Generalizations of Gowers' Theorem

Dana Bartošová (USP) Aleksandra Kwiatkowska (UCLA)

BWB 2014 Maresias August 25-29, 2014

This work was supported by the grant FAPESP 2013/14458-9.

Dana Bartošová Generalizations of Gowers' Theorem

《曰》 《聞》 《臣》 《臣》

Theorem (Gowers)

Let $\varepsilon > 0$ and let F be any real-valued Lipschitz function on the unit sphere of c_0 . Then there is an infinite-dimensional subspace X on the unit sphere of which F varies by at most ε .

Theorem (Gowers)

Let $\varepsilon > 0$ and let F be any real-valued Lipschitz function on the unit sphere of c_0 . Then there is an infinite-dimensional subspace X on the unit sphere of which F varies by at most ε .

Theorem (Gowers)

Let $\varepsilon > 0$ and let F be any unconditional real-valued Lipschitz function on the unit sphere of c_0 . Then there is an infinite-dimensional positive block subspace X of c_0 on the unit sphere of which F varies by at most ε .

Theorem (Gowers)

Let $\varepsilon > 0$ and let F be any real-valued Lipschitz function on the unit sphere of c_0 . Then there is an infinite-dimensional subspace X on the unit sphere of which F varies by at most ε .

Theorem (Gowers)

Let $\varepsilon > 0$ and let F be any unconditional real-valued Lipschitz function on the unit sphere of c_0 . Then there is an infinite-dimensional positive block subspace X of c_0 on the unit sphere of which F varies by at most ε .

 $\mathrm{P}S(c_0)$ - positive part of the sphere of c_0

$$\{f: \mathbb{N} \longrightarrow \{1, (1+\varepsilon)^{-1}, \dots, (1+\varepsilon)^{-(k-1)}\}, |\operatorname{supp}(f)| < \aleph_0, \\ \exists n \in \mathbb{N} \ f(n) = 1\} =: \operatorname{FIN}_k$$

- $(2 \cdot \varepsilon)$ -net in $PS(c_0)$ (for sufficiently large k)

◆□>
◆□>
●

$$\{f: \mathbb{N} \longrightarrow \{1, (1+\varepsilon)^{-1}, \dots, (1+\varepsilon)^{-(k-1)}\}, |\operatorname{supp}(f)| < \aleph_0, \\ \exists n \in \mathbb{N} \ f(n) = 1\} =: \operatorname{FIN}_k$$

- $(2 \cdot \varepsilon)$ -net in $PS(c_0)$ (for sufficiently large k)

 $F(S(c_0)) \subset [a,b) = I_1 \cup I_2 \cup \ldots \cup I_r - |I_i| = |I_j| \ (a+r\varepsilon \ge b)$

▲ロト ▲掃ト ▲臣ト ▲臣ト 三臣 - のく⊙

$$\{f: \mathbb{N} \longrightarrow \{1, (1+\varepsilon)^{-1}, \dots, (1+\varepsilon)^{-(k-1)}\}, |\operatorname{supp}(f)| < \aleph_0, \\ \exists n \in \mathbb{N} \ f(n) = 1\} =: \operatorname{FIN}_k$$

- $(2 \cdot \varepsilon)$ -net in $PS(c_0)$ (for sufficiently large k)

 $F(S(c_0)) \subset [a,b) = I_1 \cup I_2 \cup \ldots \cup I_r - |I_i| = |I_j| \ (a+r\varepsilon \ge b)$

 $f \in \operatorname{FIN}_k \rightsquigarrow (c(f) = i \longleftrightarrow F(f) \in I_i)$

$p: \mathbb{N} \longrightarrow \{0, 1, 2..., k\} \rightsquigarrow \operatorname{supp}(p) = \{n: p(n) \neq 0\}$

Dana Bartošová Generalizations of Gowers' Theorem

▲ロト ▲課 ト ▲語 ト ▲語 ト ― 語 ― のくぐ

$$p: \mathbb{N} \longrightarrow \{0, 1, 2..., k\} \rightsquigarrow \operatorname{supp}(p) = \{n: p(n) \neq 0\}$$

▲ロト ▲課 ト ▲語 ト ▲語 ト ― 語 ― のくぐ

$$p: \mathbb{N} \longrightarrow \{0, 1, 2..., k\} \rightsquigarrow \operatorname{supp}(p) = \{n: p(n) \neq 0\}$$

 $\operatorname{FIN}_1 \leftrightarrow \operatorname{FIN}(\mathbb{N})$

Dana Bartošová Generalizations of Gowers' Theorem

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへぐ

$$p: \mathbb{N} \longrightarrow \{0, 1, 2 \dots, k\} \rightsquigarrow \operatorname{supp}(p) = \{n: p(n) \neq 0\}$$

 $\mathrm{FIN}_1\leftrightarrow\mathrm{FIN}(\mathbb{N})$

 $\frac{\text{Tetris}}{T: \text{FIN}_k \longrightarrow \text{FIN}_{k-1}}$

$$p: \mathbb{N} \longrightarrow \{0, 1, 2 \dots, k\} \rightsquigarrow \operatorname{supp}(p) = \{n: p(n) \neq 0\}$$

 $\operatorname{FIN}_1 \leftrightarrow \operatorname{FIN}(\mathbb{N})$

Tetris $T : \operatorname{FIN}_k \longrightarrow \operatorname{FIN}_{k-1}$ $T(p)(n) = \max\{0, p(n) - 1\}.$

$$p: \mathbb{N} \longrightarrow \{0, 1, 2 \dots, k\} \rightsquigarrow \operatorname{supp}(p) = \{n: p(n) \neq 0\}$$

 $\operatorname{FIN}_1 \leftrightarrow \operatorname{FIN}(\mathbb{N})$

Tetris $T : \operatorname{FIN}_k \longrightarrow \operatorname{FIN}_{k-1}$ $T(p)(n) = \max\{0, p(n)-1\}.$

Partial addition $\operatorname{supp}(p) \cap \operatorname{supp}(q) = \emptyset \longrightarrow p + q(n) = \max\{p(n), q(n)\}$

Hindman's Theorem

• $\operatorname{FIN}_1 \leftrightarrow \operatorname{FIN}(\mathbb{N})$

Dana Bartošová Generalizations of Gowers' Theorem

Hindman's Theorem

- $\operatorname{FIN}_1 \leftrightarrow \operatorname{FIN}(\mathbb{N})$
- $\bullet \ p \cap q = \emptyset \ \longrightarrow \ p + q = p \cup q$

▲ロト ▲課 ト ▲語 ト ▲語 ト ― 語 ― のくぐ

Hindman's Theorem

- $\operatorname{FIN}_1 \leftrightarrow \operatorname{FIN}(\mathbb{N})$
- $\bullet \ p \cap q = \emptyset \ \longrightarrow \ p + q = p \cup q$
- $T(p) = \emptyset$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ― 臣 ― のくぐ

• $\operatorname{FIN}_1 \leftrightarrow \operatorname{FIN}(\mathbb{N})$

$$\bullet \ p \cap q = \emptyset \implies p + q = p \cup q$$

•
$$T(p) = \emptyset$$

Theorem (Hindman)

Let $c : FIN(\mathbb{N}) \longrightarrow \{1, 2, ..., r\}$ be a finite colouring. Then there is an infinite $A \subset FIN(\mathbb{N})$ such that FU(A) is monochromatic.

Block sequence $B = (b_i)_{i=1}^{\infty} \subset \text{FIN}_k(\mathbb{N}) \text{ s.t. max supp}(b_i) < \min \text{ supp}(b_{i+1})$

Block sequence $B = (b_i)_{i=1}^{\infty} \subset \text{FIN}_k(\mathbb{N}) \text{ s.t. max supp}(b_i) < \min \text{ supp}(b_{i+1})$

 $\langle B\rangle$ - partial subsemigroup generated by B,T,+, i.e. elements of the form

Block sequence $B = (b_i)_{i=1}^{\infty} \subset FIN_k(\mathbb{N})$ s.t. max supp $(b_i) < \min \text{ supp}(b_{i+1})$

 $\langle B\rangle$ - partial subsemigroup generated by B,T,+, i.e. elements of the form

$$\sum_{s=1}^{l} T^{j_s}(b_s)$$

for some $l \in \mathbb{N}$, $b_s \in B$, $j_s \in \{0, 1, \dots, k\}$, and at least one $j_s = 0$.

Block sequence $B = (b_i)_{i=1}^{\infty} \subset FIN_k(\mathbb{N})$ s.t. max supp $(b_i) < \min \text{ supp}(b_{i+1})$

 $\langle B\rangle$ - partial subsemigroup generated by B,T,+, i.e. elements of the form

$$\sum_{s=1}^{l} T^{j_s}(b_s)$$

for some $l \in \mathbb{N}$, $b_s \in B$, $j_s \in \{0, 1, \dots, k\}$, and at least one $j_s = 0$.

Theorem (Gowers)

Let $c : FIN_k \longrightarrow \{1, 2, ..., r\}$ be a finite colouring. Then there is an infinite block sequence $B \subset FIN_k$ such that $\langle B \rangle$ is monochromatic.

Э

For every k, m, r, there exists n such that for every colouring $c : \operatorname{FIN}_k(n) \longrightarrow \{1, 2, \ldots, r\}$ there is a block sequence $B \subset \operatorname{FIN}_k(n)$ of length m such that $\langle B \rangle$ is monochromatic.

For every k, m, r, there exists n such that for every colouring $c : \operatorname{FIN}_k(n) \longrightarrow \{1, 2, \ldots, r\}$ there is a block sequence $B \subset \operatorname{FIN}_k(n)$ of length m such that $\langle B \rangle$ is monochromatic.

 $g_k(\boldsymbol{m},\boldsymbol{r})$ - smallest such \boldsymbol{n}

For every k, m, r, there exists n such that for every colouring $c : \operatorname{FIN}_k(n) \longrightarrow \{1, 2, \ldots, r\}$ there is a block sequence $B \subset \operatorname{FIN}_k(n)$ of length m such that $\langle B \rangle$ is monochromatic.

 $g_k(\boldsymbol{m},\boldsymbol{r})$ - smallest such \boldsymbol{n}

Theorem (Tyros)

 $g_k(m,r)$ upper bounded by a primitive recursive function belonging to the class \mathcal{E}^7 of Grzegorczyk's hierarchy.

For every k, m, r, there exists n such that for every colouring $c : \operatorname{FIN}_k(n) \longrightarrow \{1, 2, \ldots, r\}$ there is a block sequence $B \subset \operatorname{FIN}_k(n)$ of length m such that $\langle B \rangle$ is monochromatic.

 $g_k(\boldsymbol{m},\boldsymbol{r})$ - smallest such \boldsymbol{n}

Theorem (Tyros)

 $g_k(m,r)$ upper bounded by a primitive recursive function belonging to the class \mathcal{E}^7 of Grzegorczyk's hierarchy.

Theorem (Ojeda-Aristizabal)

 $g_k(m,2) \leq f_{4+2(k-1)} \circ f_4(6m-2)$, where f_i is the *i*-th function in the Ackermann Hierarchy.

is a $\phi \in FIN_k(d)$ such that $\phi(i) \neq \phi(i+1)$.

Dana Bartošová Generalizations of Gowers' Theorem

is a $\phi \in \text{FIN}_k(d)$ such that $\phi(i) \neq \phi(i+1)$. If $A = (a_i)_{i=1}^d$ is a block sequence in $\text{FIN}_1(n)$, then

is a $\phi \in \text{FIN}_k(d)$ such that $\phi(i) \neq \phi(i+1)$. If $A = (a_i)_{i=1}^d$ is a block sequence in $\text{FIN}_1(n)$, then

$$\sum_{i=1}^{d} \phi(i) \cdot \chi(a_i) \in \operatorname{FIN}_k(n)$$

is a $\phi \in \text{FIN}_k(d)$ such that $\phi(i) \neq \phi(i+1)$. If $A = (a_i)_{i=1}^d$ is a block sequence in $\text{FIN}_1(n)$, then

$$\sum_{i=1}^{d} \phi(i) \cdot \chi(a_i) \in \operatorname{FIN}_k(n)$$

 $p \in \operatorname{FIN}_k(n) \rightsquigarrow \exists \phi \in \operatorname{FIN}_k(d) \text{ a type and } (a_i)_{i=1}^d \text{ in } \operatorname{FIN}_1(n).$

is a $\phi \in \text{FIN}_k(d)$ such that $\phi(i) \neq \phi(i+1)$. If $A = (a_i)_{i=1}^d$ is a block sequence in $\text{FIN}_1(n)$, then

$$\sum_{i=1}^{d} \phi(i) \cdot \chi(a_i) \in \operatorname{FIN}_k(n)$$

 $p \in \operatorname{FIN}_k(n) \rightsquigarrow \exists \phi \in \operatorname{FIN}_k(d) \text{ a type and } (a_i)_{i=1}^d \text{ in } \operatorname{FIN}_1(n).$

$$p = \sum_{i=1}^{d} \phi(i)\chi(a_i)$$

is a $\phi \in \text{FIN}_k(d)$ such that $\phi(i) \neq \phi(i+1)$. If $A = (a_i)_{i=1}^d$ is a block sequence in $\text{FIN}_1(n)$, then

$$\sum_{i=1}^{d} \phi(i) \cdot \chi(a_i) \in \operatorname{FIN}_k(n)$$

 $p \in \operatorname{FIN}_k(n) \rightsquigarrow \exists \phi \in \operatorname{FIN}_k(d) \text{ a type and } (a_i)_{i=1}^d \text{ in } \operatorname{FIN}_1(n).$

$$p = \sum_{i=1}^{d} \phi(i)\chi(a_i)$$

Theorem (Tyros)

For every triple m, k, r of positive integers, there exists n such that for every colouring $c : FIN_k(n) \longrightarrow \{1, 2, \ldots, r\}$, there is a block sequence A of length m in $FIN_1(n)$ such that any two elements in $FIN_k(A)$ of the same type have the same colour.

$$T_i: \operatorname{FIN}_k \longrightarrow \operatorname{FIN}_{k-1}$$

Dana Bartošová Generalizations of Gowers' Theorem

▲田区 ▲圖区 ▲居区 ▲居区 三臣

$$\begin{split} T_i: \mathrm{FIN}_k &\longrightarrow \mathrm{FIN}_{k-1} \\ T_i(p)(n) &= \begin{cases} p(n) & \text{if } p(n) < i \\ p(n) - 1 & \text{if } p(n) \geq i. \end{cases} \end{split}$$

▲田区 ▲圖区 ▲居区 ▲居区 三臣

$$\begin{split} T_i: \mathrm{FIN}_k &\longrightarrow \mathrm{FIN}_{k-1} \\ T_i(p)(n) &= \begin{cases} p(n) & \text{if } p(n) < i \\ p(n) - 1 & \text{if } p(n) \geq i. \end{cases} \end{split}$$

 $T = T_1$

Dana Bartošová Generalizations of Gowers' Theorem

$$\begin{split} T_i: \mathrm{FIN}_k &\longrightarrow \mathrm{FIN}_{k-1} \\ T_i(p)(n) &= \begin{cases} p(n) & \text{if } p(n) < i \\ p(n) - 1 & \text{if } p(n) \geq i. \end{cases} \end{split}$$

$$T = T_1$$

 $\vec{i} \in \prod_{j=1}^k \{0, 1, \dots, j\}$

· □ > · 4 四 > · 4 코 > · 4 코 > ·

E

$$\begin{split} T_i: \mathrm{FIN}_k &\longrightarrow \mathrm{FIN}_{k-1} \\ T_i(p)(n) &= \begin{cases} p(n) & \text{if } p(n) < i \\ p(n) - 1 & \text{if } p(n) \geq i. \end{cases} \end{split}$$

$$T = T_1$$

$$\vec{i} \in \prod_{j=1}^{k} \{0, 1, \dots, j\}$$

 $T_{\vec{i}}(p) = T_{\vec{i}(1)} \circ \dots \circ T_{\vec{i}(k)}(p).$

Dana Bartošová Generalizations of Gowers' Theorem

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필.

Gowers with multiple operations

B - block sequence in FIN_k

 $\langle B \rangle$ partial subsemigroup generated by $B, +, T_i : i = 1, 2, \dots, k$

Gowers with multiple operations

B - block sequence in FIN_k

 $\langle B \rangle$ partial subsemigroup generated by $B, +, T_i : i = 1, 2, \dots, k$

$$\sum_{s=1}^{l} T_{\vec{i}_s}(b_s)$$

for $b_s \in B$, $\vec{i}_s \in \prod_{j=1}^k \{0, 1, \dots, j\}$, and at least one of $\vec{i}_s = (0, 0, \dots, 0)$.

Gowers with multiple operations

B - block sequence in FIN_k

 $\langle B \rangle$ partial subsemigroup generated by $B, +, T_i : i = 1, 2, \dots, k$

$$\sum_{s=1}^{l} T_{\vec{i}_s}(b_s)$$

for $b_s \in B$, $\vec{i}_s \in \prod_{j=1}^k \{0, 1, \dots, j\}$, and at least one of $\vec{i}_s = (0, 0, \dots, 0)$.

Theorem

For every m, k, r, there exists n such that for every colouring $c : FIN_k(n) \longrightarrow \{1, 2, \ldots, r\}$ there is a block sequence B of length m in $FIN_k(n)$ such that $\langle B \rangle$ is monochromatic.

・ロト ・ 一下 ・ ト ・ 日 ・

◆□>
◆□>
●

Theorem (Tyros)

For every triple m, k, r of positive integers, there exists n such that for every colouring $c : FIN_k(n) \longrightarrow \{1, 2, \ldots, r\}$, there is a block sequence A of length m in $FIN_1(n)$ such that any two elements in $FIN_k(A)$ of the same type have the same colour.

Theorem (Tyros)

For every triple m, k, r of positive integers, there exists n such that for every colouring $c : FIN_k(n) \longrightarrow \{1, 2, ..., r\}$, there is a block sequence A of length m in $FIN_1(n)$ such that any two elements in $FIN_k(A)$ of the same type have the same colour.

 $FIN_k(A) = \langle \{k \cdot \chi(a) : a \in A\} \rangle$

Theorem (Tyros)

For every triple m, k, r of positive integers, there exists n such that for every colouring $c : FIN_k(n) \longrightarrow \{1, 2, ..., r\}$, there is a block sequence A of length m in $FIN_1(n)$ such that any two elements in $FIN_k(A)$ of the same type have the same colour.

 $FIN_k(A) = \langle \{k \cdot \chi(a) : a \in A\} \rangle$ C - sequence of "pyramids" over A

Theorem (Tyros)

For every triple m, k, r of positive integers, there exists n such that for every colouring $c : FIN_k(n) \longrightarrow \{1, 2, \ldots, r\}$, there is a block sequence A of length m in $FIN_1(n)$ such that any two elements in $FIN_k(A)$ of the same type have the same colour.

 $FIN_k(A) = \langle \{k \cdot \chi(a) : a \in A\} \rangle$ C - sequence of "pyramids" over A

$$c_i = \sum_{j=-(k-1)}^{k-1} (k - |j|) \cdot \chi(a_{q_i+j}),$$

where $q_i = (i-1)(2k-1) + k$.

Theorem (Tyros)

For every triple m, k, r of positive integers, there exists n such that for every colouring $c : FIN_k(n) \longrightarrow \{1, 2, \ldots, r\}$, there is a block sequence A of length m in $FIN_1(n)$ such that any two elements in $FIN_k(A)$ of the same type have the same colour.

$$\begin{split} \mathrm{FIN}_k(A) &= \langle \{k \cdot \chi(a) : a \in A\} \rangle \\ C \text{ - sequence of "pyramids" over } A \end{split}$$

$$c_i = \sum_{j=-(k-1)}^{k-1} (k-|j|) \cdot \chi(a_{q_i+j}),$$

where $q_i = (i-1)(2k-1) + k$.

 $T_{\vec{i}}(b)(\min \, \operatorname{supp}(T_{\vec{i}}(b))) = 1 = T_{\vec{i}}(b)(\max \, \operatorname{supp}(T_{\vec{i}}(b)))$

C - sequence of pyramids in ${\rm FIN}_k$ $p,q\in \langle C\rangle$

- C sequence of pyramids in FIN_k $p,q\in \langle C\rangle$
 - $T_1(p) = T_1(q) \longrightarrow p, q$ are of the same type, i.e. c(p) = c(q)

- C sequence of pyramids in FIN_k $p,q \in \langle C \rangle$
 - $T_1(p) = T_1(q) \longrightarrow p, q$ are of the same type, i.e. c(p) = c(q)
 - $T_1(C) = \{T_1(c) : c \in C\}$ is a sequence of pyramids and $T_1 \langle C \rangle = \langle T_1(C) \rangle$

- C sequence of pyramids in FIN_k $p,q \in \langle C \rangle$
 - $T_1(p) = T_1(q) \longrightarrow p, q$ are of the same type, i.e. c(p) = c(q)
 - $T_1(C) = \{T_1(c) : c \in C\}$ is a sequence of pyramids and $T_1 \langle C \rangle = \langle T_1(C) \rangle$
 - types of $T_1(p)$ and $T_2(p)$ are the same

- C sequence of pyramids in ${\rm FIN}_k$ $p,q\in \langle C\rangle$
 - $T_1(p) = T_1(q) \longrightarrow p, q$ are of the same type, i.e. c(p) = c(q)
 - $T_1(C) = \{T_1(c) : c \in C\}$ is a sequence of pyramids and $T_1 \langle C \rangle = \langle T_1(C) \rangle$
 - types of $T_1(p)$ and $T_2(p)$ are the same
 - We can find a monochromatic subsequence in $\langle T_1(C) \rangle$.

Finite fan

• finite rooted tree growing upwards with meet of every two distinct elements being the root

Finite fan

- finite rooted tree growing upwards with meet of every two distinct elements being the root
- viewed as a finite ordered graph (F, R_F)

Finite fan

- finite rooted tree growing upwards with meet of every two distinct elements being the root
- viewed as a finite ordered graph (F, R_F)

Epimorphism

 $\phi:(F_1,R_{F_1})\longrightarrow (F_2,R_{F_2})$

Finite fan

- finite rooted tree growing upwards with meet of every two distinct elements being the root
- viewed as a finite ordered graph (F, R_F)

Epimorphism

$$\phi: (F_1, R_{F_1}) \longrightarrow (F_2, R_{F_2})$$

- surjective homomorphism
- $R_{F_2}(s,t) \longrightarrow \exists s', t' \in F_1 \ \phi(s') = s, \phi(t') = t \text{ and } R_{F_1}(s',t')$

Finite fan

- finite rooted tree growing upwards with meet of every two distinct elements being the root
- viewed as a finite ordered graph (F, R_F)

Epimorphism

$$\phi: (F_1, R_{F_1}) \longrightarrow (F_2, R_{F_2})$$

- surjective homomorphism
- $R_{F_2}(s,t) \longrightarrow \exists s', t' \in F_1 \ \phi(s') = s, \phi(t') = t \text{ and } R_{F_1}(s',t')$

S - linear order on branches of ${\cal F}$

Finite fan

- finite rooted tree growing upwards with meet of every two distinct elements being the root
- viewed as a finite ordered graph (F, R_F)

Epimorphism

$$\phi: (F_1, R_{F_1}) \longrightarrow (F_2, R_{F_2})$$

- surjective homomorphism
- $R_{F_2}(s,t) \longrightarrow \exists s', t' \in F_1 \ \phi(s') = s, \phi(t') = t \text{ and } R_{F_1}(s',t')$

S - linear order on branches of F $\mathcal{F}_{<}$ - all finite fans with linearly ordered branches + epimorphisms

Finite fan

- finite rooted tree growing upwards with meet of every two distinct elements being the root
- viewed as a finite ordered graph (F, R_F)

Epimorphism

$$\phi: (F_1, R_{F_1}) \longrightarrow (F_2, R_{F_2})$$

- surjective homomorphism
- $R_{F_2}(s,t) \longrightarrow \exists s', t' \in F_1 \ \phi(s') = s, \phi(t') = t \text{ and } R_{F_1}(s',t')$

S - linear order on branches of F $\mathcal{F}_{<}$ - all finite fans with linearly ordered branches + epimorphisms

Question Does $\mathcal{F}_{<}$ satisfy the Ramsey property?

$A,C\in \mathcal{F}_< \rightsquigarrow \{C {\:\longrightarrow\:} A\} =$ all epimorphisms from C to A

Dana Bartošová Generalizations of Gowers' Theorem

▲ロト ▲課 ト ▲語 ト ▲語 ト ― 語 ― のくぐ

$$A, C \in \mathcal{F}_{<} \rightsquigarrow \{C \longrightarrow A\} =$$
all epimorphisms from C to A

 $\mathcal{F}_{<}$ satisfies the Ramsey property, i.e., for every $A, B \in \mathcal{F}_{<}$ there exists $C \in \mathcal{F}_{<}$ such that for every colouring

$$c: \{C \longrightarrow A\} \longrightarrow \{1, 2, \dots, r\}$$

there exists $f: C \longrightarrow B$ such that $\{B \longrightarrow A\} \circ f$ is monochromatic.

Lelek fan ${\cal L}$

= unique non-trivial subcontinuum of the Cantor fan with a dense set of endpoints (Bula-Oversteegen, Charatonik)

Lelek fan L

= unique non-trivial subcontinuum of the Cantor fan with a dense set of endpoints (Bula-Oversteegen, Charatonik)

Theorem

There exists a linear order < of branches on L such that Homeo_<(L) is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point (a very strong fixed point property).

(日) (四) (日) (日) (日)

Lelek fan L

= unique non-trivial subcontinuum of the Cantor fan with a dense set of endpoints (Bula-Oversteegen, Charatonik)

Theorem

There exists a linear order < of branches on L such that Homeo_<(L) is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point (a very strong fixed point property).

Translation to FIN_k

A - path of length $k \ (\equiv \{0, 1, \dots, k\} - 0 \text{ the root})$

C - fan of height $l \geq k$ with branches $b_1 S b_2 S \dots S b_n$

Translation to FIN_k

A - path of length $k \ (\equiv \{0, 1, \dots, k\} - 0 \text{ the root})$ C - fan of height $l \ge k$ with branches $b_1 S b_2 S \dots S b_n$ $\phi: C \longrightarrow A \rightsquigarrow p_{\phi}(i) = \max(\phi(b_i)) \in \text{FIN}_k(n)$

< ロト (母) (ヨ) (コ) (コ) (コ) (コ) (コ) (1)

Translation to FIN_k

A - path of length $k \ (\equiv \{0, 1, \dots, k\} - 0 \text{ the root})$ C - fan of height $l \ge k$ with branches $b_1 S b_2 S \dots S b_n$ $\phi: C \longrightarrow A \rightsquigarrow p_{\phi}(i) = \max(\phi(b_i)) \in FIN_k(n)$

FIN_{k,l}

Let k, m, r and $l \ge k$ be natural numbers. Then there exists a natural number n such that whenever we have a colouring $c: \operatorname{FIN}_k(n) \longrightarrow \{1, 2, \ldots, r\}$, there is a block sequence B in $\operatorname{FIN}_l(n)$ of length m such that the partial semigroup

$$\left\langle \bigcup_{\vec{i}\in P_{k+1}^l} T_{\vec{i}}(B) \right\rangle$$

is monochromatic.

・ロト ・ 同ト ・ ヨト ・ ヨト

$\operatorname{FIN}_{k}^{[d]}(n) = \operatorname{block}$ sequences in $\operatorname{FIN}_{k}(n)$ of length d

Dana Bartošová Generalizations of Gowers' Theorem

$\operatorname{FIN}_{k}^{[d]}(n) = \operatorname{block}$ sequences in $\operatorname{FIN}_{k}(n)$ of length d

Theorem

Let (d, k, m, r) be a tuple of natural numbers. There exists n such that for every colouring $c : \operatorname{FIN}_k^{[d]}(n) \longrightarrow \{0, 1, \ldots, r\}$, there is a block sequence B of length m such that $\langle B \rangle^{[d]}$ is monochromatic.

- 4 周 ト - 4 日 ト - 4 日 ト

Question

Do our results admit infinitary versions?

Dana Bartošová Generalizations of Gowers' Theorem

イロト イポト イヨト イヨト 二日

Question

Do our results admit infinitary versions?

Question

Are there other applications of the new operations (.... to Banach spaces)?

<ロト <問ト < 回ト < 回ト

THANK YOU FOR YOUR ATTENTION!

Dana Bartošová Generalizations of Gowers' Theorem