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1.a. The Hales–Jewett theorem

The following result is due to Hales & Jewett (1963), and the
corresponding bounds are due to Shelah (1988).

Theorem
For every pair k , r of positive integers with k > 2 there exists a
positive integer N with the following property. If n > N, then for
every alphabet A with |A| = k and every r -coloring of An there
exists a variable word w over A of length n such that the set
{w(a) : a ∈ A} is monochromatic. The least positive integer
with this property is denoted by HJ(k , r).

Moreover, the numbers HJ(k , r) are upper bounded by a
primitive recursive function belonging to the class E5.



1.b. The Hales–Jewett theorem

Shelah’s proof proceeds by induction on the cardinality of the
finite alphabet A.

The general inductive step splits into two parts. First, given a
finite coloring c of An, one finds a “subspace” W of An of large
dimension such that the coloring c restricted on W is “simple”.
Once the coloring has been made “simple”, the proof is
completed with an appropriate application of the inductive
assumptions.

Of course, to implement this strategy, one has to define what a
“simple” coloring actually is. We will come up again on this
issue later on.



2.a. Colorings of combinatorial spaces

Let A be a finite alphabet with |A| > 2 and d > 1.

A d-dimensional combinatorial space of A<N is a set of the
form

{w0(a0)a. . .awd−1(ad−1) : a0, . . . ,ad−1 ∈ A}

where w0, . . . ,wd−1 are variable words over A. (Note that for
every combinatorial space W of A<N there exists a unique
positive integer n such that W ⊆ An.) A 1-dimensional
combinatorial space is called a combinatorial line.

For every combinatorial space W of A<N and every positive
integer m 6 dim(W ) by Subspm(W ) we denote the set of all
m-dimensional combinatorial spaces of A<N which are
contained in W .



2.b. Colorings of combinatorial spaces

The following result is a variant of the Graham–Rothschild
theorem (1971). The corresponding bounds are essentially due
to Shelah (1988).

Theorem
For every quadruple k ,d ,m, r of positive integers with k > 2
and d > m there exists a positive integer N with the following
property. If n > N and A is an alphabet with |A| = k, then for
every n-dimensional combinatorial space W of A<N and every
r -coloring of Subspm(W ) there exists V ∈ Subspd (W ) such that
the set Subspm(V ) is monochromatic. The least positive integer
with this property is denoted by GR(k ,d ,m, r).

Moreover, the numbers GR(k ,d ,m, r) are upper bounded by a
primitive recursive function belonging to the class E6.



3. The Carlson–Simpson theorem

Theorem (Carlson & Simpson – 1984)
For every finite alphabet A with |A| > 2 and every finite coloring
of the set of all words over A there exist a word w over A and a
sequence (un) of left variable words over A such that the set

{w} ∪
{

wau0(a0)a. . .aun(an) : n ∈ N and a0, . . . ,an ∈ A
}

is monochromatic.

The Carlson–Simpson Theorem is not only an
infinite-dimensional extension of the Hales–Jewett theorem, but
also refines the Hales–Jewett theorem by providing information
on the structure of the wildcard set of the monochromatic
variable word.



4.a. Carlson’s theorem

Let A be a finite alphabet with |A| > 2 and w = (wn) a
sequence of variable word over A.

An extracted variable word of (wn) is a variable word over A of
the form

wi0(α0)a. . .awin (αn)

where n ∈ N, i0 < · · · < in and α0, . . . , αn ∈ A ∪ {x}. (Note that
there exists i ∈ {0, . . . ,n} such that αi = x .)

By EV[w] we denote the set of all extracted variable words of w.



4.b. Carlson’s theorem

Theorem (Carlson – 1988)
Let A be a finite alphabet with |A| > 2 and w = (wn) a
sequence of variable words over A. Then for every finite
coloring of EV[w] there exists an extracted subsequence
v = (vn) of w such that the set EV[v] is monochromatic.

Carlson’s theorem is one of the finest results in Ramsey theory.
It unifies and extends several results, including the
Carlson–Simpson theorem, Hindman’s theorem and many
more.



5.a. The density Hales–Jewett theorem

The following fundamental result of Ramsey theory is known as
the density Hales–Jewett theorem.

Theorem (Furstenberg & Katznelson – 1991)
For every integer k > 2 and every 0 < δ 6 1 there exists a
positive integer N with the following property. If n > N and A is
an alphabet with |A| = k, then every D ⊆ An with |D| > δ|An|
contains a combinatorial line of An. The least positive integer N
with this property is denoted by DHJ(k , δ).

The best known upper bounds for the numbers DHJ(k , δ) have
an Ackermann-type dependence with respect to k .
(Polymath, 2009 — D, Kanellopoulos & Tyros, 2012).

It is a central open problem to decide whether the numbers
DHJ(k , δ) are upper bounded by a primitive recursive function.



5.b. The density Hales–Jewett theorem

The density Hales–Jewett theorem has a number of
consequences, including:
• Szemerédi’s theorem (1975);
• the multidimensional Szemerédi theorem (Furstenberg &

Katznelson, 1978);
• the density version of the affine Ramsey theorem

(Furstenberg & Katznelson, 1985);
• Szemerédi’s theorem for abelian groups (Furstenberg &

Katznelson, 1985);
• the IPr -Szemerédi theorem (Furstenberg & Katznelson,

1985).



6.a. The density Carlson–Simpson theorem

Theorem (D, Kanellopoulos & Tyros – 2012)
For every finite alphabet A with |A| > 2 and every set D of
words over A satisfying

lim sup
n→∞

|D ∩ An|
|An|

> 0

there exist a word w over A and a sequence (un) of left variable
words over A such that the set

{w} ∪
{

wau0(a0)a. . .aun(an) : n ∈ N and a0, . . . ,an ∈ A
}

is contained in D.



6.b. The density Carlson–Simpson theorem

The proof is based on the following finite version.

Theorem (D, Kanellopoulos & Tyros – 2012)
For every pair k ,m of positive integers with k > 2 and every
0 < δ 6 1 there exists a positive integer N with the following
property. If A is an alphabet with |A| = k, L is a finite subset of
N of cardinality at least N and D is a set of words over A
satisfying |D ∩ An| > δ|An| for every n ∈ L, then there exist a
word w over A and a finite sequence (un)m−1

n=0 of left variable
words over A such that the set

{w} ∪
{

wau0(a0)a. . .awn(an) : n < m and a0, . . . ,an ∈ A
}

is contained in D. The least positive integer with this property is
denoted by DCS(k ,m, δ).



6.c. The density Carlson–Simpson theorem

The main point is that the result is independent of the position
of the finite set L. This is a strong structural property which
does not follow from the corresponding infinite version with
standard arguments based on compactness.

We also note that

DHJ(k , δ) 6 DCS(k ,1, δ).

The proof is effective and yields explicit upper bounds for the
numbers DCS(k ,m, δ). However, these upper bounds also have
an Ackermann-type dependence with respect to k .



7. Probabilistic versions

The probabilistic version of a density result asserts that a
dense set of a discrete structure not only will contain a
substructure of a certain kind (arithmetic progression,
combinatorial line, Carlson–Simpson space, etc.) but actually a
non-trivial portion of them.



7.a. Probabilistic versions:
Varnavides’ theorem

A typical example is the following probabilistic version of
Szemerédi’s theorem, essentially due to Varnavides (1959).

For every integer k > 2 and every 0 < δ 6 1 there exists a
strictly positive constant c(k , δ) with the following property.
If n > c(k , δ)−1, then every D ⊆ [n] with |D| > δn contains at
least c(k , δ)n2 arithmetic progressions of length k.

(Here, [n] := {1, . . . ,n}.) The problem of obtaining good
estimates for the constant c(k , δ) is of fundamental importance.



7.b. Probabilistic versions:
Erdős & Simonovits (1983) – supersaturation

A similar phenomenon occurs in the context of graphs and
uniform hypergraphs.
• For every positive integer n there exists a graph G on n

vertices with |E(G)| = bn2/4c and not containing a triangle,
that is, a copy of K 2

3 (the complete graph on 3 vertices).
• On the other hand, if |E(G)| > n2/4, then G contains a

triangle (Mantel’s theorem, 1907).
• Moreover, if |E(G)| = c

(n
2

)
, then G contains at least

c(2c − 1)
(n

3

)
+ o(n3) triangles (Goodman).

It is a famous open problem (hypergraph Turán problem) to
compute the critical threshold for K r

t (the complete r -uniform
hypergraph on t vertices) for any t > r > 2.



7.c. Probabilistic versions:
balanced words

Contrary to what happens for the previous structures, there is
no probabilistic version of the density Hales–Jewett theorem.

Example
A nonempty word w = (w0, . . . ,wn−1) over a finite alphabet A is
called balanced if for every a ∈ A we have∣∣∣ |{i ∈ {0, . . . ,n − 1} : wi = a}| − n

|A|

∣∣∣ 6 n2/3.

Then we have PAn (Balanced) = 1− o(1) but

P
({

L ∈ Lines(An) : L ⊆ Balanced}
)

= o(1).

(Here, all measures are uniform probability measures.)



7.d. Probabilistic versions:
density Hales–Jewett theorem (cont’d)

In spite of the previous example, it turns out that dense subsets
of hypercubes indeed contain plenty of combinatorial lines, but
when restricted on appropriately chosen combinatorial spaces.
In other words, there is a “local” probabilistic version of the
density Hales–Jewett theorem. This information is one of the
key components of all known combinatorial proofs of the
density Hales–Jewett theorem.

The method developed in order to obtain this “local”
probabilistic version is quite general and works for most
combinatorial structures of interest (including Carlson–Simpson
spaces, polynomial spaces and many more).



8. Pseudorandomness

The regularity method is a remarkable discovery of
Szemerédi asserting that dense sets of discrete structures are
inherently pseudorandom. The method was first developed in
the context of graphs, but it was realized recently that it can be
formulated as an abstract probabilistic principle.

Convention: all probability spaces will be standard Borel.



8.a. Pseudorandomness:
martingale difference sequences

A martingale difference sequence is a sequence (di)
n
i=0 of

random variables on a probability space (Ω,F ,P) of the form

(i) d0 = f0, and (ii) di = fi − fi−1 if n > 1 and i ∈ [n]

where (fi)n
i=0 is a martingale.

(P1) Monotone basic sequences in Lp for any p > 1, and
orthogonal in L2.

(P2) (Burkholder) Unconditional in Lp for any p > 1.
(P3) Satisfy a lower `2 estimate in Lp for any 1 < p 6 2, i.e.,

( n∑
i=0

‖di‖2Lp

)1/2
6
( 4

p − 1

)
·
∥∥ n∑

i=0

di
∥∥

Lp



8.b.1. Pseudorandomness: semirings

Definition
Let Ω be a nonempty set and k a positive integer. Also let S be
a collection of subsets of Ω. We say that S is a k -semiring on
Ω if the following properties are satisfied.
(a) We have that ∅,Ω ∈ S.
(b) For every S,T ∈ S we have that S ∩ T ∈ S.
(c) For every S,T ∈ S there exist ` ∈ [k ] and pairwise disjoint

sets R1, . . . ,R` ∈ S such that S \ T = R1 ∪ · · · ∪ R`.
If f ∈ L1(Ω,F ,P) and S ⊆ F is a k -semiring, then we set

‖f‖S = sup
{∣∣ ∫

A
f dP

∣∣ : A ∈ S
}
.

The quantity ‖f‖S will be called the S-uniformity norm of f .



8.b.2. Pseudorandomness: semirings

• Every algebra of sets is a 1-semiring.
• The collection of all intervals of a totally ordered set is a

2-semiring.
• Let m be a positive integer and for every i ∈ [m] let Si be a

ki -semiring on Ω. Then the family

S =
{

X1 ∩ · · · ∩ Xm : Xi ∈ Si for every i ∈ [m]
}

is a
(∑m

i=1 ki
)
-semiring on Ω.



8.b.3. Pseudorandomness: semirings

Example
Let d > 2 and V1, . . . ,Vd nonempty finite sets.

The family

Smin =
{

X1 × · · · × Xd : Xi ⊆ Vi for every i ∈ [d ]
}

of all rectangles of V1 × · · · × Vd is a d-semiring.

The Smin-uniformity norm is known as the cut norm and was
introduced by Frieze and Kannan. (Here, we view the product
V1 × · · · × Vd as a discrete probability space equipped with the
uniform probability measure.)



8.b.4. Pseudorandomness: semirings

Example (cont’d)
Let d > 2 and V1, . . . ,Vd nonempty finite sets.

For every i ∈ [d ] let Ai be the algebra of all subsets of
V1 × · · · × Vd not depending on the i-th coordinate. That is,
X ∈ Ai if X is of the form B × Vi with B ⊆

∏
j 6=i Vj .

Then the family

Smax =
{

X1 ∩ · · · ∩ Xd : Xi ∈ Ai for every i ∈ [d ]
}

is a d-semiring on V1 × · · · × Vd .

The Smax-uniformity norm is known as the Gowers box norm
and was introduced by Gowers.



8.b.5. Pseudorandomness: semirings

Example
Let A be a finite alphabet with |A| > 2 and n > 1.

For every {a,b} ∈
(A

2

)
let A{a,b} be the algebra on An consisting

of all subsets of An which are (a,b)-insensitive (Shelah).

Then the family S(An) defined by

X ∈ S(An)⇔ X =
⋂

{a,b}∈(A
2)

X{a,b}

where X{a,b} ∈ A{a,b} for every {a,b} ∈
(A

2

)
, is a K -semiring on

An with K = |A|(|A|+ 1)2−1.



8.c.1. Pseudorandomness:
a decomposition of random variables

Theorem
Let k be a positive integer, 0 < ε 6 1 and p > 1. Also let
F : N→ N be an increasing function. Finally, let (Ω,F ,P) be a
probability space and S a k-semiring on Ω with S ⊆ F . Then for
every f ∈ Lp(Ω,F ,P) with ‖f‖Lp 6 1 there exist
(i) a partition P of Ω with P ⊆ S and |P| = Ok ,ε,p,F (1), and

(ii) a decomposition f = fstr + ferr + funf

such that the following are satisfied.
(a) The function fstr is constant on each S ∈ P. Moreover, if f is

non-negative, then both fstr and fstr + ferr are non-negative.
(b) We have the estimates ‖ferr‖Lp 6 ε and ‖funf‖S 6 1

F (|P|) .



8.c.2. Pseudorandomness:
a decomposition of random variables

The case “p = 2” is due to Tao (2006). His approach, however,
is somewhat different since he works with σ-algebras instead of
k -semirings. The general case is due to D, Kanellopoulos &
Karageorgos (2014).

Applying this decomposition for various semirings we obtain:
• Szemerédi’s regularity lemma – Smin;
• a regularity lemma for uniform hypergraphs – Smax;
• a regularity lemma for hypercubes – S(An);
• a regularity lemma for Lp graphons – Smin.



8.d.1. Pseudorandomness:
a concentration inequality for product spaces

Let (Ω1,F1,P1), . . . , (Ωn,Fn,Pn) be a finite sequence of
probability spaces and denote by (Ω,F ,P) their product. More
generally, for every nonempty I ⊆ [n] by (ΩI ,F I ,P I) we denote
the product of the spaces {(Ωi ,Fi ,Pi) : i ∈ I}.

Let I ⊆ [n] be such that I and Ic := [n] \ I are nonempty. For
every integrable random variable f : Ω→ R and every x ∈ ΩI let
fx : ΩIc → R be the section of f at x, that is, fx(y) = f (x,y) for
every y ∈ ΩIc . Fubini’s theorem asserts that the random
variable x 7→ E(fx) is integrable and satisfies∫

E(fx) dPI = E(f ).



8.d.2. Pseudorandomness:
a concentration inequality for product spaces

Theorem (D, Kanellopoulos, Tyros – 2014)
Let 0 < ε 6 1 and 1 < p 6 2, and set

c(ε,p) =
ε4(p − 1)2

38
.

Also let n be a positive integer with n > c(ε,p)−1 and let
(Ω,F ,P) be the product of a finite sequence
(Ω1,F1,P1), . . . , (Ωn,Fn,Pn) of probability spaces. Then for
every f ∈ Lp(Ω,F ,P) with ‖f‖Lp 6 1 there exists an interval
J ⊆ [n] with Jc 6= ∅ and |J| > c(ε,p)n, such that for every
nonempty I ⊆ J we have

PI
(
{x ∈ ΩI : |E(fx)− E(f )| 6 ε}

)
> 1− ε.



8.d.3. Pseudorandomness:
a concentration inequality for product spaces

Corollary

Let 0 < ε 6 1 and 1 < p 6 2. If n > c(ε,p)−1 and (Ω,F ,P) is
the product of a finite sequence (Ω1,F1,P1), . . . , (Ωn,Fn,Pn) of
probability spaces, then for every A ∈ F there exists an interval
J ⊆ [n] with Jc 6= ∅ and |J| > c(ε,p)n, such that for every
nonempty I ⊆ J we have

PI

({
x ∈ ΩI : |P Ic(Ax)− P(A)| 6 εP(A)1/p}) > 1− ε.

This result does not hold true for p = 1 (thus, the range of p in
the previous theorem is optimal).



8.d.4. Pseudorandomness:
a concentration inequality for product spaces

Applying this concentration inequality for various product
spaces we obtain a (new type of) regularity lemma for a number
of discrete structures such as:
• hypercubes;
• Carlson–Simpson spaces;
• polynomial Hales–Jewett spaces.



8.d.5. Pseudorandomness:
a concentration inequality for product spaces

Lemma
Let k ,m be positive integers with k > 2 and 0 < ε 6 1. Also let
A be an alphabet with |A| = k and n a positive integer with

n >
76 m k3m

ε3 .

Then for every subset D of An there exists an interval I ⊆ [n]
with |I| = m such that for every t ∈ AI we have

|PAIc (Dt )− P(D)| 6 ε

where Dt = {s ∈ AIc
: (t , s) ∈ D} is the section of D at t.

(Here, all measures are uniform probability measures.)



9.a. Probabilistic versions (cont’d)

We can now give an outline of the method to obtain “local”
probabilistic versions of density results (including, in particular,
the density Hales–Jewett theorem).

STEP 1: By an application of Szemerédi’s regularity method,
we show that a given dense set D of our “structured” set S is
sufficiently pseudorandom. This enables us to model the set D
as a family of measurable events {Dt : t ∈ R} in a probability
space (Ω,F ,P) indexed by a Ramsey space R closely related,
of course, with R. The measure of the events is controlled by
the density of D.



9.b. Probabilistic versions (cont’d)

STEP 2: We apply coloring arguments and our basic density
result to show that there exists a “substructure” R′ of R such
that the events in the subfamily {Dt : t ∈ R′} are highly
correlated. The reasoning can be traced in an old paper of
Erdős and Hajnal (1964).

STEP 3: We use a double counting argument to locate a
“substructure” S ′ of S such that the set D contains a non-trivial
portion of subsets of S ′ of the desired kind (combinatorial lines,
Carlson–Simpson spaces, etc.).



9.c. Probabilistic versions (cont’d)

For every k > 2 and 0 < δ 6 1 let n0 = DHJ(k , δ/2) and set

ζ(k , δ) =
δ/2

(k + 1)n0 − kn0
.

Fact
If A is an alphabet with |A| = k, then for every combinatorial
space W of A<N of dimension at least n0 and every family{

Dw : w ∈W
}

of measurable events in a probability space
(Ω,F ,P) satisfying P(Dw ) > δ for every w ∈W, there exists a
combinatorial line L of W such that

P
( ⋂

w∈L

Dw

)
> ζ(k , δ).



9.d. Probabilistic versions (cont’d)

Theorem (D, Kanellopoulos & Tyros – 2013)
For every pair k ,m of positive integers with k > 2 and every
0 < δ 6 1 there exists a positive integer CorSp(k ,m, δ) with the
following property. If A is an alphabet with |A| = k, then for
every combinatorial space W of A<N with
dim(W ) > CorSp(k ,m, δ) and every family {Dw : w ∈W} of
measurable events in a probability space (Ω,F ,P) satisfying
P(Dw ) > δ for every w ∈W, there exists an m-dimensional
combinatorial subspace V of W such that for every nonempty
F ⊆ V we have

P
( ⋂

w∈F

Dw

)
> ζ(|F |, δ).



Thanks for listening!


