A classification of separable Banach spaces under analytic determinacy

Antonio Avilés, joint work with Grzegorz Plebanek and José Rodriguez

Universidad de Murcia, Author supported by MEyC and FEDER under project MTM2011- 25377

Maresias 2014

(ロ) (同) (E) (E) (E)

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

 $f: P \longrightarrow Q$ is Tukey

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

 $f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounded $\Rightarrow f(A)$ unbounded

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

 $f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounded $\Rightarrow f(A)$ unbounded

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• *P* is Tukey reducible to *Q* if *f* exists. $P \leq Q$.

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

 $f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounded $\Rightarrow f(A)$ unbounded

- *P* is Tukey reducible to *Q* if *f* exists. $P \leq Q$.
- ② P and Q are Tukey equivalent if P ≤ Q and Q ≤ P. P ~ Q

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

 $f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounded $\Rightarrow f(A)$ unbounded

Example: ℕ

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

 $f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounded $\Rightarrow f(A)$ unbounded

• *P* is Tukey reducible to *Q* if *f* exists.
$$P \leq Q$$
.

Example: ℕ

N ≤ P iff P contains a sequence all of whose subsequences are unbounded.

Let (P, \leq) and (Q, \leq) be directed partially ordered sets.

Definition

 $f: P \longrightarrow Q$ is Tukey if $A \subset P$ unbounded $\Rightarrow f(A)$ unbounded

• *P* is Tukey reducible to *Q* if *f* exists.
$$P \leq Q$$
.

 P and Q are Tukey equivalent if P ≤ Q and Q ≤ P. P ~ Q

Example: ℕ

- N ≤ P iff P contains a sequence all of whose subsequences are unbounded.
- **2** $P \leq \mathbb{N}$ iff P has a countable cofinal set.

Let $\mathscr{K}(E) = \{L \subset E, L \text{ compact}\}$ ordered by \subset

Let
$$\mathscr{K}(E) = \{L \subset E, L \text{ compact}\}$$
 ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either

イロト イロト イヨト イヨト 二日

Let
$$\mathscr{K}(E) = \{L \subset E, L \text{ compact}\}$$
 ordered by \subset

Theorem(Fremlin)

Let ${\it E}$ be a coanalytic separable metrizable space. Then, either

Let
$$\mathscr{K}(E) = \{L \subset E, L \text{ compact}\}$$
 ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either

Let
$$\mathscr{K}(E) = \{L \subset E, L \text{ compact}\}$$
 ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either

イロト イロト イヨト イヨト 二日

$$\mathfrak{G} \mathscr{K}(E) \sim \mathscr{K}(\mathbb{N})$$

$$\mathfrak{G} \mathscr{K}(E) \sim \mathscr{K}(\mathbb{R} \setminus \mathbb{Q})$$

Let
$$\mathscr{K}(E) = \{L \subset E, L \text{ compact}\}$$
 ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either

Let
$$\mathscr{K}(E) = \{L \subset E, L \text{ compact}\}$$
 ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either

イロト (部) (日) (日) (日) (日)

- $\mathfrak{G} \mathscr{K}(E) \sim \mathscr{K}(\mathbb{N})$

Let
$$\mathscr{K}(E) = \{L \subset E, L \text{ compact}\}$$
 ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either

$$\mathfrak{G} \mathscr{K}(E) \sim \mathscr{K}(\mathbb{Q})$$

Let
$$\mathscr{K}(E) = \{L \subset E, L \text{ compact}\}$$
 ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either

$$\mathfrak{G} \mathscr{K}(E) \sim \mathscr{K}(\mathbb{Q})$$

Let
$$\mathscr{K}(E) = \{L \subset E, L \text{ compact}\}$$
 ordered by \subset

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either

$$\mathfrak{G} \mathscr{K}(E) \sim \mathscr{K}(\mathbb{Q})$$

If X is a Banach space with separable dual, $(B_X, weak)$ is a coanalytic metrizable space.

Let $\mathscr{K}(B_X) = \{L \subset B_X, L \text{ weakly compact}\}$ ordered by \subset

Let $\mathscr{K}(B_X) = \{L \subset B_X, L \text{ weakly compact}\}$ ordered by \subset

Theorem (Fremlin + Edgar, Wheeler)

If X is Banach space with separable dual, then

Let $\mathscr{K}(B_X) = \{L \subset B_X, L \text{ weakly compact}\}$ ordered by \subset

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ ・ の への

Theorem (Fremlin + Edgar, Wheeler)

If X is Banach space with separable dual, then

•
$$\mathscr{K}(B_X) \sim \{0\}$$
, if X is reflexive,

Let $\mathscr{K}(B_X) = \{L \subset B_X, L \text{ weakly compact}\}$ ordered by \subset

Theorem (Fremlin + Edgar, Wheeler)

If X is Banach space with separable dual, then

0
$$\mathscr{K}(B_X) \sim \{0\}$$
, if X is reflexive,

2 $\mathscr{K}(B_X) \sim \mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP,

Let $\mathscr{K}(B_X) = \{L \subset B_X, L \text{ weakly compact}\}$ ordered by \subset

Theorem (Fremlin + Edgar, Wheeler)

If X is Banach space with separable dual, then

0
$$\mathscr{K}(B_X) \sim \{0\}$$
, if X is reflexive,

2 $\mathscr{K}(B_X) \sim \mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP,

$$\mathfrak{G} \ \mathscr{K}(B_X) \sim \mathscr{K}(\mathbb{Q})$$
 otherwise.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Theorem 1 (APR)

If X is separable,

Theorem 1 (APR)

If X is separable, under the axiom of analytic determinacy, either

Theorem 1 (APR)

If X is separable, under the axiom of analytic determinacy, either

Theorem 1 (APR)

If X is separable, under the axiom of analytic determinacy, either

$$\mathfrak{K}(B_X) \sim \{0\},$$

$$\mathfrak{O} \ \mathscr{K}(B_X) \sim \mathbb{N}^{\mathbb{N}}$$

Theorem 1 (APR)

If X is separable, under the axiom of analytic determinacy, either

イロト (部) (日) (日) (日) (日)

- $\mathfrak{K}(B_X) \sim \mathbb{N}^{\mathbb{N}}$

Theorem 1 (APR)

If X is separable, under the axiom of analytic determinacy, either

イロト (部) (日) (日) (日) (日)

- $\mathfrak{K}(B_X) \sim \mathbb{N}^{\mathbb{N}}$

• Let $\mathscr{AK}(B_X) = \{L \subset B_X, L \text{ weakly compact}\}$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

 Let A ℋ(B_X) = {L ⊂ B_X, L weakly compact} endowed with multiple relations L ≤_ε L' if L ⊂ L' + εB_X.

- Let A ℋ(B_X) = {L ⊂ B_X, L weakly compact} endowed with multiple relations L ≤_ε L' if L ⊂ L' + εB_X.
- $\mathscr{AK}(B_X) \preceq \mathscr{AK}(B_Y)$ now means that there exist functions $f_{\varepsilon} : \mathscr{AK}(B_X) \longrightarrow \mathscr{AK}(B_Y)$ such that

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- Let A ℋ(B_X) = {L ⊂ B_X, L weakly compact} endowed with multiple relations L ≤_ε L' if L ⊂ L' + εB_X.
- $\mathscr{AK}(B_X) \preceq \mathscr{AK}(B_Y)$ now means that there exist functions $f_{\varepsilon} : \mathscr{AK}(B_X) \longrightarrow \mathscr{AK}(B_Y)$ such that
 - $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon} : (\mathscr{AK}(B_X), \leq_{\varepsilon}) \longrightarrow (\mathscr{AK}(B_Y), \leq_{\delta}) \text{ is Tukey.}$

Theorem 2 (APR)

Under the axiom of analytic determinacy, either

- Let A ℋ(B_X) = {L ⊂ B_X, L weakly compact} endowed with multiple relations L ≤_ε L' if L ⊂ L' + εB_X.
- $\mathscr{AK}(B_X) \preceq \mathscr{AK}(B_Y)$ now means that there exist functions $f_{\varepsilon} : \mathscr{AK}(B_X) \longrightarrow \mathscr{AK}(B_Y)$ such that
 - $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon} : (\mathscr{AK}(B_X), \leq_{\varepsilon}) \longrightarrow (\mathscr{AK}(B_Y), \leq_{\delta}) \text{ is Tukey.}$

Theorem 2 (APR)

Under the axiom of analytic determinacy, either
- Let A ℋ(B_X) = {L ⊂ B_X, L weakly compact} endowed with multiple relations L ≤_ε L' if L ⊂ L' + εB_X.
- $\mathscr{AK}(B_X) \preceq \mathscr{AK}(B_Y)$ now means that there exist functions $f_{\varepsilon} : \mathscr{AK}(B_X) \longrightarrow \mathscr{AK}(B_Y)$ such that
 - $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon} : (\mathscr{AK}(B_X), \leq_{\varepsilon}) \longrightarrow (\mathscr{AK}(B_Y), \leq_{\delta}) \text{ is Tukey.}$

Theorem 2 (APR)

Under the axiom of analytic determinacy, either

- Let A ℋ(B_X) = {L ⊂ B_X, L weakly compact} endowed with multiple relations L ≤_ε L' if L ⊂ L' + εB_X.
- $\mathscr{AK}(B_X) \preceq \mathscr{AK}(B_Y)$ now means that there exist functions $f_{\varepsilon} : \mathscr{AK}(B_X) \longrightarrow \mathscr{AK}(B_Y)$ such that
 - $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon} : (\mathscr{AK}(B_X), \leq_{\varepsilon}) \longrightarrow (\mathscr{AK}(B_Y), \leq_{\delta}) \text{ is Tukey.}$

Theorem 2 (APR)

Under the axiom of analytic determinacy, either

- Let A ℋ(B_X) = {L ⊂ B_X, L weakly compact} endowed with multiple relations L ≤_ε L' if L ⊂ L' + εB_X.
- $\mathscr{AK}(B_X) \preceq \mathscr{AK}(B_Y)$ now means that there exist functions $f_{\varepsilon} : \mathscr{AK}(B_X) \longrightarrow \mathscr{AK}(B_Y)$ such that
 - $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon} : (\mathscr{AK}(B_X), \leq_{\varepsilon}) \longrightarrow (\mathscr{AK}(B_Y), \leq_{\delta}) \text{ is Tukey.}$

Theorem 2 (APR)

Under the axiom of analytic determinacy, either

- Let A ℋ(B_X) = {L ⊂ B_X, L weakly compact} endowed with multiple relations L ≤_ε L' if L ⊂ L' + εB_X.
- $\mathscr{AK}(B_X) \preceq \mathscr{AK}(B_Y)$ now means that there exist functions $f_{\varepsilon} : \mathscr{AK}(B_X) \longrightarrow \mathscr{AK}(B_Y)$ such that
 - $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon} : (\mathscr{AK}(B_X), \leq_{\varepsilon}) \longrightarrow (\mathscr{AK}(B_Y), \leq_{\delta}) \text{ is Tukey.}$

Theorem 2 (APR)

Under the axiom of analytic determinacy, either

- $\Im \mathscr{K}(B_X) \sim Fin(\mathbb{R}).$

- Let A ℋ(B_X) = {L ⊂ B_X, L weakly compact} endowed with multiple relations L ≤_ε L' if L ⊂ L' + εB_X.
- $\mathscr{AK}(B_X) \preceq \mathscr{AK}(B_Y)$ now means that there exist functions $f_{\varepsilon} : \mathscr{AK}(B_X) \longrightarrow \mathscr{AK}(B_Y)$ such that
 - $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon} : (\mathscr{AK}(B_X), \leq_{\varepsilon}) \longrightarrow (\mathscr{AK}(B_Y), \leq_{\delta}) \text{ is Tukey.}$

Theorem 2 (APR)

Under the axiom of analytic determinacy, either

- $\Im \mathscr{K}(B_X) \sim Fin(\mathbb{R}).$

Proof: Theorem 1 + Ramsey (Louveau, Milliken, A.-Todorcevic...)

 $\mathscr{AK}(B_X) \sim$

1 $\{0\}$, if X is reflexive,

- **1** $\{0\}$, if X is reflexive,
- **2** $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^* .

- **1** $\{0\}$, if X is reflexive,
- **2** $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^* .
- **3** $\mathscr{K}(\mathbb{Q})$ if X has separable dual but not PCP, like c_0 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- **1** $\{0\}$, if X is reflexive,
- **2** $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^* .
- **3** $\mathscr{K}(\mathbb{Q})$ if X has separable dual but not PCP, like c_0 .

(ロ) (四) (三) (三) (三) (三) (○) (○)

• Fin(\mathbb{R}) if X has nonseparable dual but $\ell_1 \not\subset X$.

- **1** $\{0\}$, if X is reflexive,
- **2** $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^* .
- **③** $\mathscr{K}(\mathbb{Q})$ if X has separable dual but not PCP, like c_0 .
- Fin(\mathbb{R}) if X has nonseparable dual but $\ell_1 \not\subset X$.
- N if X is nonreflexive SWCG space, like $L^1[0,1]$, $\ell_1(\ell_2)$.

- **1** $\{0\}$, if X is reflexive,
- **2** $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^* .
- **3** $\mathscr{K}(\mathbb{Q})$ if X has separable dual but not PCP, like c_0 .
- Fin(\mathbb{R}) if X has nonseparable dual but $\ell_1 \not\subset X$.
- N if X is nonreflexive SWCG space, like $L^1[0,1]$, $\ell_1(\ell_2)$.

$$\ \, \bullet \ \, \mathscr{K}(\mathbb{Q}) \ \, \text{if} \ \, X = \ell_1(c_0).$$

- **1** $\{0\}$, if X is reflexive,
- **2** $\mathbb{N}^{\mathbb{N}}$ if X is nonreflexive with PCP, like J^* .
- **3** $\mathscr{K}(\mathbb{Q})$ if X has separable dual but not PCP, like c_0 .
- Fin(\mathbb{R}) if X has nonseparable dual but $\ell_1 \not\subset X$.
- N if X is nonreflexive SWCG space, like $L^1[0,1]$, $\ell_1(\ell_2)$.
- $(X = \ell_1(c_0).$
- **•** *Fin*(\mathbb{R}) if *X* = *C*[0,1].

Axiom of analytic determinacy

(▲□) (圖) (目) (目) (目) (0)

Axiom of analytic determinacy

For a set $A \subset \mathbb{N}^{\mathbb{N}}$, consider the game G_A

For a set $A \subset \mathbb{N}^{\mathbb{N}}$, consider the game G_A in which Player I and Player II play alternatively natural numbers,

• From an ultrafilter, one gets a set A such that none of the players a winning strategy on G_A .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- From an ultrafilter, one gets a set A such that none of the players a winning strategy on G_A .
- If A is Borel, then one of the players has a winning strategy in G_A

- From an ultrafilter, one gets a set A such that none of the players a winning strategy on G_A .
- **2** If A is Borel, then one of the players has a winning strategy in G_A

Axiom of Analytic Determinacy $(\Sigma_1^1 D)$

If A is either analytic or coanalytic, then one player has a winning strategy in G_A .

Let $\mathscr{K}(B_X) = \{L \subset B_X, L \text{ weakly compact}\}$ ordered by \subset

(ロ) (部) (E) (E) (E) (0000

Theorem 1 (APR)

 $(\Sigma_1^1 D)$ If X is separable Banach space, either

- $\mathfrak{S}(B_X) \sim \mathbb{N}^{\mathbb{N}}$

Let $\mathscr{R}(A) = \{L \subset A, L \text{ relatively weakly compact}\}$ ordered by \subset

Theorem 1a $(\Sigma_1^1 D)$ If X is Banach, and $A \subset X$ is countable, either 1 $\mathscr{R}(A) \sim \{0\}$, 2 $\mathscr{R}(A) \sim \mathbb{N}$ 3 $\mathscr{R}(A) \sim \mathbb{N}^{\mathbb{N}}$

(ロ) (部) (E) (E) (E) (0000

- $\ \, \mathfrak{R}(A) \sim Fin(\mathbb{R})$

($\Sigma_1^1 D$) If X is Banach, and $A \subset X$ is countable, either **3** $\mathscr{R}(A) \sim \{0\}$, **3** $\mathscr{R}(A) \sim \mathbb{N}$ **3** $\mathscr{R}(A) \sim \mathbb{N}^{\mathbb{N}}$ **3** $\mathscr{R}(A) \sim \mathscr{K}(\mathbb{Q})$ **3** $\mathscr{R}(A) \sim Fin(\mathbb{R})$

In other models of set theory, there exists an unconditional basis A not fitting in the list.

(ロ) (部) (E) (E) (E) (0000

 $(\Sigma_1^1 D)$ If X is Banach, and $A \subset X$ is countable, either $\Im \mathscr{R}(A) \sim \{0\},\$

- $\Im \mathscr{R}(A) \sim Fin(\mathbb{R})$

In other models of set theory, there exists an unconditional basis A not fitting in the list. More precisely, if there exists a coanalytic set of size ω_1 , then there exists A with $\Re(A) \sim Fin(\omega_1)$.

(Σ¹₁D) If X is Banach, and A ⊂ X is countable, either
𝔅(A) ~ {0},
𝔅(A) ~ ℕ
𝔅(A) ~ ℕ^ℕ
𝔅(A) ~ 𝔅(ℚ)
𝔅(A) ~ Fin(ℝ)

By Grothendieck, $C \in \mathscr{R}(A)$ iff $\lim_{m} \lim_{m} x_{n}^{*}(x_{m}) = \lim_{m} \lim_{m} x_{n}^{*}(x_{m})$ when $x_{m} \in C$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

 $(\mathbf{\Sigma}_1^1 \mathbf{D})$ If X is Banach, and $A \subset X$ is countable, either

- $\Im \mathscr{R}(A) \sim Fin(\mathbb{R})$

By Grothendieck, $C \in \mathscr{R}(A)$ iff $\lim_{m} \lim_{m} x_{n}^{*}(x_{m}) = \lim_{m} \lim_{m} x_{n}^{*}(x_{m})$ when $x_{m} \in C$. This allows to express $\mathscr{R}(A) = I^{\perp}$ where I is an analytic family of subsets of A.

 $(\mathbf{\Sigma}_1^1 \mathbf{D})$ If X is Banach, and $A \subset X$ is countable, either

- $\ \, \mathfrak{R}(A) \sim Fin(\mathbb{R})$

By Grothendieck, $C \in \mathscr{R}(A)$ iff $\lim_{m} \lim_{m} x_{n}^{*}(x_{m}) = \lim_{m} \lim_{m} x_{n}^{*}(x_{m})$ when $x_{m} \in C$. This allows to express $\mathscr{R}(A) = I^{\perp}$ where I is an analytic family of subsets of A.

 $I^{\perp} = \{ a \subset \mathbb{N} : \forall b \in I \ a \cap b \text{ is finite} \}.$

Combinatorial result behind Theorem 1

$$I^{\perp} = \{ a \subset \mathbb{N} : \forall b \in I \ a \cap b \text{ is finite} \}$$

Theorem

 $(\Sigma_1^1 D)$ If *I* is an analytic family of subsets of \mathbb{N} , then I^{\perp} is Tukey equivalent to either $\{0\}$, \mathbb{N} , $\mathbb{N}^{\mathbb{N}}$, $\mathscr{K}(\mathbb{Q})$ or $Fin(\mathbb{R})$.

Proof:

- By a modification of a result of Todorcevic, either we get a special copy of the dyadic tree (gives *Fin*(ℝ)) or *I* and *I*[⊥] are countably separated.
- ② By results of A. and Todorcevic, if *I* and *I[⊥]* are countably separated, we can identify *I[⊥]* with *K(E)* and then apply Fremlin's theorem.

The dyadic tree $2^{<\omega}$ is the set of finite sequences of 0's and 1's.

A 0-chain is a subset $\{x_1, x_2, \ldots\} \subset 2^{<\omega}$ in which $x_{n+1} = x_n^{\frown} 0^{\frown} y_n$

A 0-chain is a subset $\{x_1, x_2, \ldots\} \subset 2^{<\omega}$ in which $x_{n+1} = x_n^{\frown} 0^{\frown} y_n$

A 1-chain is a subset $\{x_1, x_2, \ldots\} \subset 2^{<\omega}$ in which $x_{n+1} = x_n^{\frown} 1^{\frown} y_n$

A 1-chain is a subset $\{x_1, x_2, \ldots\} \subset 2^{<\omega}$ in which $x_{n+1} = x_n^{\frown} 1^{\frown} y_n$

Theorem (essentially Todorcevic, via Feng)

 $(\Sigma_1^1 D)$ If *I* is analytic family of subsets of \mathbb{N} ,

Theorem (essentially Todorcevic, via Feng)

 $(\Sigma_1^1 D)$ If *I* is analytic family of subsets of \mathbb{N} ,

• Either I and I^{\perp} are countably separated,

Theorem (essentially Todorcevic, via Feng)

 $(\Sigma_1^1 \mathbf{D})$ If *I* is analytic family of subsets of \mathbb{N} ,

- Either I and I^{\perp} are countably separated,
- Or there exists an injective u : 2^{<∞} → N which sends 0-chains to I and 1-chains to I[⊥]
Theorem (essentially Todorcevic, via Feng)

 $(\Sigma_1^1 D)$ If *I* is analytic family of subsets of \mathbb{N} ,

- Either I and I^{\perp} are countably separated,
- Or there exists an injective u : 2^{<∞} → N which sends 0-chains to I and 1-chains to I[⊥]
 - Condition (1) is equivalent to I[⊥] = 𝔅(E) where E is separable metrizable space containing N.

Theorem (essentially Todorcevic, via Feng)

 $(\Sigma_1^1 D)$ If *I* is analytic family of subsets of \mathbb{N} ,

- Either I and I^{\perp} are countably separated,
- Or there exists an injective u : 2^{<∞} → N which sends 0-chains to I and 1-chains to I[⊥]
 - Condition (1) is equivalent to I[⊥] = 𝔅(E) where E is separable metrizable space containing N. This leads to Fremlin.

Theorem (essentially Todorcevic, via Feng)

 $(\Sigma_1^1 D)$ If *I* is analytic family of subsets of \mathbb{N} ,

- Either I and I^{\perp} are countably separated,
- Or there exists an injective u : 2^{<∞} → N which sends 0-chains to I and 1-chains to I[⊥]
 - Condition (1) is equivalent to I[⊥] = 𝔅(E) where E is separable metrizable space containing N. This leads to Fremlin.
 - Condition (2) leads to $I^{\perp} \sim I \sim Fin(2^{\omega})$.

Tukey classification of $\mathscr{AK}(B_X)$

• Let $\mathscr{AK}(B_X) = \{L \subset B_X, L \text{ weakly compact}\}$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Tukey classification of $\mathscr{AK}(B_X)$

- Let A ℋ(B_X) = {L ⊂ B_X, L weakly compact} endowed with multiple relations L ≤_ε L' if L ⊂ L' + εB_X.
- $\mathscr{AK}(B_X) \preceq \mathscr{AK}(B_Y)$ now means that there exist functions $f_{\varepsilon} : \mathscr{AK}(B_X) \longrightarrow \mathscr{AK}(B_Y)$ such that
 - $\forall \varepsilon \quad \exists \delta \quad f_{\varepsilon} : (\mathscr{AK}(B_X), \leq_{\varepsilon}) \longrightarrow (\mathscr{AK}(B_Y), \leq_{\delta}) \text{ is Tukey.}$

Theorem 2 (APR)

Under the axiom of analytic determinacy, either

- $\Im \mathscr{K}(B_X) \sim Fin(\mathbb{R}).$

Proof: Theorem 1 + Ramsey (Louveau, Milliken, A.-Todorcevic...)

• At a stage, we have $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{K}(B_X)$ and we want to prove $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{A}\mathscr{K}(B_X)$.

Illustration of the use of Ramsey

- At a stage, we have $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{K}(B_X)$ and we want to prove $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{A}\mathscr{K}(B_X)$.
- The proof of Theorem 1 provides an injection $u : \mathbb{Q} \longrightarrow B_X$ that identifies relatively compact subsets of \mathbb{Q} and relatively weakly compact subsets of B_X .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Illustration of the use of Ramsey

- At a stage, we have $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{K}(B_X)$ and we want to prove $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{A}\mathscr{K}(B_X)$.
- The proof of Theorem 1 provides an injection $u : \mathbb{Q} \longrightarrow B_X$ that identifies relatively compact subsets of \mathbb{Q} and relatively weakly compact subsets of B_X .
- We want to find a homogeneous δ > 0 such that u(S) is δ-far from weakly compact whenever S ⊂ Q is not rel. compact.

Illustration of the use of Ramsey

- At a stage, we have $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{K}(B_X)$ and we want to prove $\mathscr{K}(\mathbb{Q}) \preceq \mathscr{A}\mathscr{K}(B_X)$.
- The proof of Theorem 1 provides an injection $u : \mathbb{Q} \longrightarrow B_X$ that identifies relatively compact subsets of \mathbb{Q} and relatively weakly compact subsets of B_X .
- We want to find a homogeneous δ > 0 such that u(S) is δ-far from weakly compact whenever S ⊂ Q is not rel. compact.
- We would color S acording to the δ necessary. Do we have a Ramsey theorem that allows to homogenize? The one recently found by A. and Todorcevic does the job.

How to produce unconditional bases *B* such that $\mathscr{R}(B)$ is Tukey equivalent to any of $\{0\}$, \mathbb{N} , $\mathbb{N}^{\mathbb{N}}$, $\mathscr{K}(\mathbb{Q})$, $Fin(\mathbb{R})$?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

How to produce unconditional bases *B* such that $\mathscr{R}(B)$ is Tukey equivalent to any of $\{0\}$, \mathbb{N} , $\mathbb{N}^{\mathbb{N}}$, $\mathscr{K}(\mathbb{Q})$, $Fin(\mathbb{R})$?

Definition

An adequate family \mathbb{A} is a family of sets such that $a \in \mathbb{A}$ iff all finite subsets of a belong to \mathbb{A} .

How to produce unconditional bases *B* such that $\mathscr{R}(B)$ is Tukey equivalent to any of $\{0\}$, \mathbb{N} , $\mathbb{N}^{\mathbb{N}}$, $\mathscr{K}(\mathbb{Q})$, $Fin(\mathbb{R})$?

Definition

An adequate family \mathbb{A} is a family of sets such that $a \in \mathbb{A}$ iff all finite subsets of a belong to \mathbb{A} .

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family $\mathbb A$ of closed and discrete subsets of E

How to produce unconditional bases *B* such that $\mathscr{R}(B)$ is Tukey equivalent to any of $\{0\}$, \mathbb{N} , $\mathbb{N}^{\mathbb{N}}$, $\mathscr{K}(\mathbb{Q})$, $Fin(\mathbb{R})$?

Definition

An adequate family \mathbb{A} is a family of sets such that $a \in \mathbb{A}$ iff all finite subsets of a belong to \mathbb{A} .

Theorem (A., based on Talagrand)

Iff *E* is coanalytic, then there exists an adequate family \mathbb{A} of closed and discrete subsets of *E* such that each infinite closed discrete subset of *E* contains an infinite set from \mathbb{A} .

Iff *E* is coanalytic, then there exists an adequate family \mathbb{A}_E of closed and discrete subsets of *E* such that each infinite closed discrete subset of *E* contains an infinite set from \mathbb{A}_E .

Iff *E* is coanalytic, then there exists an adequate family \mathbb{A}_E of closed and discrete subsets of *E* such that each infinite closed discrete subset of *E* contains an infinite set from \mathbb{A}_E .

From an adequate $\mathbb A$ one constructs an unconditional basis $B(\mathbb A)$ with the norm

Iff *E* is coanalytic, then there exists an adequate family \mathbb{A}_E of closed and discrete subsets of *E* such that each infinite closed discrete subset of *E* contains an infinite set from \mathbb{A}_E .

From an adequate \mathbb{A} one constructs an unconditional basis $B(\mathbb{A})$ with the norm

$$\|\sum \lambda_n e_n\| = \sup_{a \in \mathbb{A}} \sum_{n \in \mathcal{A}} |\lambda_n|$$

Iff *E* is coanalytic, then there exists an adequate family \mathbb{A}_E of closed and discrete subsets of *E* such that each infinite closed discrete subset of *E* contains an infinite set from \mathbb{A}_E .

From an adequate \mathbb{A} one constructs an unconditional basis $B(\mathbb{A})$ with the norm

$$\|\sum \lambda_n e_n\| = \sup_{a \in \mathbb{A}} \sum_{n \in \mathcal{A}} |\lambda_n|$$

It happens that $\mathbb{R}(B(\mathbb{A}_E)) \sim \mathscr{K}(E)$ so one applies Fremlin.

Iff *E* is coanalytic, then there exists an adequate family \mathbb{A}_E of closed and discrete subsets of *E* such that each infinite closed discrete subset of *E* contains an infinite set from \mathbb{A}_E .

From an adequate \mathbb{A} one constructs an unconditional basis $B(\mathbb{A})$ with the norm

$$\|\sum \lambda_n e_n\| = \sup_{a \in \mathbb{A}} \sum_{n \in \mathcal{A}} |\lambda_n|$$

It happens that $\mathbb{R}(B(\mathbb{A}_E)) \sim \mathscr{K}(E)$ so one applies Fremlin. From E with $|E| = \omega_1$, one gets B with $\mathscr{R}(B) \sim Fin(\omega_1)$