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Introduction

Introduction

In this work we continue the research initiated in [1, 3] on
the existence of infinite dimensional closed subspaces of
Banach or quasi-Banach sequence spaces formed by
sequences with special properties.

Given a Banach space X, in [3] the authors introduce a
large class of Banach or quasi-Banach spaces formed by
X-valued sequences, called invariant sequences spaces,
which encompasses several classical sequences spaces as
particular cases.
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G. Botelho, V. V. Fávaro BWB - Maresias-SP 08/25/2014



Introduction

Roughly speaking, the main results of [1, 3] prove that, for
every invariant sequence space E of X-valued sequences
and every subset Γ of (0,∞], there exists a closed infinite
dimensional subspace of E formed, up to the null vector,
by sequences not belonging to

⋃
q∈Γ

`q(X); as well as a closed

infinite dimensional subspace of E formed, up to the null
vector, by sequences not belonging to c0(X).

In other words we can say that E −
⋃
q∈Γ

`q(X) and

E − c0(X) are spaceable. Remember that a subset A of a
topological vector space V is spaceable if A ∪ {0} contains a
closed infinite dimensional subspace of V .
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Introduction

In this talk we consider the following much more general
situation: given Banach spaces X and Y , a map
f : X −→ Y , a set Γ ⊆ (0,+∞] and an invariant sequence
space E of X-valued sequences, we investigate the existence
of closed infinite dimensional subspaces of E formed, up to
the origin, by sequences (xj)

∞
j=1 ∈ E such that either

(f(xj))
∞
j=1 /∈

⋃
q∈Γ

`q(Y ) or

(f(xj))
∞
j=1 /∈

⋃
q∈Γ

`wq (Y ) or

(f(xj))
∞
j=1 /∈ c0(Y ).
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Introduction

As usual, `p(X) and `wp (X) are the Banach spaces
(p-Banach spaces if 0 < p < 1) of p-summable and weakly
p-summable X-valued sequences, respectively, and c0(X) is
the Banach space of norm null X-valued sequences. Letting
f be the identity on X, the cases of sequences (xj)

∞
j=1 ∈ E

such that (f(xj))
∞
j=1 /∈

⋃
q∈Γ

`q(Y ) or (f(xj))
∞
j=1 /∈ c0(Y )

recover the situation investigated in [1, 3]. So, the results
of this talk generalize the previous results in two directions:
we consider f belonging to a large class of functions and we
consider spaces formed by sequences (xj)

∞
j=1 ∈ E such that

(f(xj))
∞
j=1 does not belong to

⋃
q∈Γ

`wq (Y ), a condition much

more restrictive than not to belong to
⋃
q∈Γ

`q(Y ).

In this talk X and Y are always Banach spaces.
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Main result

Main result

Definition

Let X 6= {0} .
(a) Given x ∈ XN, by x0 we mean the zerofree version of x, that
is: if x has only finitely many non-zero coordinates, then
x0 = 0; otherwise, x0 = (xj)

∞
j=1 where xj is the j-th non-zero

coordinate of x.
(b) By an invariant sequence space over X we mean an
infinite-dimensional Banach or quasi-Banach space E of
X-valued sequences enjoying the following conditions:
(b1) For x ∈ XN such that x0 6= 0, x ∈ E if and only if x0 ∈ E,
and in this case ‖x‖E ≤ K‖x0‖E for some constant K
depending only on E.
(b2) ‖xj‖X ≤ ‖x‖E for every x = (xj)

∞
j=1 ∈ E and every j ∈ N.

An invariant sequence space is an invariant sequence space over
some Banach space X.
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Main result

Example

(a) For 0 < p ≤ ∞, `p(X), `wp (X), `up(X) (unconditionally
p-summable X-valued sequences) and `m(s;p) (X) (mixed
sequence space) are invariant sequence spaces over X with their
respective usual norms (p-norms if 0 < p < 1).
(b) The Lorentz sequence spaces, Orlicz sequence space, Nakano
sequence spaces, . . . .
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Main result

Definition

Let E be an invariant sequence space over X, Γ ⊆ (0,+∞] and
f : X −→ Y be a function. We define the sets:

C(E, f,Γ) =

{
(xj)

∞
j=1 ∈ E : (f(xj))

∞
j=1 /∈

⋃
q∈Γ

`q(Y )

}
,

Cw(E, f,Γ) =

{
(xj)

∞
j=1 ∈ E : (f(xj))

∞
j=1 /∈

⋃
q∈Γ

`wq (Y )

}
and

C(E, f, 0) =
{

(xj)
∞
j=1 ∈ E : (f(xj))

∞
j=1 /∈ c0(Y )

}
.
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∞
j=1 /∈

⋃
q∈Γ

`q(Y )

}
,
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Main result

Definition

A map f : X −→ Y is said to be:
(a) Non-contractive if f(0) = 0 and for every scalar α 6= 0 there
is a constant K(α) > 0 such that

‖f(αx)‖Y ≥ K(α) · ‖f(x)‖Y

for every x ∈ X.
(b) Strongly non-contractive if f(0) = 0 and for every scalar
α 6= 0 there is a constant K(α) > 0 such that

|ϕ(f(αx))| ≥ K(α) · |ϕ(f(x))|

for all x ∈ X and ϕ ∈ Y ′.

By the Hahn–Banach theorem, strongly non-contractive
functions are non-contractive.
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Main result

Example

Subhomogeneous functions (with f(0) = 0) are
non-contractive;

bounded and unbounded linear operators are strongly
non-contractive (hence non-contractive); and

homogeneous polynomials (continuous or not) are strongly
non-contractive (hence non-contractive).
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Main result

Theorem

Let E be an invariant sequence space over X, f : X −→ Y be a
function and Γ ⊆ (0,+∞].
(a) If f is non-contractive, then C(E, f,Γ) and C(E, f, 0) are
either empty or spaceable.
(b) If f is strongly non-contractive, then Cw(E, f,Γ) is either
empty or spaceable.
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Main result

Sketch of the proof for the case C(E, f,Γ).

Remember that

C(E, f,Γ) =

{
(xj)

∞
j=1 ∈ E : (f(xj))

∞
j=1 /∈

⋃
q∈Γ

`q(Y )

}
.

Let us fix a notation. For α = (αn)∞n=1 ∈ KN and w ∈ X we
denote

w ⊗ α = α⊗ w := (αnw)∞n=1 ∈ XN.

Assume that C(E, f,Γ) is non-empty and choose x ∈ C(E, f,Γ).
Since E is an invariant sequence space, then x0 ∈ E and the
condition f(0) = 0 guarantees that x0 ∈ C(E, f,Γ). Writing
x0 = (xj)

∞
j=1 we have that xj 6= 0 for every j.

Step 1: Split N into countably many infinite pairwise disjoint
subsets (Ni)

∞
i=1. For every i ∈ N set Ni = {i1 < i2 < . . .} and

define

yi =

∞∑
j=1

xj ⊗ eij ∈ XN.
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Main result

Sketch of the proof for the case C(E, f,Γ).

Observe that y0
i = x0, so 0 6= y0

i ∈ E, hence yi ∈ E for every i
because E is an invariant sequence space. For q ∈ Γ, q < +∞,

we have
∞∑
j=1
‖f(xj)‖qY = +∞ because x0 ∈ C(E, f,Γ). If

+∞ ∈ Γ, by the same reason we have sup
i
‖f(xi)‖Y = +∞. It

follows that each yi ∈ C(E, f,Γ).

Step 2: Define s̃ = 1 if E is a Banach space and s̃ = s if E is an
s-Banach space, 0 < s < 1. We need to prove that the operator

T : `s̃ −→ E , T ((ai)
∞
i=1) =

∞∑
i=1

aiyi,

is well defined. It is possible to prove that
∞∑
i=1
‖aiyi‖E < +∞ if

E is a Banach space and
∞∑
i=1
‖aiyi‖sE < +∞ if E is an s-Banach

space, 0 < s < 1.
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G. Botelho, V. V. Fávaro BWB - Maresias-SP 08/25/2014



Main result

Sketch of the proof for the case C(E, f,Γ).

Observe that y0
i = x0, so 0 6= y0

i ∈ E, hence yi ∈ E for every i
because E is an invariant sequence space. For q ∈ Γ, q < +∞,

we have
∞∑
j=1
‖f(xj)‖qY = +∞ because x0 ∈ C(E, f,Γ). If

+∞ ∈ Γ, by the same reason we have sup
i
‖f(xi)‖Y = +∞. It

follows that each yi ∈ C(E, f,Γ).

Step 2: Define s̃ = 1 if E is a Banach space and s̃ = s if E is an
s-Banach space, 0 < s < 1. We need to prove that the operator

T : `s̃ −→ E , T ((ai)
∞
i=1) =

∞∑
i=1

aiyi,

is well defined. It is possible to prove that
∞∑
i=1
‖aiyi‖E < +∞ if

E is a Banach space and
∞∑
i=1
‖aiyi‖sE < +∞ if E is an s-Banach

space, 0 < s < 1.
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Main result

Sketch of the proof for the case C(E, f,Γ).

In both cases the series
∞∑
i=1

aiyi converges in E, hence the

operator is well defined. It is easy to see that T is linear and
injective. Thus T (`s̃) is a closed infinite-dimensional subspace
of E.

Step 3: We have to show that if z = (zn)∞n=1 ∈ T (`s̃), z 6= 0,
then (f(zn))∞n=1 /∈

⋃
q∈Γ

`q(Y ). Given such a z, there are

sequences
(
a

(k)
i

)∞
i=1
∈ `s̃, k ∈ N, such that

z = limk→∞ T
((
a

(k)
i

)∞
i=1

)
in E.

Using the convergence below and the fact that f is
non-contractive, it is possible to prove (hardwork) that there is
a subsequence

(
zmj

)∞
j=1

of z = (zn)∞n=1 satisfying:
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Main result

∞∑
j=1

∥∥∥f(zmj)

∥∥∥q =∞, for all q ∈ Γ, if ∞ /∈ Γ, and

supj ‖f(zmj )‖ =∞, if ∞ ∈ Γ. This shows that
(f(zn))∞n=1 /∈

⋃
q∈Γ

`q(X) and completes the proof that

z ∈ C(E, f,Γ).�
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Applications

Applications

Definition

We say that

a linear operator u : X −→ Y is completely continuous if
u(xj) −→ u(x) in Y whenever xj

w−→ x in X.

For 0 < p ≤ q < +∞, we say that

a linear operator u : X −→ Y is absolutely (q; p)-summing if
(u(xj))

∞
j=1 ∈ `q(Y ) for each (xj)

∞
j=1 ∈ `wp (X).

an n-homogeneous polynomial P : X −→ Y is p-dominated
if (P (xj))

∞
j=1 ∈ `p/n(Y ) for each (xj)

∞
j=1 ∈ `wp (X).

By cw0 (X) we denote the closed subspace of `∞(X) formed by
weakly null X-valued sequences. It is easy to check that cw0 (X)
is an invariant sequence space over X.
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Applications

Corollary

(a) Let 1 ≤ p ≤ q < +∞ and let u : X −→ Y be a non-absolutely
(q, p)-summing linear operator. Then the set{

(xj)
∞
j=1 ∈ `wp (X) : (u(xj))

∞
j=1 /∈ `q(Y )

}
is spaceable.

(b) Let 0 < p < +∞ and let P : X −→ Y be a non-p-dominated
n-homogeneous polynomial. Then the set{

(xj)
∞
j=1 ∈ `wp (X) : (P (xj))

∞
j=1 /∈ `p/n(Y )

}
is spaceable.

(c) Let u : X −→ Y be a non-completely continuous linear operator.
Then the set {

(xj)
∞
j=1 ∈ cw0 (X) : (u(xj))

∞
j=1 /∈ c0(Y )

}
is spaceable. In particular, if X lacks the Schur property, then there
exists an infinite dimensional Banach space formed, up to the origin,
by weakly null but non-norm null X-valued sequences.
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G. Botelho, V. V. Fávaro BWB - Maresias-SP 08/25/2014



Applications

Corollary

(a) Let 1 ≤ p ≤ q < +∞ and let u : X −→ Y be a non-absolutely
(q, p)-summing linear operator. Then the set{

(xj)
∞
j=1 ∈ `wp (X) : (u(xj))

∞
j=1 /∈ `q(Y )

}
is spaceable.

(b) Let 0 < p < +∞ and let P : X −→ Y be a non-p-dominated
n-homogeneous polynomial. Then the set{

(xj)
∞
j=1 ∈ `wp (X) : (P (xj))

∞
j=1 /∈ `p/n(Y )

}
is spaceable.

(c) Let u : X −→ Y be a non-completely continuous linear operator.
Then the set {

(xj)
∞
j=1 ∈ cw0 (X) : (u(xj))

∞
j=1 /∈ c0(Y )

}
is spaceable. In particular, if X lacks the Schur property, then there
exists an infinite dimensional Banach space formed, up to the origin,
by weakly null but non-norm null X-valued sequences.
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Applications

Recall that a subset A of a topological vector space E is
α-lineable if A ∪ {0} contains an α-dimensional linear subspace
of E. And A is maximal dense-lineable if A ∪ {0} contains a
dense linear subspace V of E with dim(V ) = dim(E).

Proposition

If p > 0, then the sets{
(xj)

∞
j=1 ∈ c0(X) : (u(xj))

∞
j=1 /∈ c0(Y )

}
and{

(xj)
∞
j=1 ∈ `p(X) : (u(xj))

∞
j=1 /∈ `wp (Y )

}
are spaceable for every unbounded linear operator u : X −→ Y .
Moreover, if X is separable and p < +∞, then these subsets are
also maximal dense-lineable.
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Applications

Theorem (L. Bernal-González and M. Cabrera - JFA 2014)

Assume that M is a metrizable and separable topological vector
space. Let A ⊂M and α be an infinite cardinal number such
that A is α-lineable. If there exists a subset B ⊂M such that
A+B ⊂ A, A ∩B = ∅ and B is dense-lineable, then A ∪ {0}
contains a dense vector space D with dim(D) = α.
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Applications

Proof. It is not difficult to see that the spaceability of both sets
follows from the main theorem. We shall apply the
Bernal-Cabrera Theorem to prove the second assertion. Assume
that X is separable and p < +∞. It is clear that c0(X) and
`p(X) are separable as well. Let A be either C(c0(X), u, 0) or
Cw(`p(X), u, {p}). By the spaceability of A we have that
A ∪ {0} contains a c-dimensional subspace, where c is the
cardinality of the continuum. Let c00(X) denote the space of
eventually null X-valued sequences. It is clear that
A+ c00(X) ⊆ A, A ∩ c00(X) = ∅ and c00(X) is a dense infinite
dimensional subspace of c0(X) and `p(X). By the
Bernal-Cabrera Theorem, A ∪ {0} contains a c-dimensional
dense subspace, and the result follows because c0(X) and `p(X)
are c-dimensional (remember that they are separable infinite
dimensional Banach or quasi-Banach spaces). �
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Cw(`p(X), u, {p}). By the spaceability of A we have that
A ∪ {0} contains a c-dimensional subspace, where c is the
cardinality of the continuum. Let c00(X) denote the space of
eventually null X-valued sequences. It is clear that
A+ c00(X) ⊆ A, A ∩ c00(X) = ∅ and c00(X) is a dense infinite
dimensional subspace of c0(X) and `p(X). By the
Bernal-Cabrera Theorem, A ∪ {0} contains a c-dimensional
dense subspace, and the result follows because c0(X) and `p(X)
are c-dimensional (remember that they are separable infinite
dimensional Banach or quasi-Banach spaces). �
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G. Botelho, V. V. Fávaro BWB - Maresias-SP 08/25/2014



Applications

Proof. It is not difficult to see that the spaceability of both sets
follows from the main theorem. We shall apply the
Bernal-Cabrera Theorem to prove the second assertion. Assume
that X is separable and p < +∞. It is clear that c0(X) and
`p(X) are separable as well. Let A be either C(c0(X), u, 0) or
Cw(`p(X), u, {p}). By the spaceability of A we have that
A ∪ {0} contains a c-dimensional subspace, where c is the
cardinality of the continuum. Let c00(X) denote the space of
eventually null X-valued sequences. It is clear that
A+ c00(X) ⊆ A, A ∩ c00(X) = ∅ and c00(X) is a dense infinite
dimensional subspace of c0(X) and `p(X). By the
Bernal-Cabrera Theorem, A ∪ {0} contains a c-dimensional
dense subspace, and the result follows because c0(X) and `p(X)
are c-dimensional (remember that they are separable infinite
dimensional Banach or quasi-Banach spaces). �

G. Botelho, V. V. Fávaro BWB - Maresias-SP 08/25/2014



Applications

Proof. It is not difficult to see that the spaceability of both sets
follows from the main theorem. We shall apply the
Bernal-Cabrera Theorem to prove the second assertion. Assume
that X is separable and p < +∞. It is clear that c0(X) and
`p(X) are separable as well. Let A be either C(c0(X), u, 0) or
Cw(`p(X), u, {p}). By the spaceability of A we have that
A ∪ {0} contains a c-dimensional subspace, where c is the
cardinality of the continuum. Let c00(X) denote the space of
eventually null X-valued sequences. It is clear that
A+ c00(X) ⊆ A, A ∩ c00(X) = ∅ and c00(X) is a dense infinite
dimensional subspace of c0(X) and `p(X). By the
Bernal-Cabrera Theorem, A ∪ {0} contains a c-dimensional
dense subspace, and the result follows because c0(X) and `p(X)
are c-dimensional (remember that they are separable infinite
dimensional Banach or quasi-Banach spaces). �
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Applications

Example

Let X be an infinite dimensional Banach space and
0 < p < +∞. We know that `wp (X)− `p(X) is spaceable, that
is, there exists an infinite dimensional Banach/quasi-Banach
space formed, up to the origin, by X-valued sequences (xj)

∞
j=1

such that
∞∑
j=1
|ϕ(xj)|p < +∞ for every bounded linear functional

ϕ ∈ X ′ and
∞∑
j=1
‖xj‖p = +∞. Considering an unbounded linear

functional ϕ on X, the last Proposition yields the following dual
result: there exists an infinite dimensional
Banach/quasi-Banach space formed, up to the origin, by

X-valued sequences (xj)
∞
j=1 such that

∞∑
j=1
‖xj‖p < +∞ and

∞∑
j=1
|ϕ(xj)|p = +∞.
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