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The Problem

Open Problem:(SQP)

Given an infinite Banach space E , show that there exists a
closed subspace X so that E/X is isomorphic

To an infinite-dimensional separable Banach space.
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Known Contributions

Brief History:

Bessaga-Pelczynski (1958): Spaces whose dual contain c0.
Pelczynski (1964): Reflexive spaces.
Johnson-Rosenthal (1972): Separable Spaces.
Hagler-Johnson (1977): Spaces whose dual have
unconditional basic sequences.
Plichko (1980): Spaces with fundamental biorthogonal
systems.
Argyros-Dodos-Kanellopoulos (2008): Dual spaces.

Remark: For many other results including characterizations,
variants and recent progresses, see Mujica’s survey and recent
work of Argyros-Dodos-Kanellopoulos and Dodos, Lopez-Abad
and Todorcevic.
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Results From "MathOverFlow" - BJ

If X ∗ has no HI subspace, then X has a separable quotient.
If X ∗ is weak∗-separable, then X has a separable quotient.
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My Favorate Motivation

Open Question (Godunov, 1974)

Let E be a Banach space. Then there exists a continuous vector
field f : R× E → E so that

u′(t) = f (t, u(t)) Does not have solutions at any point.

Positive Answers:
Godunov (1974) for the Hilbert space E = `2.
Shkarin (2003) solved for Banach space having
complemented subpsaces with unconditional Schauder
basis.
Hájek-Johanis ( Best Answer (2010)): For spaces having
Nontrivial Separable Quotients.
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Weak∗-Transfinite Schauder Frame

Theorem (–, Marrocos, Rebouças: Studia Math. 2013)

E has a SQP iff E ∗ has a weak∗-transfinite Schauder frame.

Definition(WTSF): That means to say that there exists an
ordinal number ξ and a transfinite sequence (fα)α<ξ in E ∗ so
that:

∀ y∗ ∈ spanw∗
{

fα : α < ξ
}
∃ (aα(y∗))α<ξ ∈ `∞(ξ) s.t.

〈y∗, x〉 = lim
α→ξ
〈
α∑
γ=0

aγ(y∗)fγ , x〉

(fα)α<ξ admits a biorthogonal system (eα)α<ξ in E .
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Idea of the Proof

Let X := span
{

eα : α < ξ
}

and Y = spanw∗
{

fα : α < ξ
}

By the Definition of WTSF, we get

X ᵀ ∩ Y = {0} which implies X + Y⊥ is dense in E

In particular, we have that

Z =
{

x ∈ E :
∑
α<ξ

|fα(x)|‖eα‖ <∞
}

is dense in E
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Tools and Approach

`1-fundamental systems

A biorthogonal system {xα; x∗α}α∈Γ in E × E ∗ is called
`1-fundamental if the linear space{

x ∈ E :
∑
α∈Γ

|x∗α(x)|‖xα‖ <∞
}

is dense in E .

Remark. Every Fundundamental Biorthogonal System if
`1-fundamental.
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Background Material

Let X ,Y Hausdorff LCS.

(I) U ⊂ X is called a barrel in X is it is closed, absolutely
convex and absorbing.
(II) X is called barreled if every barrel in X is a
neighborhood of 0.
(III) Closed Graph Theorem: If X is barreled, Y is
Fréchet and T : X → Y is a closed linear map, then T is
continuous.
(IV) Known Characterizaiton: A Banach space X has
an infinite-dimensional separable quotient iff X has a
non-barreled proper dense subspace.
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Continuation of the "Proof"

Theorem
Every Banach space E with a `1-fundamental biorthogonal
system has a non-trivial separable quotient.

Suppose that this is not so. Then E does not contain `1 and,
moreover, as the linear space

Z =
{

x ∈ E :
∑
α<ξ

|fα(x)|‖eα‖ <∞
}

is dense in E

it is barreled. Define now the linear operator

T : Z → `1(ξ); T (x) =
(
fα(x)‖eα‖

)
α<ξ

, x ∈ E .

One readily shows that T has closed linear graph. Since Z is
barreled, T is continuous.
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As T is bounded, it can be linearly extended to the whole
space E .
Denote this extension by T , too.
Since T is not compact, T (BE ) contains a semi normalized
sequence (xn) which is equivalent to the unit basis of `1.
By the lifting property, the formal inverse T−1 from
span{xn} back to E is bounded.
Thus, T−1 is really the inverse of T .
{T−1(xn)} has a subsequence equivalent to the unit basis of
`1.
Contradiction.
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Thanks!
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