}, z \neq 0$, then $\left(f\left(z_{n}\right)\right)_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(Y)$. Given such a z, there are
sequences $\left(a_{i}^{(k)}\right)_{i=1}^{\infty} \in \ell_{\tilde{s}}, k \in \mathbb{N}$, such that
$z=\lim _{k \rightarrow \infty} T\left(\left(a_{i}^{(k)}\right)_{i=1}^{\infty}\right)$ in E.
Using the convergence below and the fact that f is non-contractive, it is possible to prove (hardwork) that there is a subsequence $\left(z_{m_{j}}\right)_{j=1}^{\infty}$ of $z=\left(z_{n}\right)_{n=1}^{\infty}$ satisfying:
$\sum_{j=1}^{\infty}\left\|f\left(z_{m_{j}}\right)\right\|^{q}=\infty$, for all $q \in \Gamma$, if $\infty \notin \Gamma$,

$$
\begin{aligned}
& \sum_{j=1}^{\infty}\left\|f\left(z_{m_{j}}\right)\right\|^{q}=\infty \text {, for all } q \in \Gamma \text {, if } \infty \notin \Gamma \text {, and } \\
& \sup _{j}\left\|f\left(z_{m_{j}}\right)\right\|=\infty \text {, if } \infty \in \Gamma \text {. This shows that }
\end{aligned}
$$

$\sum_{j=1}^{\infty}\left\|f\left(z_{m_{j}}\right)\right\|^{q}=\infty$, for all $q \in \Gamma$, if $\infty \notin \Gamma$, and $\sup _{j}\left\|f\left(z_{m_{j}}\right)\right\|=\infty$, if $\infty \in \Gamma$. This shows that $\left(f\left(z_{n}\right)\right)_{n=1}^{\infty} \notin \bigcup_{q \in \Gamma} \ell_{q}(X)$ and completes the proof that
$z \in C(E, f, \Gamma) . \square$

Applications

Definition

We say that

- a linear operator $u: X \longrightarrow Y$ is completely continuous if $u\left(x_{j}\right) \longrightarrow u(x)$ in Y whenever $x_{j} \xrightarrow{w} x$ in X.

For $0<p \leq q<+\infty$, we say that

- a linear operator $u: X \longrightarrow Y$ is absolutely $(q ; p)$-summing if $\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \in \ell_{q}(Y)$ for each $\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X)$.

Applications

Definition

We say that

- a linear operator $u: X \longrightarrow Y$ is completely continuous if $u\left(x_{j}\right) \longrightarrow u(x)$ in Y whenever $x_{j} \xrightarrow{w} x$ in X.

For $0<p \leq q<+\infty$, we say that

- a linear operator $u: X \longrightarrow Y$ is absolutely $(q ; p)$-summing if $\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \in \ell_{q}(Y)$ for each $\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X)$.

By $c_{0}^{w}(X)$ we denote the closed subspace of $\ell_{\infty}(X)$ formed by
\square weakly null X-valued sequences. It is easy to check that $c_{0}^{w}(X)$

\square

Applications

Definition

We say that

- a linear operator $u: X \longrightarrow Y$ is completely continuous if $u\left(x_{j}\right) \longrightarrow u(x)$ in Y whenever $x_{j} \xrightarrow{w} x$ in X.

For $0<p \leq q<+\infty$, we say that

- a linear operator $u: X \longrightarrow Y$ is absolutely $(q ; p)$-summing if $\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \in \ell_{q}(Y)$ for each $\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X)$.
- an n-homogeneous polynomial $P: X \longrightarrow Y$ is p-dominated if $\left(P\left(x_{j}\right)\right)_{j=1}^{\infty} \in \ell_{p / n}(Y)$ for each $\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X)$.

> By $c_{0}^{w}(X)$ we denote the closed subspace of $\ell_{\infty}(X)$ formed by weakly null X-valued sequences. It is easy to check that $c_{0}^{w}(X)$ is an invariant sequence space over X.

Applications

Definition

We say that

- a linear operator $u: X \longrightarrow Y$ is completely continuous if $u\left(x_{j}\right) \longrightarrow u(x)$ in Y whenever $x_{j} \xrightarrow{w} x$ in X.

For $0<p \leq q<+\infty$, we say that

- a linear operator $u: X \longrightarrow Y$ is absolutely $(q ; p)$-summing if $\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \in \ell_{q}(Y)$ for each $\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X)$.
- an n-homogeneous polynomial $P: X \longrightarrow Y$ is p-dominated if $\left(P\left(x_{j}\right)\right)_{j=1}^{\infty} \in \ell_{p / n}(Y)$ for each $\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X)$.

By $c_{0}^{w}(X)$ we denote the closed subspace of $\ell_{\infty}(X)$ formed by weakly null X-valued sequences. It is easy to check that $c_{0}^{w}(X)$ is an invariant sequence space over X.

Corollary

(a) Let $1 \leq p \leq q<+\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator.

Corollary

(a) Let $1 \leq p \leq q<+\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{q}(Y)\right\}
$$

is spaceable.

Corollary

(a) Let $1 \leq p \leq q<+\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{q}(Y)\right\}
$$

is spaceable.
(b) Let $0<p<+\infty$ and let $P: X \longrightarrow Y$ be a non- p-dominated n-homogeneous polynomial.

Corollary

(a) Let $1 \leq p \leq q<+\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{q}(Y)\right\}
$$

is spaceable.
(b) Let $0<p<+\infty$ and let $P: X \longrightarrow Y$ be a non- p-dominated n-homogeneous polynomial. Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X):\left(P\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{p / n}(Y)\right\}
$$

is spaceable.

Corollary

(a) Let $1 \leq p \leq q<+\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{q}(Y)\right\}
$$

is spaceable.
(b) Let $0<p<+\infty$ and let $P: X \longrightarrow Y$ be a non- p-dominated n-homogeneous polynomial. Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X):\left(P\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{p / n}(Y)\right\}
$$

is spaceable.
(c) Let $u: X \longrightarrow Y$ be a non-completely continuous linear operator.

Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in c_{0}^{w}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)\right\}
$$

is spaceable.
exists an infinite dimensional Banach space formed, up to the origin,
by weakly null but non-norm null X-valued sequences.

Corollary

(a) Let $1 \leq p \leq q<+\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{q}(Y)\right\}
$$

is spaceable.
(b) Let $0<p<+\infty$ and let $P: X \longrightarrow Y$ be a non- p-dominated n-homogeneous polynomial. Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X):\left(P\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{p / n}(Y)\right\}
$$

is spaceable.
(c) Let $u: X \longrightarrow Y$ be a non-completely continuous linear operator.

Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in c_{0}^{w}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)\right\}
$$

is spaceable. In particular, if X lacks the Schur property, then there exists an infinite dimensional Banach space formed, up to the origin, by weakly null but non-norm null X-valued sequences.

Corollary

(a) Let $1 \leq p \leq q<+\infty$ and let $u: X \longrightarrow Y$ be a non-absolutely (q, p)-summing linear operator. Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{q}(Y)\right\}
$$

is spaceable.
(b) Let $0<p<+\infty$ and let $P: X \longrightarrow Y$ be a non- p-dominated n-homogeneous polynomial. Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X):\left(P\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{p / n}(Y)\right\}
$$

is spaceable.
(c) Let $u: X \longrightarrow Y$ be a non-completely continuous linear operator.

Then the set

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in c_{0}^{w}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)\right\}
$$

is spaceable. In particular, if X lacks the Schur property, then there exists an infinite dimensional Banach space formed, up to the origin, by weakly null but non-norm null X-valued sequences.

Recall that a subset A of a topological vector space E is α-lineable if $A \cup\{0\}$ contains an α-dimensional linear subspace of E.
dense linear subspace V of E with $\operatorname{dim}(V)=\operatorname{dim}(E)$.
\square

Recall that a subset A of a topological vector space E is α-lineable if $A \cup\{0\}$ contains an α-dimensional linear subspace of E. And A is maximal dense-lineable if $A \cup\{0\}$ contains a dense linear subspace V of E with $\operatorname{dim}(V)=\operatorname{dim}(E)$.

Proposition

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$ also maximal dense-lineable

Recall that a subset A of a topological vector space E is α-lineable if $A \cup\{0\}$ contains an α-dimensional linear subspace of E. And A is maximal dense-lineable if $A \cup\{0\}$ contains a dense linear subspace V of E with $\operatorname{dim}(V)=\operatorname{dim}(E)$.

Proposition

If $p>0$, then the sets

Recall that a subset A of a topological vector space E is α-lineable if $A \cup\{0\}$ contains an α-dimensional linear subspace of E. And A is maximal dense-lineable if $A \cup\{0\}$ contains a dense linear subspace V of E with $\operatorname{dim}(V)=\operatorname{dim}(E)$.

Proposition

If $p>0$, then the sets

$$
\begin{gathered}
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in c_{0}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)\right\} \text { and } \\
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{p}^{w}(Y)\right\}
\end{gathered}
$$

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$.

Recall that a subset A of a topological vector space E is α-lineable if $A \cup\{0\}$ contains an α-dimensional linear subspace of E. And A is maximal dense-lineable if $A \cup\{0\}$ contains a dense linear subspace V of E with $\operatorname{dim}(V)=\operatorname{dim}(E)$.

Proposition

If $p>0$, then the sets

$$
\begin{gathered}
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in c_{0}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)\right\} \text { and } \\
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{p}^{w}(Y)\right\}
\end{gathered}
$$

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$. Moreover, if X is separable and $p<+\infty$, then these subsets are also maximal dense-lineable.

Theorem (L. Bernal-González and M. Cabrera - JFA 2014)

Assume that M is a metrizable and separable topological vector space. Let $A \subset M$ and α be an infinite cardinal number such that A is α-lineable. If there exists a subset $B \subset M$ such that $A+B \subset A, A \cap B=\emptyset$ and B is dense-lineable, then $A \cup\{0\}$ contains a dense vector space D with $\operatorname{dim}(D)=\alpha$.

Proposition

If $p>0$, then the sets

$$
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in c_{0}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)\right\} \text { and }
$$

\square
are spaceable for everv unbounded linear onerator $u: X \longrightarrow Y$ Moreover, if X is separable and $p<+\infty$, then these subsets are also maximal dense-lineable.

Theorem (L. Bernal-González and M. Cabrera - JFA 2014)

Assume that M is a metrizable and separable topological vector space. Let $A \subset M$ and α be an infinite cardinal number such that A is α-lineable. If there exists a subset $B \subset M$ such that $A+B \subset A, A \cap B=\emptyset$ and B is dense-lineable, then $A \cup\{0\}$ contains a dense vector space D with $\operatorname{dim}(D)=\alpha$.

Proposition

If $p>0$, then the sets

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$ Moreover if X is senarahle and $n<+\infty$ then these subsets are also maximal dense-lineable

Theorem (L. Bernal-González and M. Cabrera - JFA 2014)

Assume that M is a metrizable and separable topological vector space. Let $A \subset M$ and α be an infinite cardinal number such that A is α-lineable. If there exists a subset $B \subset M$ such that $A+B \subset A, A \cap B=\emptyset$ and B is dense-lineable, then $A \cup\{0\}$ contains a dense vector space D with $\operatorname{dim}(D)=\alpha$.

Proposition

If $p>0$, then the sets

$$
\begin{gathered}
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in c_{0}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin c_{0}(Y)\right\} \text { and } \\
\left\{\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}(X):\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \notin \ell_{p}^{w}(Y)\right\}
\end{gathered}
$$

are spaceable for every unbounded linear operator $u: X \longrightarrow Y$. Moreover, if X is separable and $p<+\infty$, then these subsets are also maximal dense-lineable.

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem.
Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p<$

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the
Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p<+\infty$.

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the
Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p<+\infty$. It is clear that $c_{0}(X)$ and $\ell_{p}(X)$ are separable as well.

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the
Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p<+\infty$. It is clear that $c_{0}(X)$ and $\ell_{p}(X)$ are separable as well. Let A be either $C\left(c_{0}(X), u, 0\right)$ or $C^{w}\left(\ell_{p}(X), u,\{p\}\right)$.

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the
Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p<+\infty$. It is clear that $c_{0}(X)$ and $\ell_{p}(X)$ are separable as well. Let A be either $C\left(c_{0}(X), u, 0\right)$ or $C^{w}\left(\ell_{p}(X), u,\{p\}\right)$. By the spaceability of A we have that $A \cup\{0\}$ contains a \mathfrak{c}-dimensional subspace, where \mathfrak{c} is the cardinality of the continuum.

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the
Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p<+\infty$. It is clear that $c_{0}(X)$ and $\ell_{p}(X)$ are separable as well. Let A be either $C\left(c_{0}(X), u, 0\right)$ or $C^{w}\left(\ell_{p}(X), u,\{p\}\right)$. By the spaceability of A we have that $A \cup\{0\}$ contains a \mathfrak{c}-dimensional subspace, where \mathfrak{c} is the cardinality of the continuum. Let $c_{00}(X)$ denote the space of eventually null X-valued sequences.

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the
Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p<+\infty$. It is clear that $c_{0}(X)$ and $\ell_{p}(X)$ are separable as well. Let A be either $C\left(c_{0}(X), u, 0\right)$ or $C^{w}\left(\ell_{p}(X), u,\{p\}\right)$. By the spaceability of A we have that $A \cup\{0\}$ contains a \mathfrak{c}-dimensional subspace, where \mathfrak{c} is the cardinality of the continuum. Let $c_{00}(X)$ denote the space of eventually null X-valued sequences. It is clear that $A+c_{00}(X) \subseteq A, A \cap c_{00}(X)=\emptyset$ and $c_{00}(X)$ is a dense infinite dimensional subspace of $c_{0}(X)$ and $\ell_{p}(X)$.
Bernal-Cabrera Theorem, $A \cup\{0\}$ contains a c-dimensional
dense subspace, and the result follows because $c_{0}(X)$ and $\ell_{p}(X)$
are c-dimensional (remember that they are senarahle infinite
dimensional Banach or quasi-Banach spaces). \square

Proof. It is not difficult to see that the spaceability of both sets follows from the main theorem. We shall apply the
Bernal-Cabrera Theorem to prove the second assertion. Assume that X is separable and $p<+\infty$. It is clear that $c_{0}(X)$ and $\ell_{p}(X)$ are separable as well. Let A be either $C\left(c_{0}(X), u, 0\right)$ or $C^{w}\left(\ell_{p}(X), u,\{p\}\right)$. By the spaceability of A we have that $A \cup\{0\}$ contains a \mathfrak{c}-dimensional subspace, where \mathfrak{c} is the cardinality of the continuum. Let $c_{00}(X)$ denote the space of eventually null X-valued sequences. It is clear that $A+c_{00}(X) \subseteq A, A \cap c_{00}(X)=\emptyset$ and $c_{00}(X)$ is a dense infinite dimensional subspace of $c_{0}(X)$ and $\ell_{p}(X)$. By the Bernal-Cabrera Theorem, $A \cup\{0\}$ contains a c-dimensional dense subspace, and the result follows because $c_{0}(X)$ and $\ell_{p}(X)$ are \mathfrak{c}-dimensional (remember that they are separable infinite dimensional Banach or quasi-Banach spaces). \square

Example

Let X be an infinite dimensional Banach space and $0<p<+\infty$. is, there exists an infinite dimensional Banach/quasi-Banach space formed, up to the origin, by X-valued sequences $\left(x_{j}\right)_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty}\left|\varphi\left(x_{j}\right)\right|^{p}<+\infty$ for every bounded linear functional $\varphi \in X^{\prime}$ and $\sum_{j=1}^{\infty}\left\|x_{j}\right\|^{p}=+\infty$. Considering an unbounded linear functional φ on X, the last Pronosition vields the followring dual

Example

Let X be an infinite dimensional Banach space and $0<p<+\infty$. We know that $\ell_{p}^{w}(X)-\ell_{p}(X)$ is spaceable, that is, there exists an infinite dimensional Banach/quasi-Banach space formed, up to the origin, by X-valued sequences $\left(x_{j}\right)_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty}\left|\varphi\left(x_{j}\right)\right|^{p}<+\infty$ for every bounded linear functional $\varphi \in X^{\prime}$ and $\sum_{j=1}^{\infty}\left\|x_{j}\right\|^{p}=+\infty$.

Considering an unbounded linear functional result
\qquad

Example

Let X be an infinite dimensional Banach space and $0<p<+\infty$. We know that $\ell_{p}^{w}(X)-\ell_{p}(X)$ is spaceable, that is, there exists an infinite dimensional Banach/quasi-Banach space formed, up to the origin, by X-valued sequences $\left(x_{j}\right)_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty}\left|\varphi\left(x_{j}\right)\right|^{p}<+\infty$ for every bounded linear functional $\varphi \in X^{\prime}$ and $\sum_{j=1}^{\infty}\left\|x_{j}\right\|^{p}=+\infty$. Considering an unbounded linear functional φ on X, the last Proposition yields the following dual result:
Banach/quasi-Banach space formed, up to the origin, by
\square
G. Botelho, V. V. Fávaro

Example

Let X be an infinite dimensional Banach space and $0<p<+\infty$. We know that $\ell_{p}^{w}(X)-\ell_{p}(X)$ is spaceable, that is, there exists an infinite dimensional Banach/quasi-Banach space formed, up to the origin, by X-valued sequences $\left(x_{j}\right)_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty}\left|\varphi\left(x_{j}\right)\right|^{p}<+\infty$ for every bounded linear functional $\varphi \in X^{\prime}$ and $\sum_{j=1}^{\infty}\left\|x_{j}\right\|^{p}=+\infty$. Considering an unbounded linear functional φ on X, the last Proposition yields the following dual result: there exists an infinite dimensional
Banach/quasi-Banach space formed, up to the origin, by X-valued sequences $\left(x_{j}\right)_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty}\left\|x_{j}\right\|^{p}<+\infty$ and $\sum_{j=1}^{\infty}\left|\varphi\left(x_{j}\right)\right|^{p}=+\infty$.
(in [1] C. S. Barroso, G. Botelho, V. V. F. and D. Pellegrino, Lineability and spaceability for the weak form of Peano's theorem and vector-valued sequence spaces, Proc. Amer. Math. Soc. 141 (2013), 1913-1923.

圊 [2] L. Bernal-González and M. Ordoñez Cabrera, Lineability criteria, with applications, J. Funct. Anal. 266 (2014), 3997-4025.

目 [3] G. Botelho, D. Diniz, V. V. F. and D. Pellegrino, Spaceability in Banach and quasi-Banach sequence spaces, Linear Algebra Appl. 434 (2011), 1255-1260.

E [4] G. Botelho, D. Pellegrino and P. Rueda, Dominated polynomials on infinite dimensional spaces, Proc. Amer. Math. Soc. 138 (2010), 209-216.

Thank You very much!!!

[^0]: coordinate of x.

