Compatible complex structures on Kalton-Peck space

Wilson A. Cuéllar
Universidade de São Paulo
joint work with professors: J. M. F. Castillo, V. Ferenczi, Y. Moreno.

August 25, 2014
First Brazilian Workshop in Geometry of Banach Spaces

Complex structures

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \rightarrow X$ such that $I^{2}=-I d$.

Complex structures

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \rightarrow X$ such that $I^{2}=-I d$. The complex space X^{I} is the space X with the \mathbb{C}-linear structure: if $\alpha, \beta \in \mathbb{R}$ and $x \in X$, then

$$
(\alpha+i \beta) x=\alpha x+\beta I(x) .
$$

Complex structures

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \rightarrow X$ such that $I^{2}=-I d$.
The complex space X^{I} is the space X with the \mathbb{C}-linear structure: if $\alpha, \beta \in \mathbb{R}$ and $x \in X$, then

$$
(\alpha+i \beta) x=\alpha x+\beta I(x) .
$$

Endowed with the norm:

$$
\||x|\|=\sup _{0 \leq \theta \leq 2 \pi}\|\cos \theta x+\sin \theta I x\| .
$$

Complex structures

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \rightarrow X$ such that $I^{2}=-I d$.
The complex space X^{I} is the space X with the \mathbb{C}-linear structure: if $\alpha, \beta \in \mathbb{R}$ and $x \in X$, then

$$
(\alpha+i \beta) x=\alpha x+\beta I(x)
$$

Endowed with the norm:

$$
\||x|\|=\sup _{0 \leq \theta \leq 2 \pi}\|\cos \theta x+\sin \theta I x\| .
$$

Example:The operator $J(x, y)=(-y, x)$ on $X \oplus X$ satisfies $J^{2}=-I d$. The complex structure $X \oplus X^{J}$ is called the complexification of X and is denoted by $X \oplus_{\mathbb{C}} X$.

Complex structures

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \rightarrow X$ such that $I^{2}=-I d$.
The complex space X^{I} is the space X with the \mathbb{C}-linear structure: if $\alpha, \beta \in \mathbb{R}$ and $x \in X$, then

$$
(\alpha+i \beta) x=\alpha x+\beta I(x) .
$$

Endowed with the norm:

$$
\||x|\|=\sup _{0 \leq \theta \leq 2 \pi}\|\cos \theta x+\sin \theta I x\| .
$$

Example:The operator $J(x, y)=(-y, x)$ on $X \oplus X$ satisfies $J^{2}=-I d$. The complex structure $X \oplus X^{J}$ is called the complexification of X and is denoted by $X \oplus_{\mathbb{C}} X$.
Definition
Two complex structures X^{I} and X^{J} on X are said to be equivalent if there exists a \mathbb{R}-linear automorphism $T: X \rightarrow X$ such that $T I T^{-1}=J$.

Complex structures

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \rightarrow X$ such that $I^{2}=-I d$.
The complex space X^{I} is the space X with the \mathbb{C}-linear structure: if $\alpha, \beta \in \mathbb{R}$ and $x \in X$, then

$$
(\alpha+i \beta) x=\alpha x+\beta I(x) .
$$

Endowed with the norm:

$$
\||x|\|=\sup _{0 \leq \theta \leq 2 \pi}\|\cos \theta x+\sin \theta I x\| .
$$

Example:The operator $J(x, y)=(-y, x)$ on $X \oplus X$ satisfies $J^{2}=-I d$. The complex structure $X \oplus X^{J}$ is called the complexification of X and is denoted by $X \oplus_{\mathbb{C}} X$.
Definition
Two complex structures X^{I} and X^{J} on X are said to be equivalent if there exists a \mathbb{R}-linear automorphism $T: X \rightarrow X$ such that $T I T^{-1}=J$. $T: X^{I} \rightarrow X^{J}$ is a \mathbb{C}-isomorphism.

Complex structures

Theorem (Kalton, 2009)
Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.

Complex structures

Theorem (Kalton, 2009)
Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.
Example: The classical spaces $\ell_{p}(1 \leq p \leq \infty), c_{0}, C[0,1]$ and L_{p} $(1 \leq p \leq \infty)$ has unique complex structure.

Complex structures

Theorem (Kalton, 2009)
Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.
Example: The classical spaces $\ell_{p}(1 \leq p \leq \infty), c_{0}, C[0,1]$ and L_{p} $(1 \leq p \leq \infty)$ has unique complex structure.
All complex structures on ℓ_{2} are \mathbb{C}-isomorphic to $\ell_{2}^{u_{2}}$, where $u_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots\right)$

Complex structures

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus \mathbb{C} X$ is primary, then X has at most one complex structure.
Example: The classical spaces $\ell_{p}(1 \leq p \leq \infty), c_{0}, C[0,1]$ and L_{p} $(1 \leq p \leq \infty)$ has unique complex structure.
All complex structures on ℓ_{2} are \mathbb{C}-isomorphic to $\ell_{2}^{u_{2}}$, where $u_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots\right)$
Definition
For a complex Banach space Z, its complex conjugate \bar{Z}, is defined to be the space Z equipped with the law of multiplication by scalars: $\lambda z:=\bar{\lambda} z$, for every $\lambda \in \mathbb{C}$ and $z \in Z$.

Complex structures

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus \mathbb{C} X$ is primary, then X has at most one complex structure.
Example: The classical spaces $\ell_{p}(1 \leq p \leq \infty), c_{0}, C[0,1]$ and L_{p} $(1 \leq p \leq \infty)$ has unique complex structure.
All complex structures on ℓ_{2} are \mathbb{C}-isomorphic to $\ell_{2}^{u_{2}}$, where $u_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots\right)$
Definition
For a complex Banach space Z, its complex conjugate \bar{Z}, is defined to be the space Z equipped with the law of multiplication by scalars: $\lambda z:=\bar{\lambda} z$, for every $\lambda \in \mathbb{C}$ and $z \in Z$.

- Z and \bar{Z} are isometric as real spaces.

Complex structures

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus \mathbb{C} X$ is primary, then X has at most one complex structure.
Example: The classical spaces $\ell_{p}(1 \leq p \leq \infty), c_{0}, C[0,1]$ and L_{p} $(1 \leq p \leq \infty)$ has unique complex structure.
All complex structures on ℓ_{2} are \mathbb{C}-isomorphic to $\ell_{2}^{u_{2}}$, where $u_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots\right)$
Definition
For a complex Banach space Z, its complex conjugate \bar{Z}, is defined to be the space Z equipped with the law of multiplication by scalars: $\lambda z:=\bar{\lambda} z$, for every $\lambda \in \mathbb{C}$ and $z \in Z$.

- Z and \bar{Z} are isometric as real spaces.
- $X^{I}=X^{-I}$.

Complex structures

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.
Example: The classical spaces $\ell_{p}(1 \leq p \leq \infty), c_{0}, C[0,1]$ and L_{p} $(1 \leq p \leq \infty)$ has unique complex structure.
All complex structures on ℓ_{2} are \mathbb{C}-isomorphic to $\ell_{2}^{u_{2}}$, where $u_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots\right)$

Definition

For a complex Banach space Z, its complex conjugate \bar{Z}, is defined to be the space Z equipped with the law of multiplication by scalars: $\lambda z:=\bar{\lambda} z$, for every $\lambda \in \mathbb{C}$ and $z \in Z$.

- Z and \bar{Z} are isometric as real spaces.
- $X^{I}=X^{-I}$.
- S. Szarek (86), Bourgain (86), Kalton (95) There exist spaces not isomorphic to their complex conjugate.

Complex structures

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.
Example: The classical spaces $\ell_{p}(1 \leq p \leq \infty), c_{0}, C[0,1]$ and L_{p} $(1 \leq p \leq \infty)$ has unique complex structure.
All complex structures on ℓ_{2} are \mathbb{C}-isomorphic to $\ell_{2}^{u_{2}}$, where $u_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots\right)$

Definition

For a complex Banach space Z, its complex conjugate \bar{Z}, is defined to be the space Z equipped with the law of multiplication by scalars: $\lambda z:=\bar{\lambda} z$, for every $\lambda \in \mathbb{C}$ and $z \in Z$.

- Z and \bar{Z} are isometric as real spaces.
- $X^{I}=X^{-I}$.
- S. Szarek (86), Bourgain (86), Kalton (95) There exist spaces not isomorphic to their complex conjugate.
These spaces admit at least two complex structures.

Twisted sums

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X^{\prime} \subseteq Z$ isomorphic to X such that the quotient Z / X^{\prime} is isomorphic to Y.

Twisted sums

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X^{\prime} \subseteq Z$ isomorphic to X such that the quotient Z / X^{\prime} is isomorphic to Y. Equivalently,

$$
0 \rightarrow X \xrightarrow{j} Z \xrightarrow{q} Y \rightarrow 0 .
$$

Twisted sums

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X^{\prime} \subseteq Z$ isomorphic to X such that the quotient Z / X^{\prime} is isomorphic to Y. Equivalently,

$$
0 \rightarrow X \xrightarrow{j} Z \xrightarrow{q} Y \rightarrow 0 .
$$

Every twisted sum is equivalent to one of the type $X \oplus_{\Omega} Y$ for a quasi-linear operator $\Omega: Y \rightarrow X$.
$X \oplus_{\Omega} Y$ is the space $X \times Y$ endowed with the quasi-norm:

$$
\|(x, y)\|_{\Omega}=\|x-\Omega y\|+\|y\|
$$

Twisted sums

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X^{\prime} \subseteq Z$ isomorphic to X such that the quotient Z / X^{\prime} is isomorphic to Y. Equivalently,

$$
0 \rightarrow X \xrightarrow{j} Z \xrightarrow{q} Y \rightarrow 0
$$

Every twisted sum is equivalent to one of the type $X \oplus_{\Omega} Y$ for a quasi-linear operator $\Omega: Y \rightarrow X$.
$X \oplus_{\Omega} Y$ is the space $X \times Y$ endowed with the quasi-norm:

$$
\|(x, y)\|_{\Omega}=\|x-\Omega y\|+\|y\|
$$

The twisted sum is trivial if it is equivalent to $X \oplus Y$

Twisted sums

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X^{\prime} \subseteq Z$ isomorphic to X such that the quotient Z / X^{\prime} is isomorphic to Y. Equivalently,

$$
0 \rightarrow X \xrightarrow{j} Z \xrightarrow{q} Y \rightarrow 0
$$

Every twisted sum is equivalent to one of the type $X \oplus_{\Omega} Y$ for a quasi-linear operator $\Omega: Y \rightarrow X$.
$X \oplus_{\Omega} Y$ is the space $X \times Y$ endowed with the quasi-norm:

$$
\|(x, y)\|_{\Omega}=\|x-\Omega y\|+\|y\|
$$

The twisted sum is trivial if it is equivalent to $X \oplus Y \Longleftrightarrow \Omega=B+L$.

Twisted sums

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X^{\prime} \subseteq Z$ isomorphic to X such that the quotient Z / X^{\prime} is isomorphic to Y. Equivalently,

$$
0 \rightarrow X \xrightarrow{j} Z \xrightarrow{q} Y \rightarrow 0
$$

Every twisted sum is equivalent to one of the type $X \oplus_{\Omega} Y$ for a quasi-linear operator $\Omega: Y \rightarrow X$.
$X \oplus_{\Omega} Y$ is the space $X \times Y$ endowed with the quasi-norm:

$$
\|(x, y)\|_{\Omega}=\|x-\Omega y\|+\|y\|
$$

The twisted sum is trivial if it is equivalent to $X \oplus Y \Longleftrightarrow \Omega=B+L$. F. Cabello Sánchez, J. Castillo, J. Suárez (2012): The quotient map q is strictly singular iff the restriction of Ω to every infinite dimensional closed subspace is never trivial.

Twisted sums

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X^{\prime} \subseteq Z$ isomorphic to X such that the quotient Z / X^{\prime} is isomorphic to Y. Equivalently,

$$
0 \rightarrow X \xrightarrow{j} Z \xrightarrow{q} Y \rightarrow 0 .
$$

Every twisted sum is equivalent to one of the type $X \oplus_{\Omega} Y$ for a quasi-linear operator $\Omega: Y \rightarrow X$.
$X \oplus_{\Omega} Y$ is the space $X \times Y$ endowed with the quasi-norm:

$$
\|(x, y)\|_{\Omega}=\|x-\Omega y\|+\|y\|
$$

The twisted sum is trivial if it is equivalent to $X \oplus Y \Longleftrightarrow \Omega=B+L$. F. Cabello Sánchez, J. Castillo, J. Suárez (2012): The quotient map q is strictly singular iff the restriction of Ω to every infinite dimensional closed subspace is never trivial. In this case Ω is said to be singular.

Z_{2} Kalton-Peck space

$Z_{2}=\ell_{2} \oplus_{\Omega_{2}} \ell_{2}$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$
\Omega_{2}(x)(n)=x(n) \log \frac{\|x\|}{|x(n)|} .
$$

Z_{2} Kalton-Peck space

$Z_{2}=\ell_{2} \oplus_{\Omega_{2}} \ell_{2}$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$
\Omega_{2}(x)(n)=x(n) \log \frac{\|x\|}{|x(n)|} .
$$

Properties

- Ω_{2} is singular.

Z_{2} Kalton-Peck space

$Z_{2}=\ell_{2} \oplus_{\Omega_{2}} \ell_{2}$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$
\Omega_{2}(x)(n)=x(n) \log \frac{\|x\|}{|x(n)|} .
$$

Properties

- Ω_{2} is singular.
- Z_{2} has a 2-dimensional unconditional decomposition generated by the subspaces $E_{n}=\operatorname{span}\left\{\left(e_{n}, 0\right),\left(0, e_{n}\right)\right\}$.

Z_{2} Kalton-Peck space

$Z_{2}=\ell_{2} \oplus_{\Omega_{2}} \ell_{2}$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$
\Omega_{2}(x)(n)=x(n) \log \frac{\|x\|}{|x(n)|} .
$$

Properties

- Ω_{2} is singular.
- Z_{2} has a 2-dimensional unconditional decomposition generated by the subspaces $E_{n}=\operatorname{span}\left\{\left(e_{n}, 0\right),\left(0, e_{n}\right)\right\}$.
- Z_{2} has no unconditional basis. Moreover, it does not admit G.L-l.u.st

Z_{2} Kalton-Peck space

$Z_{2}=\ell_{2} \oplus_{\Omega_{2}} \ell_{2}$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$
\Omega_{2}(x)(n)=x(n) \log \frac{\|x\|}{|x(n)|} .
$$

Properties

- Ω_{2} is singular.
- Z_{2} has a 2-dimensional unconditional decomposition generated by the subspaces $E_{n}=\operatorname{span}\left\{\left(e_{n}, 0\right),\left(0, e_{n}\right)\right\}$.
- Z_{2} has no unconditional basis. Moreover, it does not admit G.L-l.u.st
- Every infinite-dimensional complemented subspace of Z_{2} contains a complemented subspace isomorphic to Z_{2}.

Z_{2} Kalton-Peck space

$Z_{2}=\ell_{2} \oplus_{\Omega_{2}} \ell_{2}$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$
\Omega_{2}(x)(n)=x(n) \log \frac{\|x\|}{|x(n)|} .
$$

Properties

- Ω_{2} is singular.
- Z_{2} has a 2-dimensional unconditional decomposition generated by the subspaces $E_{n}=\operatorname{span}\left\{\left(e_{n}, 0\right),\left(0, e_{n}\right)\right\}$.
- Z_{2} has no unconditional basis. Moreover, it does not admit G.L - l.u.st
- Every infinite-dimensional complemented subspace of Z_{2} contains a complemented subspace isomorphic to Z_{2}.
- Z_{2} is isomorphic to its square.

Z_{2} Kalton-Peck space

$Z_{2}=\ell_{2} \oplus_{\Omega_{2}} \ell_{2}$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$
\Omega_{2}(x)(n)=x(n) \log \frac{\|x\|}{|x(n)|} .
$$

Properties

- Ω_{2} is singular.
- Z_{2} has a 2-dimensional unconditional decomposition generated by the subspaces $E_{n}=\operatorname{span}\left\{\left(e_{n}, 0\right),\left(0, e_{n}\right)\right\}$.
- Z_{2} has no unconditional basis. Moreover, it does not admit G.L - l.u.st
- Every infinite-dimensional complemented subspace of Z_{2} contains a complemented subspace isomorphic to Z_{2}.
- Z_{2} is isomorphic to its square.

Question

Z_{2} is isomorphic to its hyperplanes?

Complex structures on Z_{2}

Proposition

The following complex spaces are isomorphic.

- $Z_{2}^{\left(u_{2}, u_{2}\right)}$, where $\left(u_{2}, u_{2}\right)(x, y)=\left(u_{2} x, u_{2} y\right)$.

Complex structures on Z_{2}

Proposition

The following complex spaces are isomorphic.

- $Z_{2}^{\left(u_{2}, u_{2}\right)}$, where $\left(u_{2}, u_{2}\right)(x, y)=\left(u_{2} x, u_{2} y\right)$.
- $Z_{2} \oplus_{\mathbb{C}} Z_{2}$.

Complex structures on Z_{2}

Proposition

The following complex spaces are isomorphic.

- $Z_{2}^{\left(u_{2}, u_{2}\right)}$, where $\left(u_{2}, u_{2}\right)(x, y)=\left(u_{2} x, u_{2} y\right)$.
- $Z_{2} \oplus_{\mathbb{C}} Z_{2}$.
- $Z_{2}(\mathbb{C})=\ell_{2}(\mathbb{C}) \oplus_{\Omega_{2}^{\mathrm{c}}} \ell_{2}(\mathbb{C})$.

Complex structures on Z_{2}

Proposition

The following complex spaces are isomorphic.

- $Z_{2}^{\left(u_{2}, u_{2}\right)}$, where $\left(u_{2}, u_{2}\right)(x, y)=\left(u_{2} x, u_{2} y\right)$.
- $Z_{2} \oplus_{\mathbb{C}} Z_{2}$.
- $Z_{2}(\mathbb{C})=\ell_{2}(\mathbb{C}) \oplus_{\Omega_{2}^{\text {¢ }}} \ell_{2}(\mathbb{C})$.

Corollary

For any complex structure w on Z_{2}

- The space Z_{2}^{w} is isomorphic to a complemented subspace of $Z_{2}(\mathbb{C})$.

Complex structures on Z_{2}

Proposition

The following complex spaces are isomorphic.

- $Z_{2}^{\left(u_{2}, u_{2}\right)}$, where $\left(u_{2}, u_{2}\right)(x, y)=\left(u_{2} x, u_{2} y\right)$.
- $Z_{2} \oplus_{\mathbb{C}} Z_{2}$.
- $Z_{2}(\mathbb{C})=\ell_{2}(\mathbb{C}) \oplus_{\Omega_{2}^{\mathrm{c}}} \ell_{2}(\mathbb{C})$.

Corollary

For any complex structure w on Z_{2}

- The space Z_{2}^{w} is isomorphic to a complemented subspace of $Z_{2}(\mathbb{C})$.
- The space Z_{2}^{w} is $Z_{2}(\mathbb{C})$-complementably saturated and $\ell_{2}(\mathbb{C})$-saturated.

Complex structures on Z_{2}

Proposition

The following complex spaces are isomorphic.

- $Z_{2}^{\left(u_{2}, u_{2}\right)}$, where $\left(u_{2}, u_{2}\right)(x, y)=\left(u_{2} x, u_{2} y\right)$.
- $Z_{2} \oplus_{\mathbb{C}} Z_{2}$.
- $Z_{2}(\mathbb{C})=\ell_{2}(\mathbb{C}) \oplus_{\Omega_{2}^{\mathbb{C}}} \ell_{2}(\mathbb{C})$.

Corollary

For any complex structure w on Z_{2}

- The space Z_{2}^{w} is isomorphic to a complemented subspace of $Z_{2}(\mathbb{C})$.
- The space Z_{2}^{w} is $Z_{2}(\mathbb{C})$-complementably saturated and $\ell_{2}(\mathbb{C})$-saturated.
- If Z_{2}^{w} is isomorphic to its square then it is isomorphic to $Z_{2}(\mathbb{C})$.

Complex structures on Z_{2}

Proposition

The following complex spaces are isomorphic.

- $Z_{2}^{\left(u_{2}, u_{2}\right)}$, where $\left(u_{2}, u_{2}\right)(x, y)=\left(u_{2} x, u_{2} y\right)$.
- $Z_{2} \oplus_{\mathbb{C}} Z_{2}$.
- $Z_{2}(\mathbb{C})=\ell_{2}(\mathbb{C}) \oplus_{\Omega_{2}^{\mathrm{c}}} \ell_{2}(\mathbb{C})$.

Corollary

For any complex structure w on Z_{2}

- The space Z_{2}^{w} is isomorphic to a complemented subspace of $Z_{2}(\mathbb{C})$.
- The space Z_{2}^{w} is $Z_{2}(\mathbb{C})$-complementably saturated and $\ell_{2}(\mathbb{C})$-saturated.
- If Z_{2}^{w} is isomorphic to its square then it is isomorphic to $Z_{2}(\mathbb{C})$.

Question

Does Z_{2} admit unique complex structure?

Compatible complex structures on Z_{2} and its hyperplanes

Theorem
No complex structure on ℓ_{2} can be extended to a complex structure on the hyperplane $\ell_{2} \oplus_{\Omega_{2} i} H$.

Compatible complex structures on Z_{2} and its hyperplanes

Theorem
No complex structure on ℓ_{2} can be extended to a complex structure on the hyperplane $\ell_{2} \oplus_{\Omega_{2} i} H$.

Theorem
There exists a complex structure U on ℓ_{2} that can not be extended to any operator on Z_{2}.

Compatible complex structures on Z_{2} and its hyperplanes

Theorem

No complex structure on ℓ_{2} can be extended to a complex structure on the hyperplane $\ell_{2} \oplus_{\Omega_{2} i} H$.

Theorem
There exists a complex structure U on ℓ_{2} that can not be extended to any operator on Z_{2}.

An essential element to prove this is the following result:
Theorem (V. Ferenczi, E. Galego, 2007)
Let T, u be complex structures on, respectively, an infinite dimensional Banach space X and some hyperplane H of X. Then the operator $\left.T\right|_{H}-u$ is not strictly singular.

Compatible complex structures on Z_{2} and its hyperplanes

Definition
The pair of operators (α, β)

Compatible complex structures on Z_{2} and its hyperplanes

Definition

The pair of operators (α, β) is said to be compatible with Ω if there exists an operator γ such that the diagram is commutative.

Compatible complex structures on Z_{2} and its hyperplanes

Definition

The pair of operators (α, β) is said to be compatible with Ω if there exists an operator γ such that the diagram is commutative.

Proposition. The pair (α, β) is compatible with Ω iff $\alpha \Omega-\Omega \beta$ is trivial.

Compatible complex structures on Z_{2} and its hyperplanes

Definition

The pair of operators (α, β) is said to be compatible with Ω if there exists an operator γ such that the diagram is commutative.

Proposition. The pair (α, β) is compatible with Ω iff $\alpha \Omega-\Omega \beta$ is trivial.
Example. The pair $\left(u_{2}, u_{2}\right)$ is compatible with Ω_{2}.

Compatible complex structures on Z_{2} and its hyperplanes

Proposition

For every operator $T: \ell_{2} \rightarrow \ell_{2}$, and for every block subspace W of ℓ_{2}, the commutator $\Omega_{2} T-T \Omega_{2}$ is trivial on some block subspace of W.

Compatible complex structures on Z_{2} and its hyperplanes

Proposition

For every operator $T: \ell_{2} \rightarrow \ell_{2}$, and for every block subspace W of ℓ_{2}, the commutator $\Omega_{2} T-T \Omega_{2}$ is trivial on some block subspace of W.
Proposition
Let (T, U) be a pair of compatible operators on Z_{2}. Then $T-U$ is compact.

Compatible complex structures on Z_{2} and its hyperplanes

Proposition

For every operator $T: \ell_{2} \rightarrow \ell_{2}$, and for every block subspace W of ℓ_{2}, the commutator $\Omega_{2} T-T \Omega_{2}$ is trivial on some block subspace of W.

Proposition

Let (T, U) be a pair of compatible operators on Z_{2}. Then $T-U$ is compact.
Sketch of the proof: Let u be a complex structure on ℓ_{2}. Suppose that can be extended to U on $\ell_{2} \oplus \Omega_{2 i} H$

Compatible complex structures on Z_{2} and its hyperplanes

Proposition

For every operator $T: \ell_{2} \rightarrow \ell_{2}$, and for every block subspace W of ℓ_{2}, the commutator $\Omega_{2} T-T \Omega_{2}$ is trivial on some block subspace of W.

Proposition

Let (T, U) be a pair of compatible operators on Z_{2}. Then $T-U$ is compact.
Sketch of the proof: Let u be a complex structure on ℓ_{2}. Suppose that can be extended to U on $\ell_{2} \oplus \Omega_{2 i} H$

Extending v to a complex structure V on ℓ_{2}, we have that (u, V) is compatible with Ω_{2}. Then $u-V$ is compact.

Compatible complex structures on Z_{2} and its hyperplanes

Proposition

For every operator $T: \ell_{2} \rightarrow \ell_{2}$, and for every block subspace W of ℓ_{2}, the commutator $\Omega_{2} T-T \Omega_{2}$ is trivial on some block subspace of W.

Proposition

Let (T, U) be a pair of compatible operators on Z_{2}. Then $T-U$ is compact.
Sketch of the proof: Let u be a complex structure on ℓ_{2}. Suppose that can be extended to U on $\ell_{2} \oplus \Omega_{2 i} H$

Extending v to a complex structure V on ℓ_{2}, we have that (u, V) is compatible with Ω_{2}. Then $u-V$ is compact.
On the other side, it follows from Ferenczi-Galego theorem that $\left.u\right|_{H}-v$ is not strictly singular. So we get a contradiction.

References

J．Bourgain．
Real isomorphic complex Banach spaces need not be complex isomorphic
Proc．Amer．Math．Soc． 96 （2）（1986），221－226．
國 F．Cabello Sánchez，J．M．F．Castillo，J．Suárez．
On strictly singular nonlinear centralizers
Nonlinear Anal． 75 （2012），3313－3321．
戋 V．Ferenczi，E．Galego．
Even infinite－dimensional real Banach spaces
J．Funct．Anal 253 （2）（2007），534－549．
固 N．J．Kalton．
An elementary example of a Banach space not isomorphic to its complex conjugate
Canad．Math．Bull．（38）（1995），218－222．

References

R N.J. Kalton, N.T. Peck.
Twisted sums of sequence spaces and the three space problem Trans. Amer. Math. Soc. 255 (1979) 1-30.
國 J. Lindenstrauss and L. Tzafriri
Classical Banach spaces I, sequence spaces
Ergeb. Math. 92, Springer-Verlag (1977).
圊 S. Szarek.
On the existence and uniqueness of complex structure and spaces with 'few' operators
Trans. Amer. Math. Soc. 293 (1) (1986), 339-353.

