Type of multilinear operators and polynomials

Jamilson R. Campos (jamilson@dcx.ufpb.br)

This is a joint work with Geraldo Botelho

I Brazilian Workshop on geometry of Banach spaces August - 2014

4 A N

1.1 - Introduction

The concepts of type and cotype of Banach spaces were introduced mainly by J. Hoffmann-Jørgensen and by B. Maurey in the study of Banach spaces-valued random variables.

Since then the theory of type and cotype have found several applications and became a central part of the geometry of Banach spaces, and of the linear and multilinear operator theory and operator ideals.

1.1 - Introduction

The concepts of type and cotype of Banach spaces were introduced mainly by J. Hoffmann-Jørgensen and by B. Maurey in the study of Banach spaces-valued random variables.

Since then the theory of type and cotype have found several applications and became a central part of the geometry of Banach spaces, and of the linear and multilinear operator theory and operator ideals.

Our main goals throughout this recent research has been to define and study these concepts in a multilinear scenario setting up the relationships of new definitions with the linear and multilinear theory already established.

We introduce the class of multilinear operators of type (p_1, \ldots, p_n) and polynomials of type p and show some relationships between the first one with the multi-ideals constructed by composition and linearization methods from the class of linear operator of type p.

< 🗇 🕨 < 🖻 🕨

Our main goals throughout this recent research has been to define and study these concepts in a multilinear scenario setting up the relationships of new definitions with the linear and multilinear theory already established.

We introduce the class of multilinear operators of type (p_1, \ldots, p_n) and polynomials of type p and show some relationships between the first one with the multi-ideals constructed by composition and linearization methods from the class of linear operator of type p.

Type of multilinear operators and polynomials Examples

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2.1 - Linear operators of type p

Let the sequence $(r_j)_{j=1}^{\infty}$ of the Rademacher functions. We say that a sequence $(x_j)_{j=1}^{\infty}$ in *E* is *almost unconditionally summable* if the series $\sum_j r_j(t)x_j$ converges in $L_2([0, 1]; E)$.

The set of these sequences, denoted Rad(E), is a Banach space equipped with the norm

$$||(x_i)_{i=1}^{\infty}||_{\mathrm{Rad}(E)} = \left\|\sum_{j=1}^{\infty} r_j x_j\right\|_{L_2(E)} = \left(\int_0^1 \left\|\sum_{j=1}^{\infty} r_j(t) x_j\right\|^2 dt\right)^{1/2}$$

Type of multilinear operators and polynomials Examples

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2.1 - Linear operators of type p

Let the sequence $(r_j)_{j=1}^{\infty}$ of the Rademacher functions. We say that a sequence $(x_j)_{j=1}^{\infty}$ in *E* is *almost unconditionally summable* if the series $\sum_j r_j(t)x_j$ converges in $L_2([0, 1]; E)$.

The set of these sequences, denoted Rad(E), is a Banach space equipped with the norm

$$||(x_i)_{i=1}^{\infty}||_{\mathrm{Rad}(E)} = \left\|\sum_{j=1}^{\infty} r_j x_j\right\|_{L_2(E)} = \left(\int_0^1 \left\|\sum_{j=1}^{\infty} r_j(t) x_j\right\|^2 dt\right)^{1/2}$$

Type of multilinear operators and polynomials Examples

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2.1 - Linear operators of type *p*

We say that an operator $T \in \mathcal{L}(E; F)$ is of *type p*, $1 \le p \le 2$, if there is some constant C > 0 such that

$$\left(\int_{0}^{1}\left\|\sum_{j=1}^{k}r_{j}(t)T(x_{j})\right\|^{2}dt\right)^{1/2} \leq C\left(\sum_{j=1}^{k}\|x_{j}\|^{p}\right)^{1/p},$$
 (1)

for any $k \in \mathbb{N}$ and for all $x_1, ..., x_k \in E$. A normed space *E* is called of type *p* if *id_E* has type *p*.

It is a folklore that the set of all linear operators from *E* into *F* of type *p*, denoted by $\tau_p(E; F)$, is a Banach space with usual operations and under the norm $|| \cdot ||_{\tau_p} := \inf\{C > 0, \text{ such that (1) holds}\}.$

Type of multilinear operators and polynomials Examples

< ロ > < 同 > < 回 > < 回 >

2.1 - Linear operators of type *p*

We say that an operator $T \in \mathcal{L}(E; F)$ is of *type p*, $1 \le p \le 2$, if there is some constant C > 0 such that

$$\left(\int_{0}^{1}\left\|\sum_{j=1}^{k}r_{j}(t)T(x_{j})\right\|^{2}dt\right)^{1/2} \leq C\left(\sum_{j=1}^{k}\|x_{j}\|^{p}\right)^{1/p},$$
 (1)

for any $k \in \mathbb{N}$ and for all $x_1, ..., x_k \in E$. A normed space *E* is called of type *p* if *id_E* has type *p*.

It is a folklore that the set of all linear operators from *E* into *F* of type *p*, denoted by $\tau_p(E; F)$, is a Banach space with usual operations and under the norm $|| \cdot ||_{\tau_p} := \inf\{C > 0, \text{ such that (1) holds}\}.$

Type of multilinear operators and polynomials Examples

イロト イ押ト イヨト イヨト

2.1 - Multilinear and polynomial definitions

Let $p, p_1, ..., p_n \in (0, +\infty)$.

Definition: A continuous *n*-linear operator $T \in \mathcal{L}(E_1, ..., E_n; F)$ has *type* $(p_1, ..., p_n)$, $\frac{1}{2} \leq \frac{1}{p_1} + \cdots + \frac{1}{p_n} \leq 1$, if there is a constant C > 0 such that, however we choose finitely many vectors $(x_j^{(1)}, ..., x_j^{(n)})$ in $E_1 \times \cdots \times E_n$, $j \in \{1, ..., k\}$,

$$\left(\int_{0}^{1}\left\|\sum_{j=1}^{k}r_{j}(t)T\left(x_{j}^{(1)},...,x_{j}^{(n)}\right)\right\|^{2}dt\right)^{1/2} \leq C\prod_{i=1}^{n}\left\|\left(x_{j}^{(i)}\right)_{j=1}^{k}\right\|_{p_{i}}.$$
 (2)

Type of multilinear operators and polynomials Examples

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2.1 - Multilinear and polynomial definitions

Definition: A continuous *n*-homogeneous polynomial $P \in \mathcal{P}(^{n}E; F)$ has *type p*, $n \le p \le 2n$, if there is a constant C > 0 for which

$$\left(\int_{0}^{1}\left\|\sum_{j=1}^{k}r_{j}(t)P(x_{j})\right\|^{2}dt\right)^{1/2} \leq C \cdot \left(\sum_{j=1}^{k}\|x_{j}\|^{p}\right)^{n/p},$$
 (3)

regardless of the choice of finitely many vectors $x_1, ..., x_k$ in *E*.

Type of multilinear operators and polynomials Examples

イロト イ押ト イヨト イヨト

2.1 - Multilinear and polynomial definitions

The sets of all *n*-linear operators of type $(p_1, ..., p_n)$ from $E_1 \times \cdots \times E_n$ into *F* and all *n*-homogeneous polynomials of type *p* from *E* into *F* are denoted by $\tau^n_{(p_1,...,p_n)}(E_1, ..., E_n; F)$ and by $\mathcal{P}_{\tau^n_{(p_1,...,p_n)}}({}^nE; F)$. These sets, provided with the usual operations, are a Banach subspaces of $\mathcal{L}(E_1, ..., E_n; F)$ and $\mathcal{P}({}^nE; F)$ equipped with the norms

$$||\cdot||_{\tau^n_{(p_1,\ldots,p_n)}} := \inf\{C > 0, \text{ such that (2) holds}\}$$

and

$$||\cdot||_{\mathcal{P}_{\tau^n_{(p_1,\ldots,p_n)}}} := \inf\{C > 0, \text{ such that (3) holds}\}.$$

Type of multilinear operators and polynomials Examples

< ロ > < 同 > < 三 > < 三 > -

2.2 - Examples

Let us show some examples:

The continuous 2-linear operator

$$T : I_1 \times I_1 \longrightarrow I_1 ((x_j)_{j=1}^{\infty}, (y_j)_{j=1}^{\infty}) \mapsto (x_j y_j)_{j=1}^{\infty}$$

does not have any proper type (p_1, p_2) ;

• Let $E_1, ..., E_n$ be Banach spaces such that E_n has type $p_n, \varphi_i \in E'_i$, i = 1, ..., n - 1, and the continuous *n*-linear operator *T* defined by

$$T : E_1 \times \cdots \times E_n \longrightarrow E_n$$

(x_1, ..., x_n) $\mapsto \varphi_1(x_1) \cdots \varphi_{n-1}(x_{n-1}).x_n$

Then T has type $(p_1, ..., p_n)$ for any $p_1, ..., p_n$ such that $\frac{1}{2} \leq \frac{1}{p_1} + \cdots + \frac{1}{p_n} \leq 1;$

Type of multilinear operators and polynomials Examples

< □ > < 同 > < 回 > < 回 > .

2.2 - Examples

Let us show some examples:

The continuous 2-linear operator

$$T: I_1 \times I_1 \longrightarrow I_1 ((x_j)_{j=1}^{\infty}, (y_j)_{j=1}^{\infty}) \mapsto (x_j y_j)_{j=1}^{\infty}$$

does not have any proper type (p_1, p_2) ;

• Let $E_1, ..., E_n$ be Banach spaces such that E_n has type $p_n, \varphi_i \in E'_i$, i = 1, ..., n - 1, and the continuous *n*-linear operator *T* defined by

$$T: E_1 \times \cdots \times E_n \longrightarrow E_n$$

(x_1, ..., x_n) $\mapsto \varphi_1(x_1) \cdots \varphi_{n-1}(x_{n-1}).x_n$

Then *T* has type $(p_1, ..., p_n)$ for any $p_1, ..., p_n$ such that $\frac{1}{2} \leq \frac{1}{p_1} + \cdots + \frac{1}{p_n} \leq 1$;

Type of multilinear operators and polynomials Examples

2.2 - Examples

 The *n*-linear operators of finite rank (and finite type operators) has any proper type (*p*₁,...,*p_n*).

• The continuous *n*-linear operator

$$\sigma: E_1 \times E_n \longrightarrow E_1 \hat{\otimes}_{\pi} \cdots \hat{\otimes}_{\pi} E_n$$
$$(x_1, ..., x_n) \mapsto x_1 \otimes \cdots \otimes x_n$$

does not have any proper type (p_1, \ldots, p_n) ;

Type of multilinear operators and polynomials Examples

2.2 - Examples

- The *n*-linear operators of finite rank (and finite type operators) has any proper type (*p*₁,...,*p_n*).
- The continuous *n*-linear operator

$$\sigma : E_1 \times E_n \longrightarrow E_1 \hat{\otimes}_{\pi} \cdots \hat{\otimes}_{\pi} E_n$$
$$(x_1, ..., x_n) \mapsto x_1 \otimes \cdots \otimes x_n$$

does not have any proper type (p_1, \ldots, p_n) ;

A Banach multi-ideal $(\mathcal{M}, \|\cdot\|_{\mathcal{M}})$ is a subclass of the all class of continuous multilinear operators between Banach spaces such that for any $n \in \mathbb{N}$ and Banach spaces $E_1, ..., E_n$ and F, the components $\mathcal{M}(E_1, ..., E_n; F) = \mathcal{L}(E_1, ..., E_n; F) \cap \mathcal{M}$ satisfy:

i) $\mathcal{M}(E_1, ..., E_n; F)$ is a complete subspace of $\mathcal{L}(E_1, ..., E_n; F)$ which contains the *n*-linear finite type operators; ii) The ideal property: if $A \in \mathcal{M}(E_1, ..., E_n; F)$, $u_j \in \mathcal{L}(G_j, E_j)$ for j = 1, ..., n and $t \in \mathcal{L}(F; H)$, then $tA(u_1, ..., u_n) \in \mathcal{M}(G_1, ..., G_n; H)$ and

 $||tA(u_1,...,u_n)||_{\mathcal{M}} \leq ||t|| ||A||_{\mathcal{M}} ||u_1|| \cdots ||u_n||.$

iii) the operator $\|id_{\mathbb{K}^n}:\mathbb{K}^n\longrightarrow\mathbb{K}:id_{\mathbb{K}^n}(x_1,...,x_n)=x_1\cdots x_n\|_{\mathcal{M}}=1$, for all $n\in\mathbb{N}$;

A Banach multi-ideal $(\mathcal{M}, \|\cdot\|_{\mathcal{M}})$ is a subclass of the all class of continuous multilinear operators between Banach spaces such that for any $n \in \mathbb{N}$ and Banach spaces $E_1, ..., E_n$ and F, the components $\mathcal{M}(E_1, ..., E_n; F) = \mathcal{L}(E_1, ..., E_n; F) \cap \mathcal{M}$ satisfy:

i) $\mathcal{M}(E_1, ..., E_n; F)$ is a complete subspace of $\mathcal{L}(E_1, ..., E_n; F)$ which contains the *n*-linear finite type operators;

ii) The ideal property: if $A \in \mathcal{M}(E_1, ..., E_n; F)$, $u_j \in \mathcal{L}(G_j, E_j)$ for j = 1, ..., n and $t \in \mathcal{L}(F; H)$, then $tA(u_1, ..., u_n) \in \mathcal{M}(G_1, ..., G_n; H)$ and

 $||tA(u_1,...,u_n)||_{\mathcal{M}} \leq ||t|| ||A||_{\mathcal{M}} ||u_1||\cdots ||u_n||.$

iii) the operator $\|id_{\mathbb{K}^n}:\mathbb{K}^n\longrightarrow\mathbb{K}:id_{\mathbb{K}^n}(x_1,...,x_n)=x_1\cdots x_n\|_{\mathcal{M}}=1$, for all $n\in\mathbb{N}$;

< □ > < 同 > < 回 > < 回 > .

A Banach multi-ideal $(\mathcal{M}, \|\cdot\|_{\mathcal{M}})$ is a subclass of the all class of continuous multilinear operators between Banach spaces such that for any $n \in \mathbb{N}$ and Banach spaces $E_1, ..., E_n$ and F, the components $\mathcal{M}(E_1, ..., E_n; F) = \mathcal{L}(E_1, ..., E_n; F) \cap \mathcal{M}$ satisfy:

i) $\mathcal{M}(E_1, ..., E_n; F)$ is a complete subspace of $\mathcal{L}(E_1, ..., E_n; F)$ which contains the *n*-linear finite type operators; ii) The ideal property: if $A \in \mathcal{M}(E_1, ..., E_n; F)$, $u_i \in \mathcal{L}(G_i, E_i)$ for

ii) The ideal property: If $A \in \mathcal{M}(\mathcal{L}_1, ..., \mathcal{L}_n; \mathcal{F})$, $u_j \in \mathcal{L}(G_j, \mathcal{L}_j)$ for j = 1, ..., n and $t \in \mathcal{L}(\mathcal{F}; \mathcal{H})$, then $tA(u_1, ..., u_n) \in \mathcal{M}(G_1, ..., G_n; \mathcal{H})$ and

 $\|tA(u_1,...,u_n)\|_{\mathcal{M}} \leq \|t\| \|A\|_{\mathcal{M}} \|u_1\|\cdots\|u_n\|.$

iii) the operator $\|id_{\mathbb{K}^n}:\mathbb{K}^n\longrightarrow\mathbb{K}:id_{\mathbb{K}^n}(x_1,...,x_n)=x_1\cdots x_n\|_{\mathcal{M}}=1$, for all $n\in\mathbb{N}$;

A Banach multi-ideal $(\mathcal{M}, \|\cdot\|_{\mathcal{M}})$ is a subclass of the all class of continuous multilinear operators between Banach spaces such that for any $n \in \mathbb{N}$ and Banach spaces $E_1, ..., E_n$ and F, the components $\mathcal{M}(E_1, ..., E_n; F) = \mathcal{L}(E_1, ..., E_n; F) \cap \mathcal{M}$ satisfy:

i) $\mathcal{M}(E_1, ..., E_n; F)$ is a complete subspace of $\mathcal{L}(E_1, ..., E_n; F)$ which contains the *n*-linear finite type operators; ii) The ideal property: if $\mathbf{A} \in \mathcal{M}(E_1, ..., E_1; F)$ $\mu_1 \in \mathcal{L}(G; E_1)$ for

ii) The ideal property: if $A \in \mathcal{M}(E_1, ..., E_n; F)$, $u_j \in \mathcal{L}(G_j, E_j)$ for j = 1, ..., n and $t \in \mathcal{L}(F; H)$, then $tA(u_1, ..., u_n) \in \mathcal{M}(G_1, ..., G_n; H)$ and

 $\|tA(u_1,...,u_n)\|_{\mathcal{M}} \leq \|t\| \|A\|_{\mathcal{M}} \|u_1\|\cdots\|u_n\|.$

iii) the operator $\|id_{\mathbb{K}^n} : \mathbb{K}^n \longrightarrow \mathbb{K} : id_{\mathbb{K}^n}(x_1, ..., x_n) = x_1 \cdots x_n\|_{\mathcal{M}} = 1$, for all $n \in \mathbb{N}$;

3.1 - Some definitions and notation required

We notice that

- $(\tau_p, || \cdot ||_{\tau_p})$ is a Banach Ideal of linear operators; (this is well known)
- $\left(\tau^n_{(\rho_1,\ldots,\rho_n)}, ||\cdot||_{\tau^n_{(\rho_1,\ldots,\rho_n)}}\right)$ is a Banach multi-ideal (we proved this in our work).

A (1) > A (2) > A

3.1 - Some definitions and notation required

We notice that

- $(\tau_p, || \cdot ||_{\tau_p})$ is a Banach Ideal of linear operators; (this is well known)
- $\left(\tau_{(p_1,\ldots,p_n)}^n, ||\cdot||_{\tau_{(p_1,\ldots,p_n)}^n}\right)$ is a Banach multi-ideal (we proved this in our work).

- 4 回 ト 4 回 ト

We will consider two methods to build multi-ideals from ideals of linear operators. Given $\mathcal{I}_1, ..., \mathcal{I}_n$ ideals of linear operators:

1) An *n*-linear mapping $T \in \mathcal{L}(E_1, ..., E_n; F)$ is said to be of type $[\mathcal{I}_1, ..., \mathcal{I}_n]$, in symbols $T \in [\mathcal{I}_1, ..., \mathcal{I}_n](E_1, ..., E_n; F)$, if $l_j(T) \in \mathcal{I}_j(E_j; \mathcal{L}(E_1, \underline{\mathbb{N}}, E_n; F))$, for all $j \in \{1, ..., n\}$, where the operator $l_j : \mathcal{L}(E_1, ..., E_n; F) \to \mathcal{L}(E_j; \mathcal{L}(E_1, \underline{\mathbb{N}}, E_n; F))$ is defined by

$$I_j(T)(x_j)(x_1, \stackrel{[1]}{\ldots}, x_n) = T(x_1, ..., x_n),$$

and $\overset{[l]}{\ldots}$ means that the *j*-th coordinate is not involved.

If $\mathcal{I}_1, ..., \mathcal{I}_n$ are normed ideals, we define

 $||T||_{[\mathcal{I}_1,...,\mathcal{I}_n]} = \max \{||I_1(T)||_{\mathcal{I}_1} \cdots ||I_n(T)||_{\mathcal{I}_n}\},\$

for $T \in [I_1, ..., I_n] (E_1, ..., E_n; F)$.

We will consider two methods to build multi-ideals from ideals of linear operators. Given $\mathcal{I}_1, ..., \mathcal{I}_n$ ideals of linear operators:

1) An *n*-linear mapping $T \in \mathcal{L}(E_1, ..., E_n; F)$ is said to be of type $[\mathcal{I}_1, ..., \mathcal{I}_n]$, in symbols $T \in [\mathcal{I}_1, ..., \mathcal{I}_n](E_1, ..., E_n; F)$, if $I_j(T) \in \mathcal{I}_j(E_j; \mathcal{L}(E_1, [!], E_n; F))$, for all $j \in \{1, ..., n\}$, where the operator $I_j : \mathcal{L}(E_1, ..., E_n; F) \to \mathcal{L}(E_j; \mathcal{L}(E_1, [!], E_n; F))$ is defined by

$$I_j(T)(x_j)(x_1, \overset{[j]}{\ldots}, x_n) = T(x_1, ..., x_n),$$

and ^[j] means that the *j*-th coordinate is not involved.

If $\mathcal{I}_1, ..., \mathcal{I}_n$ are normed ideals, we define

 $||T||_{[\mathcal{I}_1,...,\mathcal{I}_n]} = \max \{||I_1(T)||_{\mathcal{I}_1} \cdots ||I_n(T)||_{\mathcal{I}_n}\},\$

for $T \in [I_1, ..., I_n]$ ($E_1, ..., E_n$; F).

< ロ > < 同 > < 三 > < 三 > -

We will consider two methods to build multi-ideals from ideals of linear operators. Given $\mathcal{I}_1, ..., \mathcal{I}_n$ ideals of linear operators:

1) An *n*-linear mapping $T \in \mathcal{L}(E_1, ..., E_n; F)$ is said to be of type $[\mathcal{I}_1, ..., \mathcal{I}_n]$, in symbols $T \in [\mathcal{I}_1, ..., \mathcal{I}_n](E_1, ..., E_n; F)$, if $I_j(T) \in \mathcal{I}_j(E_j; \mathcal{L}(E_1, [!], E_n; F))$, for all $j \in \{1, ..., n\}$, where the operator $I_j : \mathcal{L}(E_1, ..., E_n; F) \to \mathcal{L}(E_j; \mathcal{L}(E_1, [!], E_n; F))$ is defined by

$$I_j(T)(x_j)(x_1, \overset{[j]}{\ldots}, x_n) = T(x_1, ..., x_n),$$

and ^[j] means that the *j*-th coordinate is not involved.

If $\mathcal{I}_1,...,\mathcal{I}_n$ are normed ideals, we define

$$||T||_{[\mathcal{I}_1,...,\mathcal{I}_n]} = \max \{||I_1(T)||_{\mathcal{I}_1} \cdots ||I_n(T)||_{\mathcal{I}_n}\},\$$

for $T \in [I_1, ..., I_n] (E_1, ..., E_n; F)$.

2) Let \mathcal{I} be an ideal of linear operators. A mapping $T \in \mathcal{L}(E_1, ..., E_n; F)$ belongs to $\mathcal{I} \circ \mathcal{L}$, denoted by $T \in \mathcal{I} \circ \mathcal{L}(E_1, ..., E_n; F)$, if there are a Banach space *G*, an operator $u \in \mathcal{I}(G; F)$ and an *n*-linear mapping $B \in \mathcal{L}(E_1, ..., E_n; F)$ such that $T = u \circ B$.

If \mathcal{I} is a normed ideal, for $T \in \mathcal{I} \circ \mathcal{L} (E_1, ..., E_n; F)$, we define

 $||T||_{\mathcal{I} \circ \mathcal{L}} = \inf \{ ||B|| ||u||_{\mathcal{I}} : T = u \circ B, \text{ with } u \text{ and } B \text{ as above} \}.$

It is well-known that if \mathcal{I} and $\mathcal{I}_1, ..., \mathcal{I}_n$ are normed ideals then $([\mathcal{I}_1, ..., \mathcal{I}_n], || \cdot ||_{[\mathcal{I}_1, ..., \mathcal{I}_n]})$ and $(\mathcal{I} \circ \mathcal{L}, || \cdot ||_{\mathcal{I} \circ \mathcal{L}})$ are normed ideals of multilinear mappings.

The procedures with which the above ideals were created are called linearization and composition methods, respectively.

< 口 > < 同 > < 回 > < 回 > .

2) Let \mathcal{I} be an ideal of linear operators. A mapping $T \in \mathcal{L}(E_1, ..., E_n; F)$ belongs to $\mathcal{I} \circ \mathcal{L}$, denoted by $T \in \mathcal{I} \circ \mathcal{L}(E_1, ..., E_n; F)$, if there are a Banach space *G*, an operator $u \in \mathcal{I}(G; F)$ and an *n*-linear mapping $B \in \mathcal{L}(E_1, ..., E_n; F)$ such that $T = u \circ B$.

If \mathcal{I} is a normed ideal, for $T \in \mathcal{I} \circ \mathcal{L} (E_1, ..., E_n; F)$, we define

 $||T||_{\mathcal{I} \circ \mathcal{L}} = \inf \{ ||B|| ||u||_{\mathcal{I}} : T = u \circ B, \text{ with } u \text{ and } B \text{ as above} \}.$

It is well-known that if \mathcal{I} and $\mathcal{I}_1, ..., \mathcal{I}_n$ are normed ideals then $([\mathcal{I}_1, ..., \mathcal{I}_n], || \cdot ||_{[\mathcal{I}_1, ..., \mathcal{I}_n]})$ and $(\mathcal{I} \circ \mathcal{L}, || \cdot ||_{\mathcal{I} \circ \mathcal{L}})$ are normed ideals of multilinear mappings.

The procedures with which the above ideals were created are called linearization and composition methods, respectively.

< □ > < □ > < □ > < □ > < □ >

2) Let \mathcal{I} be an ideal of linear operators. A mapping $T \in \mathcal{L}(E_1, ..., E_n; F)$ belongs to $\mathcal{I} \circ \mathcal{L}$, denoted by $T \in \mathcal{I} \circ \mathcal{L}(E_1, ..., E_n; F)$, if there are a Banach space *G*, an operator $u \in \mathcal{I}(G; F)$ and an *n*-linear mapping $B \in \mathcal{L}(E_1, ..., E_n; F)$ such that $T = u \circ B$.

If \mathcal{I} is a normed ideal, for $T \in \mathcal{I} \circ \mathcal{L} (E_1, ..., E_n; F)$, we define

 $||T||_{\mathcal{I} \circ \mathcal{L}} = \inf \{ ||B|| ||u||_{\mathcal{I}} : T = u \circ B, \text{ with } u \text{ and } B \text{ as above} \}.$

It is well-known that if \mathcal{I} and $\mathcal{I}_1, ..., \mathcal{I}_n$ are normed ideals then $([\mathcal{I}_1, ..., \mathcal{I}_n], || \cdot ||_{[\mathcal{I}_1, ..., \mathcal{I}_n]})$ and $(\mathcal{I} \circ \mathcal{L}, || \cdot ||_{\mathcal{I} \circ \mathcal{L}})$ are normed ideals of multilinear mappings.

The procedures with which the above ideals were created are called linearization and composition methods, respectively.

< □ > < □ > < □ > < □ > < □ >

3.1 - Relationship with the ideals $\tau_p \circ \mathcal{L}$ and $[\tau_{q_1}, ..., \tau_{q_n}]$

So, we prove that

Theorem

If $1 and <math>\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_n}$ then $\tau_p \circ \mathcal{L} \subseteq \tau^n_{(p_1,\dots,p_n)}$, for all $n \in \mathbb{N}$ and

$$||T||_{\tau^n_{(p_1,\ldots,p_n)}} \leq ||T||_{\tau_p \circ \mathcal{L}}.$$

and, for instance, that

Theorem

If $1 < q_1, ..., q_n \le 2$ and $\frac{1}{2} \le \frac{1}{p_1} + \dots + \frac{1}{p_n} < 1$ then

$$\tau_{(p_1,\ldots,p_n)}^n \nsubseteq [\tau_{q_1},\ldots,\tau_{q_n}],$$

for all $n \in \mathbb{N}$.

イロト イ団ト イヨト イヨト

3.1 - Relationship with the ideals $\tau_p \circ \mathcal{L}$ and $[\tau_{q_1}, ..., \tau_{q_n}]$

So, we prove that

Theorem

If
$$1 and $\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_n}$ then $\tau_p \circ \mathcal{L} \subseteq \tau_{(p_1,\dots,p_n)}^n$, for all $n \in \mathbb{N}$
and
 $||T||_{\tau_{(p_1,\dots,p_n)}^n} \le ||T||_{\tau_p \circ \mathcal{L}}.$$$

and, for instance, that

Theorem

If
$$1 < q_1, ..., q_n \le 2$$
 and $\frac{1}{2} \le \frac{1}{p_1} + \dots + \frac{1}{p_n} < 1$ then
 $\tau^n_{(p_1,...,p_n)} \nsubseteq [\tau_{q_1}, ..., \tau_{q_n}],$

for all $n \in \mathbb{N}$.

• • • • • • • • • • • •

References

- G. Botelho, *Ideals of polynomials generated by weakly compact operators*, Note di Matematica **25** (2005), 69-102.
- G. Botelho, D. Pellegrino and P. Rueda, On composition ideals of multilinear mappings and homogeneous polynomials, Publications of the Research Institute for Mathematical Sciences 43, no. 4 (2007), 1139-1155.
- A. Defant and K. Floret, *Tensor Norms and Operator Ideals*, North-Holland Mathematics Studies **176**, North-Hollland, 1993.
 - A. Pietsch, *Operator ideals*, Springer, 1980.
- A. Pietsch, Ideals of multilinear functionals, Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics, 185-199, Teubner-Texte, Leipzig, 1983.

• • • • • • • • • • • •

Thank you very much!

• • • • • • • • • • • • •

-