Polish- and Banach-representability

Representability in c_0 and ℓ_1 00000

Representations of ideals in Banach spaces

Barnabás Farkas¹

joint work with

Piotr Borodulin-Nadzieja² and Grzegorz Plebanek²

First Brazilian Workshop in Geometry of Banach Spaces

¹Kurt Gödel Research Center, University of Vienna ²Mathematical Institute, University of Wrocław

Representability in c_0 and ℓ_1 00000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Classical summable ideals

Definition

Let $h: \omega \to [0, \infty)$ be a sequence such that $\sum_{n \in \omega} h(n) = \infty$. Then the *summable ideal associated to* h is

$$\mathcal{I}_h = \left\{ A \subseteq \omega : \sum_{n \in A} h(n) < \infty \right\}$$
 (an F_σ P-ideal).

Representability in c_0 and ℓ_1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Classical summable ideals

Definition

Let $h: \omega \to [0, \infty)$ be a sequence such that $\sum_{n \in \omega} h(n) = \infty$. Then the *summable ideal associated to* h is

$$\mathcal{I}_h = \left\{ A \subseteq \omega : \sum_{n \in A} h(n) < \infty \right\}$$
 (an F_σ P-ideal).

Why $h: \omega \to [0, \infty)$? What if $h: \omega \to \mathbb{R}$?

Representability in c_0 and ℓ_1 00000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Classical summable ideals

Definition

Let $h: \omega \to [0, \infty)$ be a sequence such that $\sum_{n \in \omega} h(n) = \infty$. Then the *summable ideal associated to* h is

$$\mathcal{I}_h = \left\{ A \subseteq \omega : \sum_{n \in A} h(n) < \infty \right\}$$
 (an F_σ P-ideal).

Why $h: \omega \to [0, \infty)$? What if $h: \omega \to \mathbb{R}$? We have to change the definition: $A \in \mathcal{I}'_h$ if the sum of $(h(n))_{n \in A}$ is *unconditionally convergent*, that is, the net

$$\sum h \upharpoonright A = \left\{ s_h(F) = \sum_{n \in F} h(n) : F \in [A]^{<\omega} \right\}$$
 is convergent.

But we still have the same family of ideals: $A \in \mathcal{I}'_h$ iff $A \in \mathcal{I}_{|h|}$...

Polish- and Banach-representability

Representability in c_0 and ℓ_1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Generalized summable ideals

$$h:\omega
ightarrow ?$$

Representability in c_0 and ℓ_1 00000

Generalized summable ideals

$$h:\omega
ightarrow$$
?

Definition

Let *G* be a Polish Abelian group and $h: \omega \to G$ such that $\sum h$ is not convergent. Then the *generalized summable ideal* associated to *G* and *h* is

$$\mathcal{I}_{h}^{G} = \Big\{ A \subseteq \omega : \sum h \upharpoonright A \text{ is convergent} \Big\}.$$

Representability in c_0 and ℓ_1 00000

Generalized summable ideals

$$h:\omega
ightarrow$$
?

Definition

Let *G* be a Polish Abelian group and $h: \omega \to G$ such that $\sum h$ is not convergent. Then the *generalized summable ideal* associated to *G* and *h* is

$$\mathcal{I}_{h}^{G} = \Big\{ A \subseteq \omega : \sum h \restriction A \text{ is convergent} \Big\}.$$

We say that an ideal \mathcal{J} on ω is *representable in* G if there is an $h : \omega \to G$ such that $\mathcal{J} = \mathcal{I}_h^G$. If **C** is a class of groups then \mathcal{J} is **C**-*representable* if it is representable in a $G \in \mathbf{C}$.

Polish- and Banach-representability

Representability in c_0 and ℓ_1 00000

Examples

Example

 \mathcal{J} is representable in \mathbb{R}^n (or in \mathbb{T}^n) iff \mathcal{J} is a summable ideal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Examples

Example

 \mathcal{J} is representable in \mathbb{R}^n (or in \mathbb{T}^n) iff \mathcal{J} is a summable ideal.

Example

 \mathcal{J} is representable in \mathbb{R}^{ω} (or in \mathbb{T}^{ω}) iff \mathcal{J} is the intersection of countable many summable ideals. These ideals are not necessarily F_{σ} .

Examples

Example

 \mathcal{J} is representable in \mathbb{R}^n (or in \mathbb{T}^n) iff \mathcal{J} is a summable ideal.

Example

 \mathcal{J} is representable in \mathbb{R}^{ω} (or in \mathbb{T}^{ω}) iff \mathcal{J} is the intersection of countable many summable ideals. These ideals are not necessarily F_{σ} .

Example

If $(G_k)_{k \in \omega}$ is a sequence of non-trivial discrete Abelian groups, then \mathcal{J} is representable in $\prod_{k \in \omega} G_k$ iff \mathcal{J} is representable in \mathbb{Z}_2^{ω} iff there is a family $\{X_k : k \in \omega\} \subseteq [\omega]^{\omega}$ such that

$$\mathcal{J} = \Big\{ \mathbf{A} \subseteq \omega \colon \forall \ \mathbf{k} \in \omega \ |\mathbf{A} \cap \mathbf{X}_{\mathbf{k}}| < \omega \Big\}.$$

Examples

Example

The density zero ideal

$$\mathcal{Z} = \left\{ A \subseteq \omega : \frac{|A \cap n|}{n} \to 0 \right\} = \left\{ A \subseteq \omega : \frac{|A \cap [2^n, 2^{n+1})|}{2^n} \to 0 \right\}$$

(an $F_{\sigma\delta}$ P-ideal) is representable in c_0 :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Polish- and Banach-representability

Representability in c_0 and ℓ_1

Examples

$$h(0) = (0, 0, 0, 0, 0, 0, ...)$$

$$h(1) = (0, 1, 0, 0, 0, 0, ...)$$

$$h(2) = (0, 0, 1/2, 0, 0, ...)$$

$$h(3) = (0, 0, 1/2, 0, 0, ...)$$

$$h(4) = (0, 0, 0, 1/4, 0, ...)$$

$$h(5) = (0, 0, 0, 1/4, 0, ...)$$

$$h(6) = (0, 0, 0, 1/4, 0, ...)$$

$$h(7) = (0, 0, 0, 1/4, 0, ...)$$

$$\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$$

If
$$A \subseteq \omega$$
 then $\sum h \upharpoonright A$ is convergent \iff
 $\sum_{n \in A} h(n) = \left(0, \frac{|A \cap [2, 4)|}{2}, \frac{|A \cap [4, 8)|}{4}, \dots\right) \in c_0 \iff A \in \mathcal{Z}.$

Why are we doing this?

- Our approach reveals some "geometric" properties of ideals and therefore it can be helpful in classifying certain classes of ideals.
- (ii) These methods can be useful in providing new interesting examples of non-pathological analytic P-ideals (see later).
- (iii) Representability of certain ideals in a Banach space can be seen as a combinatorial property of the space itself and this may lead us to develop new methods in the theory of Banach spaces.

Polish- and Banach-representability

Representability in c_0 and ℓ_1

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Polish- and Banach-representability

Theorem

 ${\mathcal J}$ is Polish-representable iff ${\mathcal J}$ is an analytic P-ideal.

Theorem

 ${\mathcal J}$ is Banach-representable iff ${\mathcal J}$ is a non-path. analytic P-ideal.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Analytic P-ideals

A function $\varphi: \mathcal{P}(\omega) \to [0,\infty]$ is

- a *submeasure* (on ω) if φ(Ø) = 0, φ is monotonic, subadditive, and φ({n}) < ∞ for every n ∈ ω;
- *lower semicontinuous* (lsc, in short) if $\varphi(X) = \lim_{n \to \infty} \varphi(X \cap n)$ for each $X \subseteq \omega$.

If φ is an lsc submeasure then let

$$\begin{split} & \operatorname{Fin}(\varphi) = \left\{ A \subseteq \omega : \varphi(A) < \infty \right\} \quad (\text{an } F_{\sigma} \text{ ideal}). \\ & \operatorname{Exh}(\varphi) = \left\{ A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus n) = 0 \right\} \quad (\text{an } F_{\sigma\delta} \text{ P-ideal}). \end{split}$$

Analytic P-ideals

Theorem (Mazur, Solecki)

Let \mathcal{J} be an ideal on ω . Then the following are equivalent:

(i) \mathcal{J} is an analytic *P*-ideal.

(ii) $\mathcal{J} = \operatorname{Exh}(\varphi)$ for some (finite) lsc submeasure φ .

(iii) There is a Polish group topology on \mathcal{J} (with respect to \triangle) such that the Borel structure of this topology coincides with the Borel structure inherited from $\mathcal{P}(\omega)$.

Furthermore, \mathcal{J} is an F_{σ} P-ideal iff $\mathcal{J} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi)$ for some lsc submeasure φ .

Polish- and Banach-representability

Representability in c_0 and ℓ_1

Examples

• Classical summable ideals.

Polish- and Banach-representability

Representability in c_0 and ℓ_1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Examples

- Classical summable ideals.
- (Generalized) Density ideals: Let μ
 ⁱ = (μ_n)_{n∈ω} be a sequence of (sub)measures on ω with pairwise disjoint finite supports with lim sup_{n→∞} μ_n(ω) > 0. Then the (generalized) density ideal associated to μ
 ⁱ is

$$\mathcal{Z}_{\vec{\mu}} = \big\{ \mathbf{A} \subseteq \omega : \mu_n(\mathbf{A}) \to \mathbf{0} \big\}.$$

Polish- and Banach-representability

Representability in c_0 and ℓ_1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Examples

- Classical summable ideals.
- (Generalized) Density ideals: Let μ
 ⁱ = (μ_n)_{n∈ω} be a sequence of (sub)measures on ω with pairwise disjoint finite supports with lim sup_{n→∞} μ_n(ω) > 0. Then the (generalized) density ideal associated to μ
 ⁱ is

$$\mathcal{Z}_{\vec{\mu}} = \big\{ \mathbf{A} \subseteq \omega : \mu_n(\mathbf{A}) \to \mathbf{0} \big\}.$$

• The trace of the null ideal:

$$\operatorname{tr}(\mathcal{N}) = \big\{ A \subseteq 2^{<\omega} : \lambda \{ f \in 2^{\omega} : \exists^{\infty} n \ f \upharpoonright n \in A \} = 0 \big\}.$$

Polish- and Banach-representability

Representability in c_0 and ℓ_1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Examples

- Classical summable ideals.
- (Generalized) Density ideals: Let μ
 ⁱ = (μ_n)_{n∈ω} be a sequence of (sub)measures on ω with pairwise disjoint finite supports with lim sup_{n→∞} μ_n(ω) > 0. Then the (generalized) density ideal associated to μ
 ⁱ is

$$\mathcal{Z}_{\vec{\mu}} = \big\{ \mathbf{A} \subseteq \omega : \mu_n(\mathbf{A}) \to \mathbf{0} \big\}.$$

• The trace of the null ideal:

$$\operatorname{tr}(\mathcal{N}) = \big\{ A \subseteq \mathbf{2}^{<\omega} : \lambda \{ f \in \mathbf{2}^{\omega} : \exists^{\infty} n \ f \upharpoonright n \in A \} = \mathbf{0} \big\}.$$

• Farah's ideal:

$$\mathcal{J}_{\mathcal{F}} = \bigg\{ A \subseteq \omega : \sum_{n \in \omega} \frac{\min\{n, |A \cap [2^n, 2^{n+1})|\}}{n^2} < \infty \bigg\}.$$

Examples

- Classical summable ideals.
- (Generalized) Density ideals: Let μ
 ⁱ = (μ_n)_{n∈ω} be a sequence of (sub)measures on ω with pairwise disjoint finite supports with lim sup_{n→∞} μ_n(ω) > 0. Then the (generalized) density ideal associated to μ
 ⁱ is

$$\mathcal{Z}_{\vec{\mu}} = \big\{ \mathbf{A} \subseteq \omega : \mu_n(\mathbf{A}) \to \mathbf{0} \big\}.$$

• The trace of the null ideal:

$$\operatorname{tr}(\mathcal{N}) = \big\{ A \subseteq 2^{<\omega} : \lambda \{ f \in 2^{\omega} : \exists^{\infty} n \ f \upharpoonright n \in A \} = 0 \big\}.$$

• Farah's ideal:

$$\mathcal{J}_{\mathcal{F}} = \bigg\{ A \subseteq \omega : \sum_{n \in \omega} \frac{\min\{n, |A \cap [2^n, 2^{n+1})|\}}{n^2} < \infty \bigg\}.$$

• Tsirelson ideals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non-pathological ideals

A submeasure φ is **non-pathological** if for every $A \subseteq \omega$

 $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a measure on } \mathcal{P}(\omega) \text{ and } \mu \leq \varphi \}.$

An analytic P-ideal \mathcal{J} is *non-pathological* if $\mathcal{J} = \text{Exh}(\varphi)$ for some non-pathological lsc submeasure φ .

(日) (日) (日) (日) (日) (日) (日)

Non-pathological ideals

A submeasure φ is *non-pathological* if for every $A \subseteq \omega$

 $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a measure on } \mathcal{P}(\omega) \text{ and } \mu \leq \varphi \}.$

An analytic P-ideal \mathcal{J} is *non-pathological* if $\mathcal{J} = \text{Exh}(\varphi)$ for some non-pathological lsc submeasure φ .

Theorem (Hrušák)

An analytic P-ideal \mathcal{J} is non-pathological iff $\mathcal{J} \upharpoonright X \leq_{\mathcal{K}} \mathcal{Z}$ (i.e. there is an $f : \omega \to X$ such that $f^{-1}[A] \in \mathcal{Z}$ for every $A \in \mathcal{J}$) for every $X \in \mathcal{P}(\omega) \setminus \mathcal{J}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Representability in c_0

Proposition

An ideal \mathcal{J} is representable in c_0 iff there is a family $\{\mu_k : k \in \omega\}$ of measures on ω such that $\mathcal{J} = \text{Exh}(\varphi)$ where $\varphi = \sup\{\mu_k : k \in \omega\}$ and $\{k : n \in \text{supp}(\mu_k)\}$ is finite for each *n*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Representability in c_0

Proposition

An ideal \mathcal{J} is representable in c_0 iff there is a family $\{\mu_k : k \in \omega\}$ of measures on ω such that $\mathcal{J} = \operatorname{Exh}(\varphi)$ where $\varphi = \sup\{\mu_k : k \in \omega\}$ and $\{k : n \in \operatorname{supp}(\mu_k)\}$ is finite for each *n*.

Example

Density ideals are representable in c_0 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Representability in c_0

We show that tr(N), Farah's ideal, and Tsirelson ideals are not representable in c_0 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Representability in c_0

We show that tr(N), Farah's ideal, and Tsirelson ideals are not representable in c_0 .

Proposition

If \mathcal{J} is representable in c_0 and *totally bounded* (that is, if $\mathcal{J} = \operatorname{Exh}(\varphi)$ then $\varphi(\omega) < \infty$), then \mathcal{J} is a generalized density ideal.

Representability in c₀

We show that tr(N), Farah's ideal, and Tsirelson ideals are not representable in c_0 .

Proposition

If \mathcal{J} is representable in c_0 and *totally bounded* (that is, if $\mathcal{J} = \operatorname{Exh}(\varphi)$ then $\varphi(\omega) < \infty$), then \mathcal{J} is a generalized density ideal.

Corollary

 $tr(\mathcal{N})$ is not representable in c_0 .

Proof:

1. $tr(\mathcal{N})$ is not a generalized density ideal (because e.g. it is *summable-like*).

2. Hrusak+Hernandez-Hernandez: tr(\mathcal{N}) is totally bounded (because e.g. $\mathfrak{s}(tr(\mathcal{N})) = \omega$).

Polish- and Banach-representability

Representability in c_0 and ℓ_1

Representability in c_0

Theorem

If a tall F_{σ} ideal is representable in c_0 iff it is a summable ideal.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Polish- and Banach-representability

Representability in c_0 and ℓ_1

Representability in c_0

Theorem

If a tall F_{σ} ideal is representable in c_0 iff it is a summable ideal.

Corollary

Farah's ideal and Tsirelson ideals are not representable in c_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Polish- and Banach-representability

Representability in c_0 and ℓ_1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Representability in ℓ_1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Representability in ℓ_1

Theorem

There is a tall F_{σ} P-ideal (the **Rademacher-ideal**) which is representable in ℓ_1 but not a summable ideal.

Representability in ℓ_1

Theorem

There is a tall F_{σ} P-ideal (the **Rademacher-ideal**) which is representable in ℓ_1 but not a summable ideal.

Proof (sketch): Our first, still unfinished (but 99% working⁽³⁾) idea was to build blocks of the form $(0, \ldots, 0, \varepsilon_0/a_n, \ldots, \varepsilon_{n-1}/a_n, 0, \ldots)$ where $\varepsilon_i \in \{\pm 1\}$ and a_n is an appropriate sequence tending to ∞ . Problem: If we add all 2^n possible new elements to our family, then we should understand the following constant:

$$\inf\left\{\frac{\max\{\|\sum F\|: \emptyset \neq F \subseteq S\}}{\sum\{\|v\|: v \in S\}} : \emptyset \neq S \in [X \setminus \{\mathbf{0}\}]^{<\omega}\right\}$$

Representability in ℓ_1

Theorem

There is a tall F_{σ} P-ideal (the **Rademacher-ideal**) which is representable in ℓ_1 but not a summable ideal.

Proof (sketch): Our first, still unfinished (but 99% working⁽³⁾) idea was to build blocks of the form $(0, \ldots, 0, \varepsilon_0/a_n, \ldots, \varepsilon_{n-1}/a_n, 0, \ldots)$ where $\varepsilon_i \in \{\pm 1\}$ and a_n is an appropriate sequence tending to ∞ . Problem: If we add all 2^n possible new elements to our family, then we should understand the following constant:

$$\inf\left\{\frac{\max\{\|\sum F\|: \emptyset \neq F \subseteq S\}}{\sum\{\|v\|: v \in S\}} : \emptyset \neq S \in [X \setminus \{\mathbf{0}\}]^{<\omega}\right\}.$$

Piotr's refinement: At the *n*th stage we add "Rademacher-like" vectors only and then we can apply Khintchine's inequality etc.

Questions

Question

General version: Is there any reasonable characterization of \mathbb{R}^{ω} -, or c_0 -, or ℓ_1 -representable ideals? Reasonable versions:

- Which ideals can be covered by a summable ideal?
- Are all ℓ_1 -representable ideals F_{σ} ?

Question

Assume that all non-pathological analytic P-ideals are representable in a Banach space X. Does it imply that X is universal for the class of all separable Banach spaces?

Question

What can we say about ideals representable in (completions of) weak topologies?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thank you for your attention!