Compatible complex structures on Kalton-Peck space

Wilson A. Cuéllar

Universidade de São Paulo

joint work with professors: J. M. F. Castillo, V. Ferenczi, Y. Moreno.

August 25, 2014 First Brazilian Workshop in Geometry of Banach Spaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \to X$ such that $I^2 = -Id$.

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \to X$ such that $I^2 = -Id$. The complex space X^I is the space X with the \mathbb{C} -linear structure: if $\alpha, \beta \in \mathbb{R}$ and $x \in X$, then

$$(\alpha + i\beta)x = \alpha x + \beta I(x).$$

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \to X$ such that $I^2 = -Id$. The complex space X^I is the space X with the \mathbb{C} -linear structure: if $\alpha, \beta \in \mathbb{R}$ and $x \in X$, then

$$(\alpha + \mathbf{i}\beta)x = \alpha x + \beta \mathbf{I}(x).$$

Endowed with the norm:

$$|||x||| = \sup_{0 \le \theta \le 2\pi} ||\cos \theta x + \sin \theta I x||.$$

- ロ ト - 4 回 ト - 4 □ - 4

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \to X$ such that $I^2 = -Id$. The complex space X^I is the space X with the \mathbb{C} -linear structure: if $\alpha, \beta \in \mathbb{R}$ and $x \in X$, then

$$(\alpha + \mathbf{i}\beta)x = \alpha x + \beta \mathbf{I}(x).$$

Endowed with the norm:

$$|||x||| = \sup_{0 \le \theta \le 2\pi} ||\cos \theta x + \sin \theta I x||.$$

Example: The operator J(x, y) = (-y, x) on $X \oplus X$ satisfies $J^2 = -Id$. The complex structure $X \oplus X^J$ is called the complexification of X and is denoted by $X \oplus_{\mathbb{C}} X$.

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \to X$ such that $I^2 = -Id$. The complex space X^I is the space X with the \mathbb{C} -linear structure: if $\alpha, \beta \in \mathbb{R}$ and $x \in X$, then

$$(\alpha + i\beta)x = \alpha x + \beta I(x).$$

Endowed with the norm:

$$\||x|\| = \sup_{0 \le \theta \le 2\pi} \|\cos \theta x + \sin \theta I x\|.$$

Example: The operator J(x, y) = (-y, x) on $X \oplus X$ satisfies $J^2 = -Id$. The complex structure $X \oplus X^J$ is called the complexification of X and is denoted by $X \oplus_{\mathbb{C}} X$.

Definition

Two complex structures X^I and X^J on X are said to be equivalent if there exists a \mathbb{R} -linear automorphism $T: X \to X$ such that $TIT^{-1} = J$.

A real Banach space X is said to admit a complex structure if there exists an operator $I: X \to X$ such that $I^2 = -Id$. The complex space X^I is the space X with the \mathbb{C} -linear structure: if $\alpha, \beta \in \mathbb{R}$ and $x \in X$, then

$$(\alpha + i\beta)x = \alpha x + \beta I(x).$$

Endowed with the norm:

$$\||x|\| = \sup_{0 \le \theta \le 2\pi} \|\cos \theta x + \sin \theta I x\|.$$

Example: The operator J(x, y) = (-y, x) on $X \oplus X$ satisfies $J^2 = -Id$. The complex structure $X \oplus X^J$ is called the complexification of X and is denoted by $X \oplus_{\mathbb{C}} X$.

Definition

Two complex structures X^I and X^J on X are said to be equivalent if there exists a \mathbb{R} -linear automorphism $T: X \to X$ such that $TIT^{-1} = J$. $T: X^I \to X^J$ is a \mathbb{C} -isomorphism.

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.

Example: The classical spaces ℓ_p $(1 \le p \le \infty)$, c_0 , C[0,1] and L_p $(1 \le p \le \infty)$ has unique complex structure.

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.

Example: The classical spaces ℓ_p $(1 \le p \le \infty)$, c_0 , C[0, 1] and L_p $(1 \le p \le \infty)$ has unique complex structure. All complex structures on ℓ_2 are \mathbb{C} -isomorphic to $\ell_2^{u_2}$, where $u_2(x_1, x_2, x_3, x_4, \ldots) = (-x_2, x_1, -x_4, x_3, \ldots)$

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.

Example: The classical spaces ℓ_p $(1 \le p \le \infty)$, c_0 , C[0, 1] and L_p $(1 \le p \le \infty)$ has unique complex structure. All complex structures on ℓ_2 are \mathbb{C} -isomorphic to $\ell_2^{u_2}$, where $u_2(x_1, x_2, x_3, x_4, \ldots) = (-x_2, x_1, -x_4, x_3, \ldots)$

Definition

For a complex Banach space Z, its complex conjugate \overline{Z} , is defined to be the space Z equipped with the law of multiplication by scalars: $\lambda z := \overline{\lambda} z$, for every $\lambda \in \mathbb{C}$ and $z \in Z$.

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.

Example: The classical spaces ℓ_p $(1 \le p \le \infty)$, c_0 , C[0, 1] and L_p $(1 \le p \le \infty)$ has unique complex structure. All complex structures on ℓ_2 are \mathbb{C} -isomorphic to $\ell_2^{u_2}$, where $u_2(x_1, x_2, x_3, x_4, \ldots) = (-x_2, x_1, -x_4, x_3, \ldots)$

Definition

For a complex Banach space Z, its complex conjugate \overline{Z} , is defined to be the space Z equipped with the law of multiplication by scalars: $\lambda z := \overline{\lambda} z$, for every $\lambda \in \mathbb{C}$ and $z \in Z$.

• Z and \overline{Z} are isometric as real spaces.

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.

Example: The classical spaces ℓ_p $(1 \le p \le \infty)$, c_0 , C[0, 1] and L_p $(1 \le p \le \infty)$ has unique complex structure. All complex structures on ℓ_2 are \mathbb{C} -isomorphic to $\ell_2^{u_2}$, where $u_2(x_1, x_2, x_3, x_4, \ldots) = (-x_2, x_1, -x_4, x_3, \ldots)$

Definition

For a complex Banach space Z, its complex conjugate \overline{Z} , is defined to be the space Z equipped with the law of multiplication by scalars: $\lambda z := \overline{\lambda} z$, for every $\lambda \in \mathbb{C}$ and $z \in Z$.

(日) (同) (三) (三) (三) (○) (○)

- Z and \overline{Z} are isometric as real spaces.
- $\overline{X^I} = X^{-I}$.

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.

Example: The classical spaces ℓ_p $(1 \le p \le \infty)$, c_0 , C[0,1] and L_p $(1 \le p \le \infty)$ has unique complex structure. All complex structures on ℓ_2 are \mathbb{C} -isomorphic to $\ell_2^{u_2}$, where $u_2(x_1, x_2, x_3, x_4, \ldots) = (-x_2, x_1, -x_4, x_3, \ldots)$

Definition

For a complex Banach space Z, its complex conjugate \overline{Z} , is defined to be the space Z equipped with the law of multiplication by scalars: $\lambda z := \overline{\lambda} z$, for every $\lambda \in \mathbb{C}$ and $z \in Z$.

- Z and \overline{Z} are isometric as real spaces.
- $\overline{X^I} = X^{-I}$.
- S. Szarek (86), Bourgain (86), Kalton (95) There exist spaces not isomorphic to their complex conjugate.

Theorem (Kalton, 2009)

Let X be a real Banach space such that $X \oplus_{\mathbb{C}} X$ is primary, then X has at most one complex structure.

Example: The classical spaces ℓ_p $(1 \le p \le \infty)$, c_0 , C[0, 1] and L_p $(1 \le p \le \infty)$ has unique complex structure. All complex structures on ℓ_2 are \mathbb{C} -isomorphic to $\ell_2^{u_2}$, where $u_2(x_1, x_2, x_3, x_4, \ldots) = (-x_2, x_1, -x_4, x_3, \ldots)$

Definition

For a complex Banach space Z, its complex conjugate \overline{Z} , is defined to be the space Z equipped with the law of multiplication by scalars: $\lambda z := \overline{\lambda} z$, for every $\lambda \in \mathbb{C}$ and $z \in Z$.

- Z and \overline{Z} are isometric as real spaces.
- $\overline{X^I} = X^{-I}$.
- S. Szarek (86), Bourgain (86), Kalton (95) There exist spaces not isomorphic to their complex conjugate. These spaces admit at least two complex structures.

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X' \subseteq Z$ isomorphic to X such that the quotient Z/X' is isomorphic to Y.

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X' \subseteq Z$ isomorphic to X such that the quotient Z/X' is isomorphic to Y. Equivalently,

$$0 \to X \xrightarrow{j} Z \xrightarrow{q} Y \to 0.$$

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X' \subseteq Z$ isomorphic to X such that the quotient Z/X' is isomorphic to Y. Equivalently,

 $0 \to X \xrightarrow{j} Z \xrightarrow{q} Y \to 0.$

Every twisted sum is equivalent to one of the type $X \oplus_{\Omega} Y$ for a quasi-linear operator $\Omega: Y \to X$.

 $X \oplus_{\Omega} Y$ is the space $X \times Y$ endowed with the quasi-norm:

$$||(x,y)||_{\Omega} = ||x - \Omega y|| + ||y||$$

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X' \subseteq Z$ isomorphic to X such that the quotient Z/X' is isomorphic to Y. Equivalently,

 $0 \to X \xrightarrow{j} Z \xrightarrow{q} Y \to 0.$

Every twisted sum is equivalent to one of the type $X \oplus_{\Omega} Y$ for a quasi-linear operator $\Omega: Y \to X$.

 $X \oplus_{\Omega} Y$ is the space $X \times Y$ endowed with the quasi-norm:

$$||(x,y)||_{\Omega} = ||x - \Omega y|| + ||y||$$

The twisted sum is trivial if it is equivalent to $X \oplus Y$

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X' \subseteq Z$ isomorphic to X such that the quotient Z/X' is isomorphic to Y. Equivalently,

 $0 \to X \xrightarrow{j} Z \xrightarrow{q} Y \to 0.$

Every twisted sum is equivalent to one of the type $X \oplus_{\Omega} Y$ for a quasi-linear operator $\Omega: Y \to X$.

 $X \oplus_{\Omega} Y$ is the space $X \times Y$ endowed with the quasi-norm:

$$||(x,y)||_{\Omega} = ||x - \Omega y|| + ||y||$$

The twisted sum is trivial if it is equivalent to $X \oplus Y \iff \Omega = B + L$.

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X' \subseteq Z$ isomorphic to X such that the quotient Z/X' is isomorphic to Y. Equivalently,

 $0 \to X \xrightarrow{j} Z \xrightarrow{q} Y \to 0.$

Every twisted sum is equivalent to one of the type $X \oplus_{\Omega} Y$ for a quasi-linear operator $\Omega: Y \to X$.

 $X \oplus_{\Omega} Y$ is the space $X \times Y$ endowed with the quasi-norm:

$$||(x,y)||_{\Omega} = ||x - \Omega y|| + ||y||$$

The twisted sum is trivial if it is equivalent to $X \oplus Y \iff \Omega = B + L$. F. Cabello Sánchez, J. Castillo, J. Suárez (2012): The quotient map q is strictly singular iff the restriction of Ω to every infinite dimensional closed subspace is never trivial.

Definition

Let X and Y be two Banach spaces. A twisted sum of X and Y is a quasi-Banach space Z which contains a subspace $X' \subseteq Z$ isomorphic to X such that the quotient Z/X' is isomorphic to Y. Equivalently,

 $0 \to X \xrightarrow{j} Z \xrightarrow{q} Y \to 0.$

Every twisted sum is equivalent to one of the type $X \oplus_{\Omega} Y$ for a quasi-linear operator $\Omega: Y \to X$.

 $X \oplus_{\Omega} Y$ is the space $X \times Y$ endowed with the quasi-norm:

$$||(x,y)||_{\Omega} = ||x - \Omega y|| + ||y||$$

The twisted sum is trivial if it is equivalent to $X \oplus Y \iff \Omega = B + L$. F. Cabello Sánchez, J. Castillo, J. Suárez (2012): The quotient map q is strictly singular iff the restriction of Ω to every infinite dimensional closed subspace is never trivial. In this case Ω is said to be singular.

 $Z_2 = \ell_2 \oplus_{\Omega_2} \ell_2$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$\Omega_2(x)(n) = x(n) \log \frac{\|x\|}{|x(n)|}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $Z_2 = \ell_2 \oplus_{\Omega_2} \ell_2$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$\Omega_2(x)(n) = x(n) \log \frac{\|x\|}{|x(n)|}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Properties

• Ω_2 is singular.

 $Z_2 = \ell_2 \oplus_{\Omega_2} \ell_2$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$\Omega_2(x)(n) = x(n) \log \frac{\|x\|}{|x(n)|}.$$

Properties

- Ω₂ is singular.
- Z₂ has a 2-dimensional unconditional decomposition generated by the subspaces $E_n = span\{(e_n, 0), (0, e_n)\}$.

 $Z_2 = \ell_2 \oplus_{\Omega_2} \ell_2$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$\Omega_2(x)(n) = x(n) \log \frac{\|x\|}{|x(n)|}.$$

Properties

- Ω₂ is singular.
- Z_2 has a 2-dimensional unconditional decomposition generated by the subspaces $E_n = span\{(e_n, 0), (0, e_n)\}$.

+ Z_2 has no unconditional basis. Moreover, it does not admit G.L-l.u.st

 $Z_2 = \ell_2 \oplus_{\Omega_2} \ell_2$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$\Omega_2(x)(n) = x(n) \log \frac{\|x\|}{|x(n)|}.$$

Properties

- Ω₂ is singular.
- Z₂ has a 2-dimensional unconditional decomposition generated by the subspaces $E_n = span\{(e_n, 0), (0, e_n)\}$.
- Z_2 has no unconditional basis. Moreover, it does not admit G.L l.u.st
- Every infinite-dimensional complemented subspace of Z₂ contains a complemented subspace isomorphic to Z₂.

 $Z_2 = \ell_2 \oplus_{\Omega_2} \ell_2$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$\Omega_2(x)(n) = x(n) \log \frac{||x||}{|x(n)|}.$$

Properties

- Ω₂ is singular.
- Z₂ has a 2-dimensional unconditional decomposition generated by the subspaces $E_n = span\{(e_n, 0), (0, e_n)\}$.
- Z_2 has no unconditional basis. Moreover, it does not admit G.L l.u.st
- Every infinite-dimensional complemented subspace of Z₂ contains a complemented subspace isomorphic to Z₂.

• Z_2 is isomorphic to its square.

 $Z_2 = \ell_2 \oplus_{\Omega_2} \ell_2$ is the twisted Hilbert space obtained by considering the non-trivial quasi-linear map (defined on finitely supported sequences)

$$\Omega_2(x)(n) = x(n) \log \frac{\|x\|}{|x(n)|}.$$

Properties

- Ω₂ is singular.
- Z₂ has a 2-dimensional unconditional decomposition generated by the subspaces $E_n = span\{(e_n, 0), (0, e_n)\}$.
- Z_2 has no unconditional basis. Moreover, it does not admit G.L l.u.st
- Every infinite-dimensional complemented subspace of Z₂ contains a complemented subspace isomorphic to Z₂.

• Z_2 is isomorphic to its square.

Question

 Z_2 is isomorphic to its hyperplanes?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

The following complex spaces are isomorphic.

•
$$Z_2^{(u_2,u_2)}$$
, where $(u_2,u_2)(x,y) = (u_2x,u_2y)$.

・ロト・日本・モート モー うへぐ

Proposition

The following complex spaces are isomorphic.

- $Z_2^{(u_2,u_2)}$, where $(u_2,u_2)(x,y) = (u_2x,u_2y)$.
- $Z_2 \oplus_{\mathbb{C}} Z_2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

The following complex spaces are isomorphic.

- $Z_2^{(u_2,u_2)}$, where $(u_2,u_2)(x,y) = (u_2x,u_2y)$.
- $Z_2 \oplus_{\mathbb{C}} Z_2$.
- $Z_2(\mathbb{C}) = \ell_2(\mathbb{C}) \oplus_{\Omega_2^{\mathbb{C}}} \ell_2(\mathbb{C}).$

Proposition

The following complex spaces are isomorphic.

- $Z_2^{(u_2,u_2)}$, where $(u_2,u_2)(x,y) = (u_2x,u_2y)$.
- $Z_2 \oplus_{\mathbb{C}} Z_2$.
- $Z_2(\mathbb{C}) = \ell_2(\mathbb{C}) \oplus_{\Omega_2^{\mathbb{C}}} \ell_2(\mathbb{C}).$

Corollary

For any complex structure w on Z_2

• The space Z_2^w is isomorphic to a complemented subspace of $Z_2(\mathbb{C})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

The following complex spaces are isomorphic.

- $Z_2^{(u_2,u_2)}$, where $(u_2,u_2)(x,y) = (u_2x,u_2y)$.
- $Z_2 \oplus_{\mathbb{C}} Z_2$.
- $Z_2(\mathbb{C}) = \ell_2(\mathbb{C}) \oplus_{\Omega_2^{\mathbb{C}}} \ell_2(\mathbb{C}).$

Corollary

For any complex structure w on Z_2

• The space Z_2^w is isomorphic to a complemented subspace of $Z_2(\mathbb{C})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 The space Z₂^w is Z₂(ℂ)-complementably saturated and ℓ₂(ℂ)-saturated.

Proposition

The following complex spaces are isomorphic.

- $Z_2^{(u_2,u_2)}$, where $(u_2,u_2)(x,y) = (u_2x,u_2y)$.
- $Z_2 \oplus_{\mathbb{C}} Z_2$.
- $Z_2(\mathbb{C}) = \ell_2(\mathbb{C}) \oplus_{\Omega_2^{\mathbb{C}}} \ell_2(\mathbb{C}).$

Corollary

For any complex structure w on Z_2

• The space Z_2^w is isomorphic to a complemented subspace of $Z_2(\mathbb{C})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The space Z_2^w is $Z_2(\mathbb{C})$ -complementably saturated and $\ell_2(\mathbb{C})$ -saturated.
- If Z_2^w is isomorphic to its square then it is isomorphic to $Z_2(\mathbb{C})$.

Proposition

The following complex spaces are isomorphic.

- $Z_2^{(u_2,u_2)}$, where $(u_2,u_2)(x,y) = (u_2x,u_2y)$.
- $Z_2 \oplus_{\mathbb{C}} Z_2$.
- $Z_2(\mathbb{C}) = \ell_2(\mathbb{C}) \oplus_{\Omega_2^{\mathbb{C}}} \ell_2(\mathbb{C}).$

Corollary

For any complex structure w on Z_2

• The space Z_2^w is isomorphic to a complemented subspace of $Z_2(\mathbb{C})$.

- The space Z₂^w is Z₂(ℂ)-complementably saturated and ℓ₂(ℂ)-saturated.
- If Z_2^w is isomorphic to its square then it is isomorphic to $Z_2(\mathbb{C})$.

Question

Does Z_2 admit unique complex structure?

Theorem

No complex structure on ℓ_2 can be extended to a complex structure on the hyperplane $\ell_2 \oplus_{\Omega_2 i} H$.

Theorem

No complex structure on ℓ_2 can be extended to a complex structure on the hyperplane $\ell_2 \oplus_{\Omega_2 i} H$.

Theorem

There exists a complex structure U on ℓ_2 that can not be extended to any operator on Z_2 .

Theorem

No complex structure on ℓ_2 can be extended to a complex structure on the hyperplane $\ell_2 \oplus_{\Omega_2 i} H$.

Theorem

There exists a complex structure U on ℓ_2 that can not be extended to any operator on Z_2 .

An essential element to prove this is the following result:

Theorem (V. Ferenczi, E. Galego, 2007)

Let T, u be complex structures on, respectively, an infinite dimensional Banach space X and some hyperplane H of X. Then the operator $T|_H - u$ is not strictly singular.

Definition The pair of operators (α, β)

Definition

The pair of operators (α, β) is said to be compatible with Ω if there exists an operator γ such that the diagram is commutative.

Definition

The pair of operators (α, β) is said to be compatible with Ω if there exists an operator γ such that the diagram is commutative.

Proposition. The pair (α, β) is compatible with Ω iff $\alpha \Omega - \Omega \beta$ is trivial.

Definition

The pair of operators (α, β) is said to be compatible with Ω if there exists an operator γ such that the diagram is commutative.

Proposition. The pair (α, β) is compatible with Ω iff $\alpha \Omega - \Omega \beta$ is trivial.

Example. The pair (u_2, u_2) is compatible with Ω_2 .

Proposition

For every operator $T: \ell_2 \to \ell_2$, and for every block subspace W of ℓ_2 , the commutator $\Omega_2 T - T\Omega_2$ is trivial on some block subspace of W.

Proposition

For every operator $T: \ell_2 \to \ell_2$, and for every block subspace W of ℓ_2 , the commutator $\Omega_2 T - T\Omega_2$ is trivial on some block subspace of W.

Proposition

Let (T, U) be a pair of compatible operators on Z_2 . Then T - U is compact.

Proposition

For every operator $T : \ell_2 \to \ell_2$, and for every block subspace W of ℓ_2 , the commutator $\Omega_2 T - T\Omega_2$ is trivial on some block subspace of W.

Proposition

Let (T, U) be a pair of compatible operators on Z_2 . Then T - U is compact.

Sketch of the proof: Let u be a complex structure on ℓ_2 . Suppose that can be extended to U on $\ell_2 \oplus_{\Omega_2 i} H$

Proposition

For every operator $T : \ell_2 \to \ell_2$, and for every block subspace W of ℓ_2 , the commutator $\Omega_2 T - T\Omega_2$ is trivial on some block subspace of W.

Proposition

Let (T, U) be a pair of compatible operators on Z_2 . Then T - U is compact.

Sketch of the proof: Let u be a complex structure on ℓ_2 . Suppose that can be extended to U on $\ell_2 \oplus_{\Omega_2 i} H$

Extending v to a complex structure V on ℓ_2 , we have that (u, V) is compatible with Ω_2 . Then u - V is compact.

Proposition

For every operator $T: \ell_2 \to \ell_2$, and for every block subspace W of ℓ_2 , the commutator $\Omega_2 T - T\Omega_2$ is trivial on some block subspace of W.

Proposition

Let (T, U) be a pair of compatible operators on Z_2 . Then T - U is compact.

Sketch of the proof: Let u be a complex structure on ℓ_2 . Suppose that can be extended to U on $\ell_2 \oplus_{\Omega_2 i} H$

Extending v to a complex structure V on ℓ_2 , we have that (u, V) is compatible with Ω_2 . Then u - V is compact.

References

J. Bourgain.

Real isomorphic complex Banach spaces need not be complex isomorphic

Proc. Amer. Math. Soc. 96 (2) (1986), 221-226.

F. Cabello Sánchez, J.M.F. Castillo, J. Suárez. On strictly singular nonlinear centralizers Nonlinear Anal. 75 (2012), 3313–3321.

🔋 V. Ferenczi, E. Galego.

Even infinite-dimensional real Banach spaces *J. Funct. Anal 253* (2) (2007), 534–549.

🔋 N. J. Kalton.

An elementary example of a Banach space not isomorphic to its complex conjugate *Canad. Math. Bull.* **(38)** (1995), 218–222.

References

N.J. Kalton, N.T. Peck.

Twisted sums of sequence spaces and the three space problem Trans. Amer. Math. Soc. 255 (1979) 1-30.

J. Lindenstrauss and L. Tzafriri Classical Banach spaces I, sequence spaces Ergeb. Math. 92, Springer-Verlag (1977).

S. Szarek

On the existence and uniqueness of complex structure and spaces with 'few' operators

Trans. Amer. Math. Soc. 293 (1) (1986), 339–353.