Kevin Beanland

Washington and Lee University

Joint work with: Spiros Argyros, Ryan Causey, Dan Freeman and Pavlos Motakis

First Brazilian Workshop in Geometry of Banach Spaces Maresias, Brazil

August 28th, 2014

Schreier Families

Let

$$\mathcal{S}_1 = \{F \subset \mathbb{N} : |F| \leqslant \min F\}.$$

If α is a countable ordinal and \mathcal{S}_{α} has been defined let

$$\mathcal{S}_{\alpha+1} = \{\bigcup_{i=1}^n F_i : F_1 < \cdots < F_n, (\min F_i)_{i=1}^n \in \mathcal{S}_1, F_i \in \mathcal{S}_\alpha\}.$$

If ξ is a limit ordinal let $\xi_n \uparrow \xi$ and define

$$\mathcal{S}_{\xi} = \{F : \exists n \leqslant F \in \mathcal{S}_{\xi_n}\}.$$

A sequence (x_n) in a Banach space generates an $S_{\alpha}-\ell_p$ spreading model if there is a constant C > 0 so that for all scalars $(a_i)_i$ and $F \in S_{\alpha}$ we have

$$\frac{1}{C}\left(\sum_{i\in F}|a_i|^p\right)^{1/p} \leqslant \left\|\sum_{i\in F}a_ix_i\right\| \leqslant C\left(\sum_{i\in F}|a_i|^p\right)^{1/p}.$$

Strictly Singular Operators

A operator $T \in \mathcal{L}(X)$ is S_{α} -strictly singular ($T \in SS_{\alpha}(X)$) if for every $\varepsilon > 0$ and normalized basic sequence $(x_n)_{n \in \mathbb{N}}$ in X

 $\exists F \in \mathcal{S}_{\alpha} \text{ and } x \in S_{[x_n]_{n \in F}} \text{ satisfying } \|Tx\| < \varepsilon.$

Strictly Singular Operators

A operator $T \in \mathcal{L}(X)$ is S_{α} -strictly singular ($T \in SS_{\alpha}(X)$) if for every $\varepsilon > 0$ and normalized basic sequence $(x_n)_{n \in \mathbb{N}}$ in X

 $\exists F \in \mathcal{S}_{\alpha} \text{ and } x \in S_{[x_n]_{n \in F}} \text{ satisfying } \|Tx\| < \varepsilon.$

For each α the set $\mathcal{SS}_{\alpha}(X)$ is norm closed,

 $\mathcal{K}(X)\subset\mathcal{SS}_lpha(X)\subset\mathcal{SS}_eta(X)\subset\mathcal{SS}(X)$

for $\alpha < \beta$. For $T \in \mathcal{L}(X)$ and $S \in SS_{\alpha}(X)$ we have $TS, ST \in SS_{\alpha}(X)$. For separable X we have

$$igcup_{lpha < \omega_1} \mathcal{SS}_lpha(X) = \mathcal{SS}(X).$$

Strictly Singular Operators

A operator $T \in \mathcal{L}(X)$ is S_{α} -strictly singular $(T \in SS_{\alpha}(X))$ if for every $\varepsilon > 0$ and normalized basic sequence $(x_n)_{n \in \mathbb{N}}$ in X

 $\exists F \in \mathcal{S}_{\alpha} \text{ and } x \in S_{[x_n]_{n \in F}} \text{ satisfying } \|Tx\| < \varepsilon.$

For each α the set $\mathcal{SS}_{\alpha}(X)$ is norm closed,

 $\mathcal{K}(X)\subset\mathcal{SS}_lpha(X)\subset\mathcal{SS}_eta(X)\subset\mathcal{SS}(X)$

for $\alpha < \beta$. For $T \in \mathcal{L}(X)$ and $S \in SS_{\alpha}(X)$ we have $TS, ST \in SS_{\alpha}(X)$. For separable X we have

$$igcup_{lpha < \omega_1} \mathcal{SS}_lpha(X) = \mathcal{SS}(X).$$

However, it is not necessarily true that $S_1, S_2 \in SS_{\alpha}(X)$ implies that $S_1 + S_2 \in SS_{\alpha}(X)$ [Odell and Teixeira].

Distortion

A Banach space $(X, \|\cdot\|)$ with a basis $[e_n]$ is S_{α} -arbitrarily distortable if for every $\lambda > 0$ there is an equivalent norm $|\cdot|$ on X so that for every block sequence (x_n) of (e_n)

$$\exists F \in \mathcal{S}_{\alpha} \text{ and } x, y \in \mathcal{S}_{[x_n]_{n \in F}} \text{ with } \frac{|x|}{|y|} > \lambda.$$

Distortion

A Banach space $(X, \|\cdot\|)$ with a basis $[e_n]$ is S_{α} -arbitrarily distortable if for every $\lambda > 0$ there is an equivalent norm $|\cdot|$ on X so that for every block sequence (x_n) of (e_n)

$$\exists F \in \mathcal{S}_{\alpha} \text{ and } x, y \in \mathcal{S}_{[x_n]_{n \in F}} \text{ with } \frac{|x|}{|y|} > \lambda.$$

Define

 $AD(X) = \min\{\alpha : X \text{ is } S_{\alpha} \text{-arbitraily distortable}\}$

We have $AD(X) < \omega_1$ if and only if X is arbitrarily distortable.

Tsirelson space

Let $0 < \theta < 1$. The space T is the completion of c_{00} under a norm that satifies the following implicit equation: Let $x \in c_{00}$

$$\|x\| = \max\{\|x\|_{\infty}, \sup \theta \sum_{i=1}^{n} \|E_i x\|\}$$

where the supremum is for $n \in \mathbb{N}$ and successive intervals $(E_i)_{i=1}^n$ satisfying

 $(\min E_i)_{i=1}^n \in \mathcal{S}_1.$

Let $0 < \theta < 1$. The space $T_{0,1}$ is the completion of c_{00} with respect to the norm satisfying the following implicit equation. Let $x \in c_{00}$

$$\|x\|=\max\{\|x\|_\infty,\sup heta\sum_{i=1}^n\|E_ix\|_{m_i}\}$$

where the supremum is for successive intervals $(E_i)_{i=1}^n$ and $(m_i)_{i=1}^n$ with

$$(\min E_i)_{i=1}^n \in \mathcal{S}_1$$
 and $m_i > \max E_{i-1}$

where

$$\|x\|_m = \sup \frac{\theta}{m} \sum_{j=1}^m \|F_j x\|.$$

Let $0 < \theta < 1$. The space $T_{0,1}^k$ is the completion of c_{00} with respect to the norm satisfying the following implicit equation. Let $x \in c_{00}$

$$\|x\|=\max\{\|x\|_\infty,\sup heta\sum_{i=1}^n\|\mathcal{E}_ix\|_{m_i}\}$$

where the supremum is for successive intervals $(E_i)_{i=1}^n$ and $(m_i)_{i=1}^n$ with

$$(\min E_i)_{i=1}^n \in \mathcal{S}_k$$
 and $m_i > \max E_{i-1}$

where

$$\|x\|_m = \sup \frac{\theta}{m} \sum_{j=1}^m \|F_j x\|.$$

Let $0 < \theta < 1$. The space $T_{0,1}^k$ is the completion of c_{00} with respect to the norm satisfying the following implicit equation. Let $x \in c_{00}$

$$\|x\|=\max\{\|x\|_\infty,\sup heta\sum_{i=1}^n\|\mathcal{E}_ix\|_{m_i}\}$$

where the supremum is for successive intervals $(E_i)_{i=1}^n$ and $(m_i)_{i=1}^n$ with

$$(\min E_i)_{i=1}^n \in \mathcal{S}_k$$
 and $m_i > \max E_{i-1}$

where

$$\|x\|_m = \sup \frac{\theta}{m} \sum_{j=1}^m \|F_j x\|.$$

Let $0 < \theta < 1$ and α be a countable ordinal. The space $T_{0,1}^{\omega^{\alpha}}$ is the completion of c_{00} with respect to the norm satisfying the following implicit equation. Let $x \in c_{00}$

$$\|x\|=\max\{\|x\|_\infty,\sup heta\sum_{i=1}^n\|E_ix\|_{m_i}\}$$

where the supremum is for successive intervals $(E_i)_{i=1}^n$ and $(m_i)_{i=1}^n$ with

$$(\min E_i)_{i=1}^n \in \mathcal{S}_{\omega^{\alpha}}$$
 and $m_i > \max E_{i-1}$

where

$$\|x\|_m = \sup \frac{\theta}{m} \sum_{j=1}^m \|F_j x\|.$$

Let $0 < \theta < 1$ and α be a countable ordinal. The space $T_{0,1}^{\omega^{\alpha}}$ is the completion of c_{00} with respect to the norm satisfying the following implicit equation. Let $x \in c_{00}$

$$\|x\|=\max\{\|x\|_\infty,\sup heta\sum_{i=1}^n\|E_ix\|_{m_i}\}$$

where the supremum is for successive intervals $(E_i)_{i=1}^n$ and $(m_i)_{i=1}^n$ with

$$(\min E_i)_{i=1}^n \in \mathcal{S}_{\omega^{lpha}}$$
 and $m_i > \max E_{i-1}$

where

$$\|x\|_m = \sup \frac{\theta}{m} \sum_{j=1}^m \|F_j x\|.$$

Let $0 < \theta < 1$ and $1 \le p < q \le \infty$. The space $T_{p,q}$ is the completion of c_{00} with respect to the norm satisfying the following implicit equation. Let $x \in c_{00}$

$$\|x\| = \max\{\|x\|_{\infty}, \sup \theta \left(\sum_{i=1}^{n} \|E_{i}x\|_{m_{i},q}^{p}\right)^{\frac{1}{p}}\}$$

where the supremum is for successive intervals $(E_i)_{i=1}^n$ and $(m_i)_{i=1}^n$ with

$$(\min E_i)_{i=1}^n \in \mathcal{S}_1$$
 and $m_i > \max E_{i-1}$

where

$$\|x\|_{m,q} = \sup \frac{\theta}{m^{1/q'}} \sum_{j=1}^m \|F_j x\|.$$

Let $0 < \theta \leq \frac{1}{2}$ and $1 \leq p < q \leq \infty$. The space $T_{p,q}$ is the completion of c_{00} with respect to the norm satisfying the following implicit equation. Let $x \in c_{00}$

$$\|x\| = \max\{\|x\|_{\infty}, \sup\theta\left(\sum_{i=1}^{n} \|E_{i}x\|_{m_{i},q}^{p}\right)^{\frac{1}{p}}, \sup\theta\left(\sum_{i=1}^{n} \|F_{i}x\|^{q}\right)^{\frac{1}{q}}\}$$

where the supremums are for successive intervals $(E_i)_{i=1}^n$ and $(m_i)_{i=1}^n$ with

 $(\min E_i)_{i=1}^n \in \mathcal{S}_1$ and $m_i > \max E_{i-1}$

and any successive intervals $(F_i)_{i=1}^n$. Also

$$\|x\|_{m,q} = \sup rac{ heta}{m^{1/q'}} \sum_{j=1}^m \|F_j x\|$$

where the supremum is for any successive intervals $(F_j)_{j=1}^m$.

Additional Constructions

- Odell and Schlumprecht constructed a space so that every monotone basic sequence is block finitely represented in every subspace.
- Argyros and Motakis constructed an HI space so that in every subspace every subsymmetric basic sequence is admitted as a spreading model (with constant 148, of course)
- Argyros and Motakis constructed a reflexive HI space so that any operator on any infinite dimensional subspace has a non-trivial invariant subspace.

Open Problems

- 1. Does there exist a space X so that AD(X) = 1? Such a space cannot contain an ℓ_1 or c_0 spreading model.
- 2. Does there exist an arbitrarily distortable space X which does not admit a c_0 or ℓ_1 spreading model satisfying AD(X) > 1.
- 3. Is $AD(\ell_2)>1?$ (Gowers)
- 4. Which closed subsets of $[1, \infty]$ can be hereditary Krivine p sets?
- 5. For $1 is the space <math>T_{p,q}$ superreflexive?

Thank you for listening!

