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Practical problems

Inferring quantities of interest from measured information;
Compressing information.

x ∈ Rn unknown, measurement y = Ax

where
A : Rn → Rm is a linear map, n > m

We have y, we want to recover x.

Impossible! Too many degrees of freedom.

The magic of compressed sensing
It becomes possible if x is sparse, i.e. has few nonzero coordinates.
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Sparse recovery problem

Given the measurement y, what’s a reasonable guess for x?

IDEA: Find the sparsest vector that is consistent with the
measurement.

minimize ‖z‖0 subject to Az = y,

where
‖z‖0 = number of nonzero coordinates of z.

This is NP-hard! [Natarajan 1995].

J.A. Chávez-Domínguez (UT Austin) Low-rank matrix recovery 08/29/2014 3 / 27



Sparse recovery problem

Given the measurement y, what’s a reasonable guess for x?

IDEA: Find the sparsest vector that is consistent with the
measurement.

minimize ‖z‖0 subject to Az = y,

where
‖z‖0 = number of nonzero coordinates of z.

This is NP-hard! [Natarajan 1995].

J.A. Chávez-Domínguez (UT Austin) Low-rank matrix recovery 08/29/2014 3 / 27



Sparse recovery problem

Given the measurement y, what’s a reasonable guess for x?

IDEA: Find the sparsest vector that is consistent with the
measurement.

minimize ‖z‖0 subject to Az = y,

where
‖z‖0 = number of nonzero coordinates of z.

This is NP-hard! [Natarajan 1995].

J.A. Chávez-Domínguez (UT Austin) Low-rank matrix recovery 08/29/2014 3 / 27



Norm minimization

Instead of
minimize ‖z‖0 subject to Az = y,

we would like to consider

minimize ‖z‖`1
subject to Az = y.

This is a convex problem that can be solved efficiently.

Moral
If the original vector x is sparse enough, both problems have x as
solution (as long as we choose the linear map A wisely).

(Rough) Example of a Result
For a fixed k-sparse vector x and a random Gaussian matrix A,
`1-minimization exactly recovers x with high probability if
m > 2k ln(n/k).
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Stability

True sparsity: only in
idealized situations.

More realistic: the unknown
vector is close to sparse
vectors.

Examples: Image or sound
compression.

2 1 An Invitation to Compressive Sensing

Fig. 1.1 Antonella, Niels, and Paulina. Top: Original Image. Bottom: Reconstruction using 1% of
the largest absolute wavelet coefficients, i.e., 99 % of the coefficients are set to zero

Thus, it came as a surprise that under certain assumptions it is actually possible to
reconstruct signals when the number m of available measurements is smaller than
the signal length N . Even more surprisingly, efficient algorithms do exist for the
reconstruction. The underlying assumption which makes all this possible is sparsity.
The research area associated to this phenomenon has become known as compressive
sensing, compressed sensing, compressive sampling, or sparse recovery. This whole
book is devoted to the mathematics underlying this field.

Sparsity. A signal is called sparse if most of its components are zero. As empiri-
cally observed, many real-world signals are compressible in the sense that they are
well approximated by sparse signals—often after an appropriate change of basis.
This explains why compression techniques such as JPEG, MPEG, or MP3 work so
well in practice. For instance, JPEG relies on the sparsity of images in the discrete
cosine basis or wavelet basis and achieves compression by only storing the largest
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Stability

We would like to recover a vector x with an error controlled by its
distance to k-sparse vectors.

ρk(x)`p := inf
{∥∥x− x′

∥∥
`p

:
∥∥x′
∥∥

0 ≤ k
}
.

Denote by ∆p(y) a solution to

minimize ‖z‖`p
subject to Az = y,

(Rough) Example of a Result
There are linear maps A : Rn → Rm such that for every vector x

‖x−∆1(Ax)‖`1
≤ 6ρk(x)`1 .
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Stability and geometry

Theorem (Kashin-Temlyakov 2007)
Linear map A : Rn → Rm, k � n/log(m/n). TFAE (up to a change in the
constant):

1 For all x ∈ Rn,

‖x−∆1(Ax)‖`2
≤ Ck−1/2ρk(x)`1

2 For all x ∈ ker(A),
‖x‖`2

≤ Ck−1/2 ‖x‖`1

Remark
The latter is a statement about the norm of the identity map `n

1 → `n
2

restricted to the subspace ker(A).
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Gelfand numbers

Gelfand m-number of a linear map T : X → Y

cm(T) := inf
{∥∥T

∣∣
L

∥∥ : L subspace of X with codim(L) < m
}

Punchline: How small can the norm of the operator be if we
restrict ourselves to subspaces of a given codimension?

The sequence
(
cm(T)

)∞
m=1 is a measure of the compactness of T.

Kashin-Temlyakov:
Results of [Kashin 1977; Garnaev-Gluskin 1984] on Gelfand
numbers immediately imply the existence of good measurement
maps for sparse recovery through `1-minimization.
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Gelfand: numbers vs. widths

In approximation theory/compressed sensing they normally use
Gelfand widths instead of Gelfand numbers.

See Pietsch’s book History of Banach spaces and linear operators
for an argument of why the numbers “won” in Banach space
theory.

In the cases we are considering, both concepts coincide.

For geometric conditions guaranteeing the coincidence in more
general situations, see [Edmunds-Lang 2013].
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Extra structure: matrices

Sometimes the space of unknown vectors has an extra matricial
structure.

Matrix completion (Netflix problem)
TASK: fill in missing entries of a matrix.

Online store sells products indexed by the rows, consumers
indexed by the columns rate some of these products.

For purposes of individualized advertisement, the store is
interested in predicting the whole matrix of consumer ratings.
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Low-rank recovery

To stand a chance of success, the unknown matrix should have
low rank (corresponding to sparsity).

Low-rank recovery problem
Solve

minimize rank(Z) subject to AZ = y,

where A : Mn → Rm is a linear map, n2 > m.

This is also NP-hard.
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Norm minimization

Can some sort of norm minimization help?

Natural candidate: Schatten p-norm.

‖X‖Sp
:= `p-norm of the vector of singular values of X

Sn
p = (Mn, ‖·‖Sp

) is considered a noncommutative version of `n
p.

Instead of
minimize rank(Z) subject to AZ = y,

we would like to consider

minimize ‖Z‖Sp
subject to AZ = y.
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Plenty of recent work

Fazel 2002.
Candès-Recht 2009.
Candès-Tao 2010.
Recht-Fazel-Parrilo 2010.
Dvijotham-Fazel 2010
Candès-Plan 2011.
Fornasier-Rauhut-Ward 2011.
Recht-Hu-Hassibi 2011.
Oymak-Mohan-Fazel-Hassibi 2011.
Kong-Xiu 2013.
Cai-Zhang 2014.
And more...
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Goal: Noncommutative version of the
Kashin-Temlyakov theorem

Kashin-Temlyakov Theorem
Linear map A : Rn → Rm, k � n/log(m/n). TFAE (up to a change in the
constant):

1 For all x ∈ Rn,
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Known results

Theorem (Oymak-Mohan-Fazel-Hassibi 2011)
Let C be a constant. Then the following are equivalent:

(i) For any X and X′ with ‖X′‖S1
≤ ‖X‖S1

and AX = AX′,∥∥X − X′
∥∥

S2
≤ Ck−1/2ρk(X)S1

(ii) For any Y ∈ ker(A) we have

∥∥Y − Y[k]
∥∥

S1
−
∥∥Y[k]

∥∥
S1
≥ 2
√

k
C
‖Y‖S1

Where Y[k] is the k-spectral truncation of Y (i.e. keeping just the k
largest singular values).
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Known results II

Theorem (Oymak-Mohan-Fazel-Hassibi 2011)
Suppose that for all X ∈ ker(A) we have

‖X‖S2
≤ 1√

D
‖X‖S1

Then for any X and X′ with ‖X′‖S1
≤ ‖X‖S1

and AX = AX′, it holds that

∥∥X − X′
∥∥

S1
≤ 2

1− 2
√

k/D
ρk(X)S1 .
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Noncommutative Kashin-Temlyakov

Theorem (CD-K)
Linear map A : Mn → Rm, k � n/m. TFAE (up to a change in the
constant):

1 For all X ∈ Mn,

‖X −∆1(AX)‖S2
≤ Ck−1/2ρk(X)S1

2 For all X ∈ ker(A),

‖X‖S2
≤ Ck−1/2 ‖X‖S1

.
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Turning the tables

Use compressed sensing ideas to prove results about Gelfand
numbers.

Theorem (Foucart-Pajor-Rauhut-Ullrich 2010)
For 0 < p ≤ 1 and p < q ≤ 2, if m < n, then

cm(Id : `n
p → `n

q) � min
{

1,
ln(n/m) + 1

m

}1/p−1/q

.
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Goal, Part II

Noncommutative version of the Foucart-Pajor-Rauhut-Ullrich
theorem: calculate the Gelfand numbers of identity maps

Id : Sn
p → Sn

q

for 0 < p ≤ 1 and p < q ≤ 2.

Known result: [Carl-Defant 1997]

cm(Id : Sn
1 → Sn

2) � min
{

1,
n
m

}1/2
.

Their approach is based on tensor product arguments plus a deep
inequality of Pajor and Tomczak-Jaegermann.
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Main result

We are able to calculate Gelfand numbers in a noncommutative
version of the Foucart-Pajor-Rauhut-Ullrich result.

Theorem (CD-K)
For 0 < p ≤ 1 and p < q ≤ 2, if 1 ≤ m < n2, then

cm(Id : Sn
p → Sn

q) � min
{

1,
n
m

}1/p−1/q
.
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Technical tool: Restricted Isometry Property

A condition on the measuring map that guarantees stable recovery.

RIP [Candès-Tao 2005]
A : Rn → Rm has the RIP of order k with constant δk > 0 if for all vectors
z ∈ Rn of sparsity at most k,

(1− δk)
1/2 ‖z‖`2

≤ ‖Az‖`2
≤ (1 + δk)

1/2 ‖z‖`2

Note: There are strong connections between the RIP and the
Johnson-Lindenstrauss lemma [Baraniuk-Davenport-DeVore-Wakin
2008, Krahmer-Ward 2011].
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Noncommutative Restricted Isometry Property

Matrix RIP [Recht-Fazel-Parrilo 2010]
A : Mn → Rm has the RIP of order k with constant δk > 0 if for all
matrices Z ∈ Mn of rank at most k,

(1− δk)
1/2 ‖Z‖S2

≤ ‖AZ‖`2
≤ (1 + δk)

1/2 ‖Z‖S2

We use a modified version inspired by [Foucart-Lai 2009].
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Stability and Robustness: technical result

Theorem (CD-K)
Given 0 < p ≤ 1, if for integers t ≥ k we have

2δ2t

1− δ2t
< 4(
√

2− 1)
( t

k

)1/p−1/2
,

then a solution X∗ of

minimize ‖Z‖Sp
subject to ‖AZ − y‖2 ≤ β2k · θ.

approximates the original matrix X with errors

‖X − X∗‖Sp
≤ C1ρk(X)Sp + D1 · k1/p−1/2 · θ,

‖X − X∗‖S2
≤ C2

ρk(X)Sp

t1/p−1/2 + D2 · θ.
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Idea of the proof

It follows the general strategy of [Foucart-Lai 2009].

BIG ISSUE: if P : Rn → Rn is a projection over a subset of
coordinates, then for any vector x ∈ Rn,

‖x‖p
`p

= ‖Px‖p
`p

+ ‖x− Px‖p
`p
.

This is not the case for matrices.

We overcome this difficulty by modifying some matrix
decompositions from [Kong-Xiu 2013].
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Comparison to related results

A recent result similar to ours
has appeared in
[Liu-Huang-Chen 2014].
Their conclusions have the
same form, but our
hypothesis are weaker.

[MalekMohammadi-
BabaieZadeh-Skoglund]
have independently obtained
the same stability result as
us.

Neither one of those papers
calculate Gelfand widths.
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THANKS!
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