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Gowers’ c0 Theorem

Theorem (Gowers)

Let ε > 0 and let F be any real-valued Lipschitz function on the
unit sphere of c0. Then there is an infinite-dimensional subspace
X on the unit sphere of which F varies by at most ε.

Theorem (Gowers)

Let ε > 0 and let F be any unconditional real-valued Lipschitz
function on the unit sphere of c0. Then there is an
infinite-dimensional positive block subspace X of c0 on the unit
sphere of which F varies by at most ε.

PS(c0) - positive part of the sphere of c0
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Discretization

{f : N // {1, (1 + ε)−1, . . . , (1 + ε)−(k−1)}, |supp(f)| < ℵ0,
∃n ∈ N f(n) = 1} =: FINk

- (2 · ε)-net in PS(c0) (for sufficiently large k)

F (S(c0)) ⊂ [a, b) = I1 ∪ I2 ∪ . . . ∪ Ir - |Ii| = |Ij | (a+ rε ≥ b)

f ∈ FINk  (c(f) = i←→ F (f) ∈ Ii)
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FINk

p : N // {0, 1, 2 . . . , k}  supp(p) = {n : p(n) 6= 0}

FINk = {p : N // {0, 1, . . . , k} : |supp(p)| < ℵ0 & ∃n (p(n) = k)}

FIN1 ↔ FIN(N)

Tetris
T : FINk

// FINk−1
T(p)(n)=max{0,p(n)-1}.

Partial addition
supp(p) ∩ supp(q) = ∅ // p+ q(n) = max{p(n), q(n)}
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Hindman’s Theorem

FIN1 ↔ FIN(N)

p ∩ q = ∅ // p+ q = p ∪ q
T (p) = ∅

Theorem (Hindman)

Let c : FIN(N) // {1, 2, . . . , r} be a finite colouring. Then there
is an infinite A ⊂ FIN(N) such that FU(A) is monochromatic.
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Gowers’ for FINk

Block sequence
B = (bi)

∞
i=1 ⊂ FINk(N) s.t. max supp(bi) < min supp(bi+1)

〈B〉 - partial subsemigroup generated by B, T,+, i.e. elements
of the form

l∑
s=1

T js(bs)

for some l ∈ N, bs ∈ B, js ∈ {0, 1, . . . , k}, and at least one
js = 0.

Theorem (Gowers)

Let c : FINk
// {1, 2, . . . , r} be a finite colouring. Then there is

an infinite block sequence B ⊂ FINk such that 〈B〉 is
monochromatic.
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Finite Gowers’ FINk Theorem

Theorem

For every k,m, r, there exists n such that for every colouring
c : FINk(n) // {1, 2, . . . , r} there is a block sequence
B ⊂ FINk(n) of length m such that 〈B〉 is monochromatic.

gk(m, r) - smallest such n

Theorem (Tyros)

gk(m, r) upper bounded by a primitive recursive function
belonging to the class E7 of Grzegorczyk’s hierarchy.

Theorem (Ojeda-Aristizabal)

gk(m, 2) ≤ f4+2(k−1) ◦ f4(6m− 2), where fi is the i-th function
in the Ackermann Hierarchy.
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Dana Bartošová Generalizations of Gowers’ Theorem



Finite Gowers’ FINk Theorem

Theorem

For every k,m, r, there exists n such that for every colouring
c : FINk(n) // {1, 2, . . . , r} there is a block sequence
B ⊂ FINk(n) of length m such that 〈B〉 is monochromatic.

gk(m, r) - smallest such n

Theorem (Tyros)

gk(m, r) upper bounded by a primitive recursive function
belonging to the class E7 of Grzegorczyk’s hierarchy.

Theorem (Ojeda-Aristizabal)

gk(m, 2) ≤ f4+2(k−1) ◦ f4(6m− 2), where fi is the i-th function
in the Ackermann Hierarchy.
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Type

is a φ ∈ FINk(d) such that φ(i) 6= φ(i+ 1).

If A = (ai)
d
i=1 is a block sequence in FIN1(n), then

d∑
i=1

φ(i) · χ(ai) ∈ FINk(n)

p ∈ FINk(n)  ∃φ ∈ FINk(d) a type and (ai)
d
i=1 in FIN1(n).

p =
d∑
i=1

φ(i)χ(ai)

Theorem (Tyros)

For every triple m, k, r of positive integers, there exists n such
that for every colouring c : FINk(n) // {1, 2, . . . , r}, there is a
block sequence A of length m in FIN1(n) such that any two
elements in FINk(A) of the same type have the same colour.
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More operations

Ti : FINk
// FINk−1

Ti(p)(n) =

{
p(n) if p(n) < i

p(n)− 1 if p(n) ≥ i.

T = T1

~i ∈
∏k
j=1{0, 1, . . . , j}

T~i(p) = T~i(1) ◦ . . . ◦ T~i(k)(p).
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Gowers with multiple operations

B - block sequence in FINk

〈B〉 partial subsemigroup generated by B,+, Ti : i = 1, 2, . . . , k

l∑
s=1

T~is(bs)

for bs ∈ B, ~is ∈
∏k
j=1{0, 1, . . . , j}, and at least one of

~is = (0, 0, . . . , 0).

Theorem

For every m, k, r, there exists n such that for every colouring
c : FINk(n) // {1, 2, . . . , r} there is a block sequence B of length
m in FINk(n) such that 〈B〉 is monochromatic.

Dana Bartošová Generalizations of Gowers’ Theorem



Gowers with multiple operations

B - block sequence in FINk

〈B〉 partial subsemigroup generated by B,+, Ti : i = 1, 2, . . . , k

l∑
s=1

T~is(bs)

for bs ∈ B, ~is ∈
∏k
j=1{0, 1, . . . , j}, and at least one of

~is = (0, 0, . . . , 0).

Theorem

For every m, k, r, there exists n such that for every colouring
c : FINk(n) // {1, 2, . . . , r} there is a block sequence B of length
m in FINk(n) such that 〈B〉 is monochromatic.
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Pyramids
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Pyramids

Theorem (Tyros)

For every triple m, k, r of positive integers, there exists n such
that for every colouring c : FINk(n) // {1, 2, . . . , r}, there is a
block sequence A of length m in FIN1(n) such that any two
elements in FINk(A) of the same type have the same colour.

FINk(A) = 〈{k · χ(a) : a ∈ A}〉
C - sequence of “pyramids” over A

ci =

k−1∑
j=−(k−1)

(k − |j|) · χ(aqi+j),

where qi = (i− 1)(2k − 1) + k.

T~i(b)(min supp(T~i(b))) = 1 = T~i(b)(max supp(T~i(b)))
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where qi = (i− 1)(2k − 1) + k.

T~i(b)(min supp(T~i(b))) = 1 = T~i(b)(max supp(T~i(b)))
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What do pyramids do for us?

C - sequence of pyramids in FINk

p, q ∈ 〈C〉

T1(p) = T1(q) −→ p, q are of the same type, i.e. c(p) = c(q)

T1(C) = {T1(c) : c ∈ C} is a sequence of pyramids and
T1 〈C〉 = 〈T1(C)〉
types of T1(p) and T2(p) are the same

We can find a monochromatic subsequence in 〈T1(C)〉 .
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Motivation

Finite fan

finite rooted tree growing upwards with meet of every two
distinct elements being the root

viewed as a finite ordered graph (F,RF )

Epimorphism
φ : (F1, RF1) // (F2, RF2)

surjective homomorphism

RF2(s, t) // ∃s′, t′ ∈ F1 φ(s′) = s, φ(t′) = t and RF1(s′, t′)

S - linear order on branches of F
F< - all finite fans with linearly ordered branches +
epimorphisms

Question

Does F< satisfy the Ramsey property?
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Dana Bartošová Generalizations of Gowers’ Theorem



Motivation

Finite fan

finite rooted tree growing upwards with meet of every two
distinct elements being the root

viewed as a finite ordered graph (F,RF )

Epimorphism
φ : (F1, RF1) // (F2, RF2)

surjective homomorphism

RF2(s, t) // ∃s′, t′ ∈ F1 φ(s′) = s, φ(t′) = t and RF1(s′, t′)

S - linear order on branches of F
F< - all finite fans with linearly ordered branches +
epimorphisms

Question

Does F< satisfy the Ramsey property?
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Ramsey property

A,C ∈ F<  {C //A} = all epimorphisms from C to A

Theorem

F< satisfies the Ramsey property, i.e., for every A,B ∈ F<
there exists C ∈ F< such that for every colouring

c : {C //A} // {1, 2, . . . , r}

there exists f : C //B such that {B //A} ◦ f is
monochromatic.
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Lelek fan L

= unique non-trivial subcontinuum of the Cantor fan with a
dense set of endpoints (Bula-Oversteegen, Charatonik)

Theorem

There exists a linear order < of branches on L such that
Homeo<(L) is extremely amenable, i.e., every continuous action
on a compact Hausdorff space has a fixed point (a very strong
fixed point property).

fan.jpg
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Translation to FINk

A - path of length k (≡ {0, 1, . . . , k} - 0 the root)
C - fan of height l ≥ k with branches b1Sb2S . . . Sbn

φ : C //A  pφ(i) = max(φ(bi)) ∈ FINk(n)

FINk,l

Let k,m, r and l ≥ k be natural numbers. Then there exists a
natural number n such that whenever we have a colouring
c : FINk(n) // {1, 2, . . . , r}, there is a block sequence B in
FINl(n) of length m such that the partial semigroup〈 ⋃

~i∈P l
k+1

T~i(B)

〉

is monochromatic.
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Higher dimensions

FIN
[d]
k (n) = block sequences in FINk(n) of length d

Theorem

Let (d, k,m, r) be a tuple of natural numbers. There exists n

such that for every colouring c : FIN
[d]
k (n) // {0, 1, . . . , r}, there

is a block sequence B of length m such that 〈B〉[d] is
monochromatic.
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Question

Do our results admit infinitary versions?

Question

Are there other applications of the new operations (.... to
Banach spaces)?
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The end

THANK YOU FOR YOUR ATTENTION!
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