A classification of separable Banach spaces under analytic determinacy

Antonio Avilés, joint work with Grzegorz Plebanek and José Rodriguez

Universidad de Murcia, Author supported by MEyC and FEDER under project MTM2011-25377

Maresias 2014

Comparing the cofinal structure of partial orders

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Comparing the cofinal structure of partial orders

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.
Definition
$f: P \longrightarrow Q$ is Tukey

Comparing the cofinal structure of partial orders

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

$f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounbed $\Rightarrow f(A)$ unbounded

Comparing the cofinal structure of partial orders

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

$f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounbed $\Rightarrow f(A)$ unbounded
(1) P is Tukey reducible to Q if f exists. $P \preceq Q$.

Comparing the cofinal structure of partial orders

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

$f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounbed $\Rightarrow f(A)$ unbounded
(1) P is Tukey reducible to Q if f exists.

$$
P \preceq Q .
$$

(2) P and Q are Tukey equivalent if $P \preceq Q$ and $Q \preceq P$.

$$
P \sim Q
$$

Comparing the cofinal structure of partial orders

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

$f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounbed $\Rightarrow f(A)$ unbounded
(1) P is Tukey reducible to Q if f exists.

$$
P \preceq Q .
$$

(2) P and Q are Tukey equivalent if $P \preceq Q$ and $Q \preceq P$.

$$
P \sim Q
$$

Example: \mathbb{N}

Comparing the cofinal structure of partial orders

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

$f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounbed $\Rightarrow f(A)$ unbounded
(1) P is Tukey reducible to Q if f exists. $P \preceq Q$.
(2) P and Q are Tukey equivalent if $P \preceq Q$ and $Q \preceq P$. $P \sim Q$

Example: \mathbb{N}

(1) $\mathbb{N} \preceq P$ iff P contains a sequence all of whose subsequences are unbounded.

Comparing the cofinal structure of partial orders

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

$f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounbed $\Rightarrow f(A)$ unbounded
(1) P is Tukey reducible to Q if f exists. $P \preceq Q$.
(2) P and Q are Tukey equivalent if $P \preceq Q$ and $Q \preceq P$. $P \sim Q$

Example: \mathbb{N}

(1) $\mathbb{N} \preceq P$ iff P contains a sequence all of whose subsequences are unbounded.
(2) $P \preceq \mathbb{N}$ iff P has a countable cofinal set.

Tukey classification of $\mathscr{K}(E)$

Let $\mathscr{K}(E)=\{L \subset E, L$ compact $\}$ ordered by \subset

Tukey classification of $\mathscr{K}(E)$

Let $\mathscr{K}(E)=\{L \subset E, L$ compact $\}$ ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either

Tukey classification of $\mathscr{K}(E)$

Let $\mathscr{K}(E)=\{L \subset E, L$ compact $\}$ ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either
(1) $\mathscr{K}(E) \sim \mathscr{K}(\emptyset)$

Tukey classification of $\mathscr{K}(E)$

Let $\mathscr{K}(E)=\{L \subset E, L$ compact $\}$ ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either
(1) $\mathscr{K}(E) \sim \mathscr{K}(\emptyset)$
(1) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{N})$

Tukey classification of $\mathscr{K}(E)$

Let $\mathscr{K}(E)=\{L \subset E, L$ compact $\}$ ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either
(1) $\mathscr{K}(E) \sim \mathscr{K}(\emptyset)$
(2) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{N})$

- $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{R} \backslash \mathbb{Q})$

Tukey classification of $\mathscr{K}(E)$

Let $\mathscr{K}(E)=\{L \subset E, L$ compact $\}$ ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either
(1) $\mathscr{K}(E) \sim \mathscr{K}(\emptyset)$
(2) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{N})$
(3) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{R} \backslash \mathbb{Q})$
(1) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{Q})$

Tukey classification of $\mathscr{K}(E)$

Let $\mathscr{K}(E)=\{L \subset E, L$ compact $\}$ ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either
(1) $\mathscr{K}(E) \sim \mathscr{K}(\emptyset) \sim\{0\}, \quad(E$ compact $)$
(2) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{N})$
(3) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{R} \backslash \mathbb{Q})$
(1) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{Q})$

Tukey classification of $\mathscr{K}(E)$

Let $\mathscr{K}(E)=\{L \subset E, L$ compact $\}$ ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either
(1) $\mathscr{K}(E) \sim \mathscr{K}(\emptyset) \sim\{0\}, \quad(E$ compact $)$
(2) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{N}) \sim \mathbb{N}, \quad$ (E locally compact)
(3) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{R} \backslash \mathbb{Q})$
(1) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{Q})$

Tukey classification of $\mathscr{K}(E)$

Let $\mathscr{K}(E)=\{L \subset E, L$ compact $\}$ ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either
(1) $\mathscr{K}(E) \sim \mathscr{K}(\emptyset) \sim\{0\}, \quad(E$ compact $)$
(2) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{N}) \sim \mathbb{N}, \quad$ (E locally compact)
(3) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{R} \backslash \mathbb{Q}) \sim \mathbb{N}^{\mathbb{N}}, \quad(E$ Polish $)$
(9) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{Q})$

Tukey classification of $\mathscr{K}(E)$

Let $\mathscr{K}(E)=\{L \subset E, L$ compact $\}$ ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either
(1) $\mathscr{K}(E) \sim \mathscr{K}(\emptyset) \sim\{0\}, \quad(E$ compact $)$
(2) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{N}) \sim \mathbb{N}, \quad$ (E locally compact)
(3) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{R} \backslash \mathbb{Q}) \sim \mathbb{N}^{\mathbb{N}}, \quad(E$ Polish $)$
(9) $\mathscr{K}(E) \sim \mathscr{K}(\mathbb{Q})$

If X is a Banach space with separable dual, (B_{X}, weak) is a coanalytic metrizable space.

If X is a Banach space with separable dual, (B_{X}, weak) is a coanalytic metrizable space.

If X is a Banach space with separable dual, (B_{X}, weak) is a coanalytic metrizable space.

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset

If X is a Banach space with separable dual, (B_{X}, weak) is a coanalytic metrizable space.

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset
Theorem (Fremlin + Edgar,Wheeler)
If X is Banach space with separable dual, then

If X is a Banach space with separable dual, (B_{X}, weak) is a coanalytic metrizable space.

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset
Theorem (Fremlin + Edgar, Wheeler)
If X is Banach space with separable dual, then
(1) $\mathscr{K}\left(B_{X}\right) \sim\{0\}$, if X is reflexive,

If X is a Banach space with separable dual, (B_{X}, weak) is a coanalytic metrizable space.

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset
Theorem (Fremlin + Edgar, Wheeler)
If X is Banach space with separable dual, then
(1) $\mathscr{K}\left(B_{X}\right) \sim\{0\}$, if X is reflexive,
(2) $\mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP,

If X is a Banach space with separable dual, (B_{X}, weak) is a coanalytic metrizable space.

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset
Theorem (Fremlin + Edgar, Wheeler)
If X is Banach space with separable dual, then
(1) $\mathscr{K}\left(B_{X}\right) \sim\{0\}$, if X is reflexive,
(2) $\mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP,
(3) $\mathscr{K}\left(B_{X}\right) \sim \mathscr{K}(\mathbb{Q})$ otherwise.

Tukey classification of $\mathscr{K}\left(B_{X}\right)$

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset

Theorem 1 (APR)

If X is separable,

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset

Theorem 1 (APR)

If X is separable, under the axiom of analytic determinacy, either

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset

Theorem 1 (APR)

If X is separable, under the axiom of analytic determinacy, either (1) $\mathscr{K}\left(B_{X}\right) \sim\{0\}$,

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset

Theorem 1 (APR)

If X is separable, under the axiom of analytic determinacy, either
(1) $\mathscr{K}\left(B_{X}\right) \sim\{0\}$,
(2) $\mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset

Theorem 1 (APR)

If X is separable, under the axiom of analytic determinacy, either
(1) $\mathscr{K}\left(B_{X}\right) \sim\{0\}$,
(2) $\mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$
(3) $\mathscr{K}\left(B_{X}\right) \sim \mathscr{K}(\mathbb{Q})$

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset

Theorem 1 (APR)

If X is separable, under the axiom of analytic determinacy, either
(1) $\mathscr{K}\left(B_{X}\right) \sim\{0\}$,
(2) $\mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$
(3) $\mathscr{K}\left(B_{X}\right) \sim \mathscr{K}(\mathbb{Q})$
(9) $\mathscr{K}\left(B_{X}\right) \sim \operatorname{Fin}(\mathbb{R})$

- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$
- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ endowed with multiple relations $L \leq_{\varepsilon} L^{\prime}$ if $L \subset L^{\prime}+\varepsilon B_{X}$.
- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ endowed with multiple relations $L \leq_{\varepsilon} L^{\prime}$ if $L \subset L^{\prime}+\varepsilon B_{X}$.
- $\mathscr{A} \mathscr{K}\left(B_{X}\right) \preceq \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ now means that there exist functions $f_{\varepsilon}: \mathscr{A} \mathscr{K}\left(B_{X}\right) \longrightarrow \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ such that
- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ endowed with multiple relations $L \leq_{\varepsilon} L^{\prime}$ if $L \subset L^{\prime}+\varepsilon B_{X}$.
- $\mathscr{A} \mathscr{K}\left(B_{X}\right) \preceq \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ now means that there exist functions $f_{\varepsilon}: \mathscr{A} \mathscr{K}\left(B_{X}\right) \longrightarrow \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ such that $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon}:\left(\mathscr{A} \mathscr{K}\left(B_{X}\right), \leq_{\varepsilon}\right) \longrightarrow\left(\mathscr{A} \mathscr{K}\left(B_{Y}\right), \leq_{\delta}\right)$ is Tukey.

Theorem 2 (APR)

Under the axiom of analytic determinacy, either

- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ endowed with multiple relations $L \leq_{\varepsilon} L^{\prime}$ if $L \subset L^{\prime}+\varepsilon B_{X}$.
- $\mathscr{A} \mathscr{K}\left(B_{X}\right) \preceq \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ now means that there exist functions $f_{\varepsilon}: \mathscr{A} \mathscr{K}\left(B_{X}\right) \longrightarrow \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ such that $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon}:\left(\mathscr{A} \mathscr{K}\left(B_{X}\right), \leq_{\varepsilon}\right) \longrightarrow\left(\mathscr{A} \mathscr{K}\left(B_{Y}\right), \leq_{\delta}\right)$ is Tukey.

Theorem 2 (APR)

Under the axiom of analytic determinacy, either
(1) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim\{0\}$,

- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ endowed with multiple relations $L \leq_{\varepsilon} L^{\prime}$ if $L \subset L^{\prime}+\varepsilon B_{X}$.
- $\mathscr{A} \mathscr{K}\left(B_{X}\right) \preceq \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ now means that there exist functions $f_{\varepsilon}: \mathscr{A} \mathscr{K}\left(B_{X}\right) \longrightarrow \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ such that $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon}:\left(\mathscr{A} \mathscr{K}\left(B_{X}\right), \leq_{\varepsilon}\right) \longrightarrow\left(\mathscr{A} \mathscr{K}\left(B_{Y}\right), \leq_{\delta}\right)$ is Tukey.

Theorem 2 (APR)

Under the axiom of analytic determinacy, either
(1) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim\{0\}$,
(2) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}$,

- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ endowed with multiple relations $L \leq_{\varepsilon} L^{\prime}$ if $L \subset L^{\prime}+\varepsilon B_{X}$.
- $\mathscr{A} \mathscr{K}\left(B_{X}\right) \preceq \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ now means that there exist functions $f_{\varepsilon}: \mathscr{A} \mathscr{K}\left(B_{X}\right) \longrightarrow \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ such that $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon}:\left(\mathscr{A} \mathscr{K}\left(B_{X}\right), \leq_{\varepsilon}\right) \longrightarrow\left(\mathscr{A} \mathscr{K}\left(B_{Y}\right), \leq_{\delta}\right)$ is Tukey.

Theorem 2 (APR)

Under the axiom of analytic determinacy, either
(1) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim\{0\}$,
(2) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}$,
(3) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$,

- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ endowed with multiple relations $L \leq_{\varepsilon} L^{\prime}$ if $L \subset L^{\prime}+\varepsilon B_{X}$.
- $\mathscr{A} \mathscr{K}\left(B_{X}\right) \preceq \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ now means that there exist functions $f_{\varepsilon}: \mathscr{A} \mathscr{K}\left(B_{X}\right) \longrightarrow \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ such that $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon}:\left(\mathscr{A} \mathscr{K}\left(B_{X}\right), \leq_{\varepsilon}\right) \longrightarrow\left(\mathscr{A} \mathscr{K}\left(B_{Y}\right), \leq_{\delta}\right)$ is Tukey.

Theorem 2 (APR)

Under the axiom of analytic determinacy, either
(1) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim\{0\}$,
(2) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}$,
(3) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$,
(9) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathscr{K}(\mathbb{Q})$,

Tukey classification of $\mathscr{A} \mathscr{K}\left(B_{X}\right)$

- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ endowed with multiple relations $L \leq_{\varepsilon} L^{\prime}$ if $L \subset L^{\prime}+\varepsilon B_{X}$.
- $\mathscr{A} \mathscr{K}\left(B_{X}\right) \preceq \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ now means that there exist functions $f_{\varepsilon}: \mathscr{A} \mathscr{K}\left(B_{X}\right) \longrightarrow \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ such that $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon}:\left(\mathscr{A} \mathscr{K}\left(B_{X}\right), \leq_{\varepsilon}\right) \longrightarrow\left(\mathscr{A} \mathscr{K}\left(B_{Y}\right), \leq_{\delta}\right)$ is Tukey.

Theorem 2 (APR)

Under the axiom of analytic determinacy, either
(1) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim\{0\}$,
(2) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}$,
(3) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$,
(4) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathscr{K}(\mathbb{Q})$,
(3) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \operatorname{Fin}(\mathbb{R})$.

Tukey classification of $\mathscr{A} \mathscr{K}\left(B_{X}\right)$

- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ endowed with multiple relations $L \leq_{\varepsilon} L^{\prime}$ if $L \subset L^{\prime}+\varepsilon B_{X}$.
- $\mathscr{A} \mathscr{K}\left(B_{X}\right) \preceq \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ now means that there exist functions $f_{\varepsilon}: \mathscr{A} \mathscr{K}\left(B_{X}\right) \longrightarrow \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ such that $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon}:\left(\mathscr{A} \mathscr{K}\left(B_{X}\right), \leq_{\varepsilon}\right) \longrightarrow\left(\mathscr{A} \mathscr{K}\left(B_{Y}\right), \leq_{\delta}\right)$ is Tukey.

Theorem 2 (APR)

Under the axiom of analytic determinacy, either
(1) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim\{0\}$,
(2) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}$,
(3) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$,
(9) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathscr{K}(\mathbb{Q})$,
(6) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \operatorname{Fin}(\mathbb{R})$.

Proof: Theorem $1+$ Ramsey (Louveau, Milliken, A.-Todorcevic...)

A few examples
$\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim$

A few examples

$\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim$
(1) $\{0\}$, if X is reflexive,

A few examples

$\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim$
(1) $\{0\}$, if X is reflexive,
(2) $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^{*}.

A few examples

$\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim$
(1) $\{0\}$, if X is reflexive,
(2) $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^{*}.
(0) $\mathscr{K}(\mathbb{Q})$ if X has separable dual but not PCP, like c_{0}.

A few examples

$\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim$
(1) $\{0\}$, if X is reflexive,
(2) $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^{*}.
(3) $\mathscr{K}(\mathbb{Q})$ if X has separable dual but not PCP, like c_{0}.
(9) $\operatorname{Fin}(\mathbb{R})$ if X has nonseparable dual but $\ell_{1} \not \subset X$.

A few examples

$\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim$
(1) $\{0\}$, if X is reflexive,
(2) $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^{*}.
(3) $\mathscr{K}(\mathbb{Q})$ if X has separable dual but not PCP, like c_{0}.
(9) $\operatorname{Fin}(\mathbb{R})$ if X has nonseparable dual but $\ell_{1} \not \subset X$.
(5) \mathbb{N} if X is nonreflexive SWCG space, like $L^{1}[0,1], \ell_{1}\left(\ell_{2}\right)$.

A few examples

$\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim$
(0) $\{0\}$, if X is reflexive,
(2) $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^{*}.
(0) $\mathscr{K}(\mathbb{Q})$ if X has separable dual but not PCP, like c_{0}.
(- $\operatorname{Fin}(\mathbb{R})$ if X has nonseparable dual but $\ell_{1} \not \subset X$.

- \mathbb{N} if X is nonreflexive SWCG space, like $L^{1}[0,1], \ell_{1}\left(\ell_{2}\right)$.
- $\mathscr{K}(\mathbb{Q})$ if $X=\ell_{1}\left(c_{0}\right)$.

A few examples

$\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim$
(1) $\{0\}$, if X is reflexive,
(2) $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^{*}.

- $\mathscr{K}(\mathbb{Q})$ if X has separable dual but not PCP, like c_{0}.
(- $\operatorname{Fin}(\mathbb{R})$ if X has nonseparable dual but $\ell_{1} \not \subset X$.
- \mathbb{N} if X is nonreflexive SWCG space, like $L^{1}[0,1], \ell_{1}\left(\ell_{2}\right)$.
- $\mathscr{K}(\mathbb{Q})$ if $X=\ell_{1}\left(c_{0}\right)$.
(1) $\operatorname{Fin}(\mathbb{R})$ if $X=C[0,1]$.

Axiom of analytic determinacy

Axiom of analytic determinacy

For a set $A \subset \mathbb{N}^{\mathbb{N}}$, consider the game G_{A}

Axiom of analytic determinacy

For a set $A \subset \mathbb{N}^{\mathbb{N}}$, consider the game G_{A} in which Player I and Player II play alternatively natural numbers,

Axiom of analytic determinacy

For a set $A \subset \mathbb{N}^{\mathbb{N}}$, consider the game G_{A} in which Player I and Player II play alternatively natural numbers, and Player I wins if the final sequence belongs to A.

Axiom of analytic determinacy

For a set $A \subset \mathbb{N}^{\mathbb{N}}$, consider the game G_{A} in which Player I and Player II play alternatively natural numbers, and Player I wins if the final sequence belongs to A.
(1) From an ultrafilter, one gets a set A such that none of the players a winning strategy on G_{A}.

Axiom of analytic determinacy

For a set $A \subset \mathbb{N}^{\mathbb{N}}$, consider the game G_{A} in which Player I and Player II play alternatively natural numbers, and Player I wins if the final sequence belongs to A.
(1) From an ultrafilter, one gets a set A such that none of the players a winning strategy on G_{A}.
(2) If A is Borel, then one of the players has a winning strategy in G_{A}

Axiom of analytic determinacy

For a set $A \subset \mathbb{N}^{\mathbb{N}}$, consider the game G_{A} in which Player I and Player II play alternatively natural numbers, and Player I wins if the final sequence belongs to A.
(1) From an ultrafilter, one gets a set A such that none of the players a winning strategy on G_{A}.
(2) If A is Borel, then one of the players has a winning strategy in G_{A}

Axiom of Analytic Determinacy ($\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}$)

If A is either analytic or coanalytic, then one player has a winning strategy in G_{A}.

Let $\mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ ordered by \subset

Theorem 1 (APR)

$\left(\Sigma_{1}^{1} \mathbf{D}\right)$ If X is separable Banach space, either
(1) $\mathscr{K}\left(B_{X}\right) \sim\{0\}$,
(2) $\mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$

- $\mathscr{K}\left(B_{X}\right) \sim \mathscr{K}(\mathbb{Q})$
- $\mathscr{K}\left(B_{X}\right) \sim \operatorname{Fin}(\mathbb{R})$

Let $\mathscr{R}(A)=\{L \subset A, L$ relatively weakly compact $\}$ ordered by \subset

Theorem 1a

$\left(\Sigma_{1}^{1} \mathbf{D}\right)$ If X is Banach, and $A \subset X$ is countable, either
(1) $\mathscr{R}(A) \sim\{0\}$,
(2) $\mathscr{R}(A) \sim \mathbb{N}$
(3) $\mathscr{R}(A) \sim \mathbb{N}^{\mathbb{N}}$
(9) $\mathscr{R}(A) \sim \mathscr{K}(\mathbb{Q})$
(6) $\mathscr{R}(A) \sim \operatorname{Fin}(\mathbb{R})$

Theorem 1a

$\left(\Sigma_{1}^{1} \mathbf{D}\right)$ If X is Banach, and $A \subset X$ is countable, either
(1) $\mathscr{R}(A) \sim\{0\}$,
(2) $\mathscr{R}(A) \sim \mathbb{N}$
(3) $\mathscr{R}(A) \sim \mathbb{N}^{\mathbb{N}}$
(9) $\mathscr{R}(A) \sim \mathscr{K}(\mathbb{Q})$
(6) $\mathscr{R}(A) \sim \operatorname{Fin}(\mathbb{R})$

In other models of set theory, there exists an unconditional basis A not fitting in the list.

Theorem 1a

($\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}$) If X is Banach, and $A \subset X$ is countable, either
(1) $\mathscr{R}(A) \sim\{0\}$,
(2) $\mathscr{R}(A) \sim \mathbb{N}$
(3) $\mathscr{R}(A) \sim \mathbb{N}^{\mathbb{N}}$
(9) $\mathscr{R}(A) \sim \mathscr{K}(\mathbb{Q})$
(6) $\mathscr{R}(A) \sim \operatorname{Fin}(\mathbb{R})$

In other models of set theory, there exists an unconditional basis A not fitting in the list. More precisely, if there exists a coanalytic set of size ω_{1}, then there exists A with $\mathscr{R}(A) \sim \operatorname{Fin}\left(\omega_{1}\right)$.

Theorem 1a

$\left(\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}\right)$ If X is Banach, and $A \subset X$ is countable, either
(1) $\mathscr{R}(A) \sim\{0\}$,
(2) $\mathscr{R}(A) \sim \mathbb{N}$
(3) $\mathscr{R}(A) \sim \mathbb{N}^{\mathbb{N}}$
(1) $\mathscr{R}(A) \sim \mathscr{K}(\mathbb{Q})$
(6) $\mathscr{R}(A) \sim \operatorname{Fin}(\mathbb{R})$

By Grothendieck, $C \in \mathscr{R}(A)$ iff $\lim _{n} \lim _{m} x_{n}^{*}\left(x_{m}\right)=\lim _{m} \lim _{n} x_{n}^{*}\left(x_{m}\right)$ when $x_{m} \in C$.

Theorem 1a

$\left(\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}\right)$ If X is Banach, and $A \subset X$ is countable, either
(1) $\mathscr{R}(A) \sim\{0\}$,
(2) $\mathscr{R}(A) \sim \mathbb{N}$
(3) $\mathscr{R}(A) \sim \mathbb{N}^{\mathbb{N}}$
(9) $\mathscr{R}(A) \sim \mathscr{K}(\mathbb{Q})$
(6) $\mathscr{R}(A) \sim \operatorname{Fin}(\mathbb{R})$

By Grothendieck, $C \in \mathscr{R}(A)$ iff $\lim _{n} \lim _{m} x_{n}^{*}\left(x_{m}\right)=\lim _{m} \lim _{n} x_{n}^{*}\left(x_{m}\right)$ when $x_{m} \in C$. This allows to express $\mathscr{R}(A)=I^{\perp}$ where I is an analytic family of subsets of A.

Theorem 1a

$\left(\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}\right)$ If X is Banach, and $A \subset X$ is countable, either
(1) $\mathscr{R}(A) \sim\{0\}$,
(2) $\mathscr{R}(A) \sim \mathbb{N}$
(3) $\mathscr{R}(A) \sim \mathbb{N}^{\mathbb{N}}$
(9) $\mathscr{R}(A) \sim \mathscr{K}(\mathbb{Q})$
(6) $\mathscr{R}(A) \sim \operatorname{Fin}(\mathbb{R})$

By Grothendieck, $C \in \mathscr{R}(A)$ iff $\lim _{n} \lim _{m} x_{n}^{*}\left(x_{m}\right)=\lim _{m} \lim _{n} x_{n}^{*}\left(x_{m}\right)$ when $x_{m} \in C$. This allows to express $\mathscr{R}(A)=I^{\perp}$ where I is an analytic family of subsets of A.
$I^{\perp}=\{a \subset \mathbb{N}: \forall b \in I a \cap b$ is finite $\}$.

Combinatorial result behind Theorem 1

$$
I^{\perp}=\{a \subset \mathbb{N}: \forall b \in I a \cap b \text { is finite }\}
$$

Theorem

$\left(\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}\right)$ If I is an analytic family of subsets of \mathbb{N}, then I^{\perp} is Tukey equivalent to either $\{0\}, \mathbb{N}, \mathbb{N}^{\mathbb{N}}, \mathscr{K}(\mathbb{Q})$ or $\operatorname{Fin}(\mathbb{R})$.

Proof:
(1) By a modification of a result of Todorcevic, either we get a special copy of the dyadic tree (gives $\operatorname{Fin}(\mathbb{R})$) or I and I^{\perp} are countably separated.
(2) By results of A. and Todorcevic, if I and I^{\perp} are countably separated, we can identify I^{\perp} with $\mathscr{K}(E)$ and then apply Fremlin's theorem.

The dyadic tree

The dyadic tree $2^{<\omega}$ is the set of finite sequences of 0 's and 1 's.

The dyadic tree

A 0-chain is a subset $\left\{x_{1}, x_{2}, \ldots\right\} \subset 2^{<\omega}$ in which $x_{n+1}=x_{n} 0^{\circ} y_{n}$

The dyadic tree

A 0 -chain is a subset $\left\{x_{1}, x_{2}, \ldots\right\} \subset 2^{<\omega}$ in which $x_{n+1}=x_{n} 0^{\circ} y_{n}$

The dyadic tree

A 1-chain is a subset $\left\{x_{1}, x_{2}, \ldots\right\} \subset 2^{<\omega}$ in which $x_{n+1}=x_{n}^{\curvearrowright} 1^{\frown} y_{n}$

The dyadic tree

A 1-chain is a subset $\left\{x_{1}, x_{2}, \ldots\right\} \subset 2^{<\omega}$ in which $x_{n+1}=x_{n}^{\curvearrowright} 1^{\frown} y_{n}$

Non countably separated families

Theorem (essentially Todorcevic, via Feng)
$\left(\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}\right)$ If I is analytic family of subsets of \mathbb{N},

Non countably separated families

Theorem (essentially Todorcevic, via Feng)

($\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}$) If I is analytic family of subsets of \mathbb{N},
(1) Either I and I^{\perp} are countably separated,

Non countably separated families

Theorem (essentially Todorcevic, via Feng)

$\left(\boldsymbol{\Sigma}_{1}^{1} \mathrm{D}\right)$ If I is analytic family of subsets of \mathbb{N},
(1) Either I and I^{\perp} are countably separated,
(2) Or there exists an injective $u: 2^{<\omega} \longrightarrow \mathbb{N}$ which sends 0 -chains to I and 1 -chains to I^{\perp}

Non countably separated families

Theorem (essentially Todorcevic, via Feng)

$\left(\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}\right)$ If $/$ is analytic family of subsets of \mathbb{N},
(1) Either I and I^{\perp} are countably separated,
(2) Or there exists an injective $u: 2^{<\omega} \longrightarrow \mathbb{N}$ which sends 0 -chains to I and 1 -chains to I^{\perp}

- Condition (1) is equivalent to $I^{\perp}=\mathscr{R}(E)$ where E is separable metrizable space containing \mathbb{N}.

Non countably separated families

Theorem (essentially Todorcevic, via Feng)

$\left(\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}\right)$ If $/$ is analytic family of subsets of \mathbb{N},
(1) Either I and I^{\perp} are countably separated,
(2) Or there exists an injective $u: 2^{<\omega} \longrightarrow \mathbb{N}$ which sends 0 -chains to I and 1 -chains to I^{\perp}

- Condition (1) is equivalent to $I^{\perp}=\mathscr{R}(E)$ where E is separable metrizable space containing \mathbb{N}. This leads to Fremlin.

Non countably separated families

Theorem (essentially Todorcevic, via Feng)

$\left(\boldsymbol{\Sigma}_{1}^{1} \mathbf{D}\right)$ If $/$ is analytic family of subsets of \mathbb{N},
(1) Either I and I^{\perp} are countably separated,
(2) Or there exists an injective $u: 2^{<\omega} \longrightarrow \mathbb{N}$ which sends 0 -chains to I and 1 -chains to I^{\perp}

- Condition (1) is equivalent to $I^{\perp}=\mathscr{R}(E)$ where E is separable metrizable space containing \mathbb{N}. This leads to Fremlin.
- Condition (2) leads to $I^{\perp} \sim I \sim \operatorname{Fin}\left(2^{\omega}\right)$.
- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$

Tukey classification of $\mathscr{A} \mathscr{K}\left(B_{X}\right)$

- Let $\mathscr{A} \mathscr{K}\left(B_{X}\right)=\left\{L \subset B_{X}, L\right.$ weakly compact $\}$ endowed with multiple relations $L \leq_{\varepsilon} L^{\prime}$ if $L \subset L^{\prime}+\varepsilon B_{X}$.
- $\mathscr{A} \mathscr{K}\left(B_{X}\right) \preceq \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ now means that there exist functions $f_{\varepsilon}: \mathscr{A} \mathscr{K}\left(B_{X}\right) \longrightarrow \mathscr{A} \mathscr{K}\left(B_{Y}\right)$ such that $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon}:\left(\mathscr{A} \mathscr{K}\left(B_{X}\right), \leq_{\varepsilon}\right) \longrightarrow\left(\mathscr{A} \mathscr{K}\left(B_{Y}\right), \leq_{\delta}\right)$ is Tukey.

Theorem 2 (APR)

Under the axiom of analytic determinacy, either
(1) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim\{0\}$,
(2) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}$,
(3) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathbb{N}^{\mathbb{N}}$,
(9) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \mathscr{K}(\mathbb{Q})$,
(6) $\mathscr{A} \mathscr{K}\left(B_{X}\right) \sim \operatorname{Fin}(\mathbb{R})$.

Proof: Theorem $1+$ Ramsey (Louveau, Milliken, A.-Todorcevic...)

Illustration of the use of Ramsey

- At a stage, we have $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{K}\left(B_{X}\right)$ and we want to prove $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{A} \mathscr{K}\left(B_{X}\right)$.

Illustration of the use of Ramsey

- At a stage, we have $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{K}\left(B_{X}\right)$ and we want to prove $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{A} \mathscr{K}\left(B_{X}\right)$.
- The proof of Theorem 1 provides an injection $u: \mathbb{Q} \longrightarrow B_{X}$ that identifies relatively compact subsets of \mathbb{Q} and relatively weakly compact subsets of B_{X}.

Illustration of the use of Ramsey

- At a stage, we have $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{K}\left(B_{X}\right)$ and we want to prove $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{A} \mathscr{K}\left(B_{X}\right)$.
- The proof of Theorem 1 provides an injection $u: \mathbb{Q} \longrightarrow B_{X}$ that identifies relatively compact subsets of \mathbb{Q} and relatively weakly compact subsets of B_{X}.
- We want to find a homogeneous $\delta>0$ such that $u(S)$ is δ-far from weakly compact whenever $S \subset \mathbb{Q}$ is not rel. compact.

Illustration of the use of Ramsey

- At a stage, we have $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{K}\left(B_{X}\right)$ and we want to prove $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{A} \mathscr{K}\left(B_{X}\right)$.
- The proof of Theorem 1 provides an injection $u: \mathbb{Q} \longrightarrow B_{X}$ that identifies relatively compact subsets of \mathbb{Q} and relatively weakly compact subsets of B_{X}.
- We want to find a homogeneous $\delta>0$ such that $u(S)$ is δ-far from weakly compact whenever $S \subset \mathbb{Q}$ is not rel. compact.
- We would color S acording to the δ necessary. Do we have a Ramsey theorem that allows to homogenize? The one recently found by A. and Todorcevic does the job.

Unconditional bases

Question

How to produce unconditional bases B such that $\mathscr{R}(B)$ is Tukey equivalent to any of $\{0\}, \mathbb{N}, \mathbb{N}^{\mathbb{N}}, \mathscr{K}(\mathbb{Q}), \operatorname{Fin}(\mathbb{R})$?

Unconditional bases

Question

How to produce unconditional bases B such that $\mathscr{R}(B)$ is Tukey equivalent to any of $\{0\}, \mathbb{N}, \mathbb{N}^{\mathbb{N}}, \mathscr{K}(\mathbb{Q}), \operatorname{Fin}(\mathbb{R})$?

Definition

An adequate family \mathbb{A} is a family of sets such that $a \in \mathbb{A}$ iff all finite subsets of a belong to \mathbb{A}.

Unconditional bases

Question

How to produce unconditional bases B such that $\mathscr{R}(B)$ is Tukey equivalent to any of $\{0\}, \mathbb{N}, \mathbb{N}^{\mathbb{N}}, \mathscr{K}(\mathbb{Q}), \operatorname{Fin}(\mathbb{R})$?

Definition

An adequate family \mathbb{A} is a family of sets such that $a \in \mathbb{A}$ iff all finite subsets of a belong to \mathbb{A}.

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family \mathbb{A} of closed and discrete subsets of E

Unconditional bases

Question

How to produce unconditional bases B such that $\mathscr{R}(B)$ is Tukey equivalent to any of $\{0\}, \mathbb{N}, \mathbb{N}^{\mathbb{N}}, \mathscr{K}(\mathbb{Q}), \operatorname{Fin}(\mathbb{R})$?

Definition

An adequate family \mathbb{A} is a family of sets such that $a \in \mathbb{A}$ iff all finite subsets of a belong to \mathbb{A}.

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family \mathbb{A} of closed and discrete subsets of E such that each infinite closed discrete subset of E contains an infinite set from \mathbb{A}.

Unconditional bases

Theorem (A., based on Talagrand)
Iff E is coanalytic, then there exists an adequate family \mathbb{A}_{E} of closed and discrete subsets of E such that each infinite closed discrete subset of E contains an infinite set from \mathbb{A}_{E}.

Unconditional bases

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family \mathbb{A}_{E} of closed and discrete subsets of E such that each infinite closed discrete subset of E contains an infinite set from \mathbb{A}_{E}.

From an adequate \mathbb{A} one constructs an unconditional basis $B(\mathbb{A})$ with the norm

Unconditional bases

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family \mathbb{A}_{E} of closed and discrete subsets of E such that each infinite closed discrete subset of E contains an infinite set from \mathbb{A}_{E}.

From an adequate \mathbb{A} one constructs an unconditional basis $B(\mathbb{A})$ with the norm

$$
\left\|\sum \lambda_{n} e_{n}\right\|=\sup _{a \in \mathbb{A}} \sum_{n \in A}\left|\lambda_{n}\right|
$$

Unconditional bases

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family \mathbb{A}_{E} of closed and discrete subsets of E such that each infinite closed discrete subset of E contains an infinite set from \mathbb{A}_{E}.

From an adequate \mathbb{A} one constructs an unconditional basis $B(\mathbb{A})$ with the norm

$$
\left\|\sum \lambda_{n} e_{n}\right\|=\sup _{a \in \mathbb{A}} \sum_{n \in A}\left|\lambda_{n}\right|
$$

It happens that $\mathbb{R}\left(B\left(\mathbb{A}_{E}\right)\right) \sim \mathscr{K}(E)$ so one applies Fremlin.

Unconditional bases

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family \mathbb{A}_{E} of closed and discrete subsets of E such that each infinite closed discrete subset of E contains an infinite set from \mathbb{A}_{E}.

From an adequate \mathbb{A} one constructs an unconditional basis $B(\mathbb{A})$ with the norm

$$
\left\|\sum \lambda_{n} e_{n}\right\|=\sup _{a \in \mathbb{A}} \sum_{n \in A}\left|\lambda_{n}\right|
$$

It happens that $\mathbb{R}\left(B\left(\mathbb{A}_{E}\right)\right) \sim \mathscr{K}(E)$ so one applies Fremlin. From E with $|E|=\omega_{1}$, one gets B with $\mathscr{R}(B) \sim \operatorname{Fin}\left(\omega_{1}\right)$

