Banach spaces with rich \mathcal{L}_{∞} structure

Spiros A. Argyros

Department of Mathematics National Technical University of Athens Athens, Greece

First Brazilian Workshop in Geometry of Banach spaces Maresias, August 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

"Scalar-plus-Compact" property

- A separable space X is a \mathcal{L}_{∞} space, if there exists a constant C > 0 and an increasing sequence of finite dimensional spaces $(F_n)_n$ such that each F_n is *C*-isomorphic to $\ell_{\infty}(dimF_n)$ and $\overline{\bigcup_n F_n} = X$.
- (Lewis Stegall) If X is a separable L_∞ space then X* ≃ l₁ or X* ≃ M[0, 1].
- (Pelczynski) If X* is non-separable then X isomorphically contains ℓ₁.

- A separable space X is a L_∞ space, if there exists a constant C > 0 and an increasing sequence of finite dimensional spaces (F_n)_n such that each F_n is C-isomorphic to ℓ_∞(dimF_n) and ∪_nF_n = X.
- (Lewis Stegall) If X is a separable L_∞ space then X* ≃ l₁ or X* ≃ M[0, 1].
- (Pelczynski) If X* is non-separable then X isomorphically contains ℓ₁.

- A separable space X is a L_∞ space, if there exists a constant C > 0 and an increasing sequence of finite dimensional spaces (F_n)_n such that each F_n is C-isomorphic to ℓ_∞(dimF_n) and ∪_nF_n = X.
- (Lewis Stegall) If X is a separable L_∞ space then X^{*} ≃ l₁ or X^{*} ≃ M[0, 1].
- (Pelczynski) If X* is non-separable then X isomorphically contains ℓ₁.

- A separable space X is a L_∞ space, if there exists a constant C > 0 and an increasing sequence of finite dimensional spaces (F_n)_n such that each F_n is C-isomorphic to ℓ_∞(dimF_n) and ∪_nF_n = X.
- (Lewis Stegall) If X is a separable L_∞ space then X^{*} ≃ l₁ or X^{*} ≃ M[0, 1].
- (Pelczynski) If X* is non-separable then X isomorphically contains ℓ₁.

- In 1980 J. Bourgain and F. Delbaen constructed the first \mathcal{L}_{∞} space not containing c_0 .
- Bourgain-Delbaen method was a critical ingredient for the solution of the "scalar-plus-compact" problem.

- In 1980 J. Bourgain and F. Delbaen constructed the first \mathcal{L}_{∞} space not containing c_0 .
- Bourgain-Delbaen method was a critical ingredient for the solution of the "scalar-plus-compact" problem.

- In 1980 J. Bourgain and F. Delbaen constructed the first \mathcal{L}_{∞} space not containing c_0 .
- Bourgain-Delbaen method was a critical ingredient for the solution of the "scalar-plus-compact" problem.

Theorem (S. A., R. Haydon 2011)

There exists a \mathcal{L}_{∞} Hereditarily Indecomposable Banach space \mathfrak{X}_{K} such that \mathfrak{X}_{K}^{*} is isomorphic to $\ell_{1}(\mathbb{N})$ and every $T : \mathfrak{X}_{K} \to \mathfrak{X}_{K}$ is of the form $T = \lambda I + K$ with K a compact operator.

• This is the first example of a Banach space X such that every operator $T \in \mathcal{L}(X)$ admits a non trivial closed invariant subspace.

Theorem (S. A., R. Haydon 2011)

There exists a \mathcal{L}_{∞} Hereditarily Indecomposable Banach space \mathfrak{X}_{K} such that \mathfrak{X}_{K}^{*} is isomorphic to $\ell_{1}(\mathbb{N})$ and every $T : \mathfrak{X}_{K} \to \mathfrak{X}_{K}$ is of the form $T = \lambda I + K$ with K a compact operator.

 This is the first example of a Banach space X such that every operator T ∈ L(X) admits a non trivial closed invariant subspace.

Does there exist a separable Banach space \mathfrak{X} with the hereditary "scalar-plus-compact" property? i.e. for every *Y* closed subspace of \mathfrak{X} every operator $T \in \mathcal{L}(Y, \mathfrak{X})$ is of the form $T = \lambda I_{Y,\mathfrak{X}} + K$ with $K \in \mathcal{K}(Y, \mathfrak{X})$.

Problem (weaker version)

Does there exists \mathfrak{X} saturated by infinite dimensional closed subspaces each one satisfying the "scalar-plus-compact" property?

Does there exist a separable Banach space \mathfrak{X} with the hereditary "scalar-plus-compact" property? i.e. for every *Y* closed subspace of \mathfrak{X} every operator $T \in \mathcal{L}(Y, \mathfrak{X})$ is of the form $T = \lambda I_{Y,\mathfrak{X}} + K$ with $K \in \mathcal{K}(Y, \mathfrak{X})$.

Problem (weaker version)

Does there exists \mathfrak{X} saturated by infinite dimensional closed subspaces each one satisfying the "scalar-plus-compact" property?

Does there exist a separable Banach space \mathfrak{X} with the hereditary "scalar-plus-compact" property? i.e. for every *Y* closed subspace of \mathfrak{X} every operator $T \in \mathcal{L}(Y, \mathfrak{X})$ is of the form $T = \lambda I_{Y,\mathfrak{X}} + K$ with $K \in \mathcal{K}(Y, \mathfrak{X})$.

Problem (weaker version)

Does there exists \mathfrak{X} saturated by infinite dimensional closed subspaces each one satisfying the "scalar-plus-compact" property?

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace Y of \mathfrak{X} such that either:

 Every further subspace of Y satisfies the "scalar-plus-compact" property.

or

 Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace *Y* of \mathfrak{X} such that either:

 Every further subspace of Y satisfies the "scalar-plus-compact" property.

or

• Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace *Y* of \mathfrak{X} such that either:

 Every further subspace of Y satisfies the "scalar-plus-compact" property.

or

• Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace *Y* of \mathfrak{X} such that either:

• Every further subspace of Y satisfies the "scalar-plus-compact" property.

or

• Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace *Y* of \mathfrak{X} such that either:

• Every further subspace of Y satisfies the "scalar-plus-compact" property.

or

• Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace *Y* of \mathfrak{X} such that either:

• Every further subspace of Y satisfies the "scalar-plus-compact" property.

or

• Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)

Does there exists a reflexive Banach space $\mathfrak X$ with the "scalar-plus-compact" property?

Does there exists a reflexive Banach space \mathfrak{X} with the "scalar-plus-compact" property?

- (i) For every Y closed subspace of X_{ISP}, every T ∈ L(Y) is of the form T = λI + S, with S strictly singular.
- (ii) For every Y and Q, S, T : Y → Y strictly singular operators, the composition QST is a compact one.
 - Every Banach space satisfying (i) and (ii), also satisfies the hereditary Invariant Subspace Property (i.e. for every infinite dimensional closed subspace Y of *X*_{ISP} and every operator T ∈ L(Y) admits a non trivial closed invariant subspace).

- (i) For every *Y* closed subspace of *X*_{*ISP*}, every *T* ∈ *L*(*Y*) is of the form *T* = λ*I* + *S*, with *S* strictly singular.
- (ii) For every Y and Q, S, T : Y → Y strictly singular operators, the composition QST is a compact one.
 - Every Banach space satisfying (i) and (ii), also satisfies the hereditary Invariant Subspace Property (i.e. for every infinite dimensional closed subspace Y of *X_{ISP}* and every operator T ∈ *L*(Y) admits a non trivial closed invariant subspace).

- (i) For every Y closed subspace of 𝔅_{ISP}, every T ∈ ℒ(Y) is of the form T = λI + S, with S strictly singular.
- (ii) For every *Y* and *Q*, *S*, *T* : $Y \rightarrow Y$ strictly singular operators, the composition *QST* is a compact one.
 - Every Banach space satisfying (i) and (ii), also satisfies the hereditary Invariant Subspace Property (i.e. for every infinite dimensional closed subspace Y of *X*_{ISP} and every operator T ∈ *L*(Y) admits a non trivial closed invariant subspace).

- (i) For every Y closed subspace of 𝔅_{ISP}, every T ∈ ℒ(Y) is of the form T = λI + S, with S strictly singular.
- (ii) For every *Y* and *Q*, *S*, $T : Y \rightarrow Y$ strictly singular operators, the composition *QST* is a compact one.
 - Every Banach space satisfying (i) and (ii), also satisfies the hereditary Invariant Subspace Property (i.e. for every infinite dimensional closed subspace Y of *X*_{ISP} and every operator T ∈ *L*(Y) admits a non trivial closed invariant subspace).

- (i) For every Y closed subspace of X_{ISP}, every T ∈ L(Y) is of the form T = λl + S, with S strictly singular.
- (ii) For every Y and $Q, S, T : Y \rightarrow Y$ strictly singular operators, the composition QST is a compact one.
 - Every Banach space satisfying (i) and (ii), also satisfies the hereditary Invariant Subspace Property (i.e. for every infinite dimensional closed subspace Y of *X*_{ISP} and every operator T ∈ L(Y) admits a non trivial closed invariant subspace).

- A Banach space X is said to be L_∞ saturated if every closed infinite dimension subspace Y of X contains a further subspace which is an L_∞ space.
- The known examples of \mathcal{L}_{∞} saturated Banach spaces are the classical ones, namely the space c_0 and the spaces $C(\alpha)$ where α is an infinite ordinal number with the usual order topology.

- A Banach space X is said to be L_∞ saturated if every closed infinite dimension subspace Y of X contains a further subspace which is an L_∞ space.
- The known examples of \mathcal{L}_{∞} saturated Banach spaces are the classical ones, namely the space c_0 and the spaces $C(\alpha)$ where α is an infinite ordinal number with the usual order topology.

- A Banach space X is said to be L_∞ saturated if every closed infinite dimension subspace Y of X contains a further subspace which is an L_∞ space.
- The known examples of \mathcal{L}_{∞} saturated Banach spaces are the classical ones, namely the space c_0 and the spaces $C(\alpha)$ where α is an infinite ordinal number with the usual order topology.

- The problem was stated by H.P. Rosenthal in the 80's and in particular he was interested for a negative answer.
- If such a space exists then passing to a subspace we may assume that a L_∞ space exists which is L_∞ saturated and does not contain c₀.
- Any \mathcal{L}_{∞} space which is \mathcal{L}_{∞} saturated has separable dual. Moreover, if it does not contain c_0 then it does not contain unconditional basic sequences. Hence, by Gowers Dichotomy it contains an HI subspace.

Does there exist a Banach space *X* which is \mathcal{L}_{∞} saturated and does not contain a subspace isomorphic to c_0 ?

- The problem was stated by H.P. Rosenthal in the 80's and in particular he was interested for a negative answer.
- If such a space exists then passing to a subspace we may assume that a L_∞ space exists which is L_∞ saturated and does not contain c₀.
- Any \mathcal{L}_{∞} space which is \mathcal{L}_{∞} saturated has separable dual. Moreover, if it does not contain c_0 then it does not contain unconditional basic sequences. Hence, by Gowers Dichotomy it contains an HI subspace.

・ロン ・回 と ・ 回 と ・

- The problem was stated by H.P. Rosenthal in the 80's and in particular he was interested for a negative answer.
- If such a space exists then passing to a subspace we may assume that a L_∞ space exists which is L_∞ saturated and does not contain c₀.
- Any \mathcal{L}_{∞} space which is \mathcal{L}_{∞} saturated has separable dual. Moreover, if it does not contain c_0 then it does not contain unconditional basic sequences. Hence, by Gowers Dichotomy it contains an HI subspace.

- The problem was stated by H.P. Rosenthal in the 80's and in particular he was interested for a negative answer.
- If such a space exists then passing to a subspace we may assume that a L_∞ space exists which is L_∞ saturated and does not contain c₀.
- Any \mathcal{L}_{∞} space which is \mathcal{L}_{∞} saturated has separable dual. Moreover, if it does not contain c_0 then it does not contain unconditional basic sequences. Hence, by Gowers Dichotomy it contains an HI subspace.

- The problem was stated by H.P. Rosenthal in the 80's and in particular he was interested for a negative answer.
- If such a space exists then passing to a subspace we may assume that a L_∞ space exists which is L_∞ saturated and does not contain c₀.
- Any L_∞ space which is L_∞ saturated has separable dual. Moreover, if it does not contain c₀ then it does not contain unconditional basic sequences. Hence, by Gowers Dichotomy it contains an HI subspace.

- A solution to the Rosenthal's Problem will yield answers to some of the problems stated before.
- The aim of the present talk is to present some recent joint work with Pavlos Motakis related to Rosenthal's problem.

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $(d_n)_n$ such that for every infinite subset *L* of \mathbb{N} the subspace $\mathfrak{X}_L = \overline{\langle d_n : n \in L \rangle}$ contains a \mathcal{L}_{∞} space.

• A solution to the Rosenthal's Problem will yield answers to some of the problems stated before.

• The aim of the present talk is to present some recent joint work with Pavlos Motakis related to Rosenthal's problem.

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $(d_n)_n$ such that for every infinite subset L of \mathbb{N} the subspace $\mathfrak{X}_L = \overline{\langle d_n : n \in L \rangle}$ contains a \mathcal{L}_{∞} space.

- A solution to the Rosenthal's Problem will yield answers to some of the problems stated before.
- The aim of the present talk is to present some recent joint work with Pavlos Motakis related to Rosenthal's problem.

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $(d_n)_n$ such that for every infinite subset L of \mathbb{N} the subspace $\mathfrak{X}_L = \overline{\langle d_n : n \in L \rangle}$ contains a \mathcal{L}_{∞} space.

- A solution to the Rosenthal's Problem will yield answers to some of the problems stated before.
- The aim of the present talk is to present some recent joint work with Pavlos Motakis related to Rosenthal's problem.

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $(d_n)_n$ such that for every infinite subset *L* of \mathbb{N} the subspace $\mathfrak{X}_L = \overline{\langle d_n : n \in L \rangle}$ contains a \mathcal{L}_{∞} space.

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, $\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n$ where (Γ_n) is an increasing sequence of finite sets.
- We set $\Delta_1 = \Gamma_1$ and $\Delta_{n+1} = \Gamma_{n+1} \setminus \Gamma_n$.
- There exists *C* > 0 and extension operators

$$i_n: \ell_{\infty}(\Gamma_n) \to \ell_{\infty}(\Gamma)$$

(i.e. $i_n(x)|_{\Gamma_n} = x$) such that $||i_n|| \leq C$ for every $n \in \mathbb{N}$.

• Hence i_n is *C*- isomorphic embedding for every $n \in \mathbb{N}$.

・ロト・西ト・ヨト・ヨー うへぐ

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, $\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n$ where (Γ_n) is an increasing sequence of finite sets.
- We set $\Delta_1 = \Gamma_1$ and $\Delta_{n+1} = \Gamma_{n+1} \setminus \Gamma_n$.
- There exists *C* > 0 and extension operators

$$i_n: \ell_{\infty}(\Gamma_n) \to \ell_{\infty}(\Gamma)$$

(i.e. $i_n(x)|_{\Gamma_n} = x$) such that $||i_n|| \leq C$ for every $n \in \mathbb{N}$.

• Hence i_n is *C*- isomorphic embedding for every $n \in \mathbb{N}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ����

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, Γ = ∪[∞]_{n=1}Γ_n where (Γ_n) is an increasing sequence of finite sets.
- We set $\Delta_1 = \Gamma_1$ and $\Delta_{n+1} = \Gamma_{n+1} \setminus \Gamma_n$.
- There exists *C* > 0 and extension operators

$$i_n: \ell_{\infty}(\Gamma_n) \to \ell_{\infty}(\Gamma)$$

(i.e. $i_n(x)|_{\Gamma_n} = x$) such that $||i_n|| \leq C$ for every $n \in \mathbb{N}$.

• Hence i_n is *C*- isomorphic embedding for every $n \in \mathbb{N}$.

◆ロ ▶ ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 ─ のへで

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, Γ = ∪[∞]_{n=1}Γ_n where (Γ_n) is an increasing sequence of finite sets.
- We set $\Delta_1 = \Gamma_1$ and $\Delta_{n+1} = \Gamma_{n+1} \setminus \Gamma_n$.

• There exists *C* > 0 and extension operators

$$i_n: \ell_{\infty}(\Gamma_n) \to \ell_{\infty}(\Gamma)$$

(i.e. $i_n(x)|_{\Gamma_n} = x$) such that $||i_n|| \leq C$ for every $n \in \mathbb{N}$.

• Hence i_n is *C*- isomorphic embedding for every $n \in \mathbb{N}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, $\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n$ where (Γ_n) is an increasing sequence of finite sets.
- We set $\Delta_1 = \Gamma_1$ and $\Delta_{n+1} = \Gamma_{n+1} \setminus \Gamma_n$.
- There exists *C* > 0 and extension operators

$$i_n: \ell_\infty(\Gamma_n) \to \ell_\infty(\Gamma)$$

(i.e. $i_n(x)|_{\Gamma_n} = x$) such that $||i_n|| \leq C$ for every $n \in \mathbb{N}$.

• Hence i_n is *C*- isomorphic embedding for every $n \in \mathbb{N}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, $\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n$ where (Γ_n) is an increasing sequence of finite sets.
- We set $\Delta_1 = \Gamma_1$ and $\Delta_{n+1} = \Gamma_{n+1} \setminus \Gamma_n$.
- There exists *C* > 0 and extension operators

$$i_n: \ell_\infty(\Gamma_n) \to \ell_\infty(\Gamma)$$

ヘロト ヘアト ヘビト ヘビト

(i.e. $i_n(x)|_{\Gamma_n} = x$) such that $||i_n|| \leq C$ for every $n \in \mathbb{N}$.

• Hence i_n is *C*- isomorphic embedding for every $n \in \mathbb{N}$.

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

• The operators i_n are compatible. Namely, for n < k

• For $\gamma \in \Delta_q$ we set $d_{\gamma} = i_q(e_{\gamma})$ and

$$\mathfrak{X} = \overline{\langle \{ \boldsymbol{d}_{\gamma} : \gamma \in \Gamma \} \rangle}$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへ⊙

• The operators i_n are compatible. Namely, for n < k

• For $\gamma \in \Delta_q$ we set $d_{\gamma} = i_q(e_{\gamma})$ and

$$\mathfrak{X} = \overline{\langle \{ \boldsymbol{d}_{\gamma} : \gamma \in \Gamma \} \rangle}$$

(日) (四) (三) (三) (三) (三) (○)

• The operators i_n are compatible. Namely, for n < k

۲

• For $\gamma \in \Delta_q$ we set $d_{\gamma} = i_q(e_{\gamma})$ and

$$\mathfrak{X} = \overline{\langle \{ \boldsymbol{d}_{\gamma} : \gamma \in \boldsymbol{\Gamma} \} \rangle}$$

<ロト < 同ト < 三ト</td>

• For every $\gamma \in \Delta_{q+1}$ we define a linear functional

$$c_{\gamma}^* = c_{\gamma}^* \circ i_q : \ell_{\infty}(\Gamma_q) \to \mathbb{R}.$$

• For every $p \leq q$ and $x \in \ell_{\infty}(\Gamma_p)$

$$i_{\rho}(\mathbf{x})(\gamma) = \mathbf{c}^{*}_{\gamma}(i_{\rho}(\mathbf{x})|_{\Gamma_{q}}))$$

• For every $\gamma \in \Delta_{q+1}$ we define a linear functional

$$c_{\gamma}^* = e_{\gamma}^* \circ i_q : \ell_{\infty}(\Gamma_q) \to \mathbb{R}.$$

• For every $p \leq q$ and $x \in \ell_{\infty}(\Gamma_p)$

$$i_{\rho}(\mathbf{x})(\gamma) = \mathbf{c}^{*}_{\gamma}(i_{\rho}(\mathbf{x})|_{\Gamma_{q}}))$$

• For every $\gamma \in \Delta_{q+1}$ we define a linear functional

$$c_{\gamma}^* = e_{\gamma}^* \circ i_q : \ell_{\infty}(\Gamma_q) \to \mathbb{R}.$$

• For every $p \leq q$ and $x \in \ell_{\infty}(\Gamma_p)$

$$i_p(\mathbf{x})(\gamma) = \mathbf{c}^*_{\gamma}(i_q(i_p(\mathbf{x})|_{\Gamma_q}))$$

• For every $\gamma \in \Delta_{q+1}$ we define a linear functional

$$c_{\gamma}^* = e_{\gamma}^* \circ i_q : \ell_{\infty}(\Gamma_q) \to \mathbb{R}.$$

• For every $p \leq q$ and $x \in \ell_{\infty}(\Gamma_p)$

$$i_{\rho}(\mathbf{x})(\gamma) = \mathbf{c}^{*}_{\gamma}(i_{q}(i_{\rho}(\mathbf{x})|_{\Gamma_{q}}))$$

• The space \mathfrak{X} is a $C - \mathcal{L}_{\infty}$ space.

- Setting $F_q = i_q[\ell_{\infty}(\Delta_q)], (F_q)_q$ is an *FDD* for the space \mathfrak{X} .
- In particular, {d_γ : γ ∈ Γ} is a Schauder basis for the space *X*.
- For *I* an interval of \mathbb{N} we denote with P_I the projection with respect to the FDD $(F_q)_q$.

• The space \mathfrak{X} is a $C - \mathcal{L}_{\infty}$ space.

- Setting $F_q = i_q[\ell_{\infty}(\Delta_q)]$, $(F_q)_q$ is an *FDD* for the space \mathfrak{X} .
- In particular, {d_γ : γ ∈ Γ} is a Schauder basis for the space *X*.
- For *I* an interval of \mathbb{N} we denote with P_I the projection with respect to the FDD $(F_q)_q$.

• The space \mathfrak{X} is a $C - \mathcal{L}_{\infty}$ space.

- Setting $F_q = i_q[\ell_{\infty}(\Delta_q)], (F_q)_q$ is an *FDD* for the space \mathfrak{X} .
- In particular, {d_γ : γ ∈ Γ} is a Schauder basis for the space *X*.
- For *I* an interval of \mathbb{N} we denote with P_I the projection with respect to the FDD $(F_q)_q$.

• The space \mathfrak{X} is a $C - \mathcal{L}_{\infty}$ space.

- Setting $F_q = i_q[\ell_{\infty}(\Delta_q)], (F_q)_q$ is an *FDD* for the space \mathfrak{X} .
- In particular, {d_γ : γ ∈ Γ} is a Schauder basis for the space *x*.
- For *I* an interval of \mathbb{N} we denote with P_I the projection with respect to the FDD $(F_q)_q$.

• The space \mathfrak{X} is a $C - \mathcal{L}_{\infty}$ space.

- Setting $F_q = i_q[\ell_{\infty}(\Delta_q)], (F_q)_q$ is an *FDD* for the space \mathfrak{X} .
- In particular, {d_γ : γ ∈ Γ} is a Schauder basis for the space *X*.
- For *I* an interval of \mathbb{N} we denote with P_I the projection with respect to the FDD $(F_q)_q$.

- We denote with e^{*}_γ the evaluation functional restricted on *X*. Then the family {e^{*}_γ : γ ∈ Γ} is equivalent to ℓ₁ basis. Moreover if {d_γ : γ ∈ Γ} is shrinking, then {e^{*}_γ : γ ∈ Γ} generates the dual of *X*.
- The biorthogonals $\{d_{\gamma}^* : \gamma \in \Gamma\}$ are defined as

$$d^*_\gamma = e^*_\gamma - c^*_\gamma.$$

< □ > < 同 > < 回 > < 回 > < 回

- We denote with e^{*}_γ the evaluation functional restricted on *X*. Then the family {e^{*}_γ : γ ∈ Γ} is equivalent to ℓ₁ basis. Moreover if {d_γ : γ ∈ Γ} is shrinking, then {e^{*}_γ : γ ∈ Γ} generates the dual of *X*.
- The biorthogonals {d^{*}_γ : γ ∈ Γ} are defined as

$$d^*_\gamma = e^*_\gamma - c^*_\gamma.$$

(日) (四) (日) (日) (日)

- We denote with e^{*}_γ the evaluation functional restricted on *X*. Then the family {e^{*}_γ : γ ∈ Γ} is equivalent to ℓ₁ basis. Moreover if {d_γ : γ ∈ Γ} is shrinking, then {e^{*}_γ : γ ∈ Γ} generates the dual of *X*.
- The biorthogonals $\{d_{\gamma}^* : \gamma \in \Gamma\}$ are defined as

$$d_{\gamma}^{*}=oldsymbol{e}_{\gamma}^{*}-oldsymbol{c}_{\gamma}^{*}.$$

• For $\gamma \in \Gamma_{n+1} \setminus \Gamma_n$, $e_{\gamma}^* = d_{\gamma}^* + c_{\gamma}^*$ where

$$c_{\gamma}^*: \ell_{\infty}(\Gamma_n) \to \mathbb{R}$$

$$d_{\gamma}^{*}|_{i_{n}(\ell_{\infty}(\Gamma_{n}))}=0$$

• For $\gamma \in \Gamma_{n+1} \setminus \Gamma_n$, $e_{\gamma}^* = d_{\gamma}^* + c_{\gamma}^*$ where

 $c^*_{\gamma}:\ell_{\infty}(\Gamma_n)\to\mathbb{R}$

$$d_{\gamma}^*|_{i_n(\ell_{\infty}(\Gamma_n))}=0$$

• For
$$\gamma \in \Gamma_{n+1} \backslash \Gamma_n$$
, $e_{\gamma}^* = d_{\gamma}^* + c_{\gamma}^*$ where

$$c_{\gamma}^*: \ell_{\infty}(\Gamma_n) \to \mathbb{R}$$

$$d_{\gamma}^{*}|_{i_{n}(\ell_{\infty}(\Gamma_{n}))}=0$$

• For
$$\gamma \in \Gamma_{n+1} \setminus \Gamma_n$$
, $e_{\gamma}^* = d_{\gamma}^* + c_{\gamma}^*$ where

$$c_{\gamma}^*: \ell_{\infty}(\Gamma_n) \to \mathbb{R}$$

$d^*_{\gamma}|_{i_n(\ell_{\infty}(\Gamma_n))} = 0$

• For
$$\gamma \in \Gamma_{n+1} \setminus \Gamma_n$$
, $e_{\gamma}^* = d_{\gamma}^* + c_{\gamma}^*$ where

$$c_{\gamma}^*: \ell_{\infty}(\Gamma_n) \to \mathbb{R}$$

$$d_{\gamma}^*|_{i_n(\ell_{\infty}(\Gamma_n))}=0$$

- We define the functionals {c^{*}_γ : γ ∈ Γ} in a similar manner as the functionals in the norming set of a Mixed Tsirelson spaces.
- We start with two strictly increasing sequences of natural numbers $(m_j)_j$, $(n_j)_j$ which satisfy certain growth conditions. Among others, $\frac{n_j}{m_i} \rightarrow \infty$ and $m_1 \ge 8$.

- We define the functionals {c^{*}_γ : γ ∈ Γ} in a similar manner as the functionals in the norming set of a Mixed Tsirelson spaces.
- We start with two strictly increasing sequences of natural numbers $(m_j)_j$, $(n_j)_j$ which satisfy certain growth conditions. Among others, $\frac{n_j}{m_i} \rightarrow \infty$ and $m_1 \ge 8$.

- We define the functionals {c^{*}_γ : γ ∈ Γ} in a similar manner as the functionals in the norming set of a Mixed Tsirelson spaces.
- We start with two strictly increasing sequences of natural numbers $(m_j)_j$, $(n_j)_j$ which satisfy certain growth conditions. Among others, $\frac{n_j}{m_i} \rightarrow \infty$ and $m_1 \ge 8$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

• There are three types of functionals.

• Let
$$\gamma \in \Delta_{q+1}$$
.
(1)
 $c_{\gamma}^{*} = 0$
Then $w(\gamma) = 0, \ a(\gamma) = 0$.
(2)
 $c_{\gamma}^{*} = \frac{1}{m_{j}}e_{\xi}^{*} \circ P_{l}$
Then $w(\gamma) = m_{j}, \ a(\gamma) = 1$.
(3)
 $c_{\gamma}^{*} = e_{\eta}^{*} + \frac{1}{m_{j}}e_{\xi}^{*} \circ P_{l}$
Then $w(\gamma) = m_{j}, \ a(\gamma) = a(\eta) + 1 \leq n_{j}$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

• There are three types of functionals.

• Let
$$\gamma \in \Delta_{q+1}$$
.
(1)
 $c_{\gamma}^{*} = 0$
Then $w(\gamma) = 0, \ a(\gamma) = 0$.
(2)
 $c_{\gamma}^{*} = \frac{1}{m_{j}} e_{\xi}^{*} \circ P_{l}$
Then $w(\gamma) = m_{j}, \ a(\gamma) = 1$.
(3)
 $c_{\gamma}^{*} = e_{\eta}^{*} + \frac{1}{m_{j}} e_{\xi}^{*} \circ P_{l}$
Then $w(\gamma) = m_{j}, \ a(\gamma) = a(\eta) + 1 \leq n_{j}$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

• There are three types of functionals.

• Let
$$\gamma \in \Delta_{q+1}$$
.
(1)
Then $w(\gamma) = 0, \ a(\gamma) = 0$.
(2)

$$m{c}_{\gamma}^{*}=rac{1}{m_{j}}m{e}_{\xi}^{*}\circm{P}_{I}$$

Then $w(\gamma) = m_j, a(\gamma) = 1.$

(3)

$$c^*_{\gamma} = e^*_{\eta} + \frac{1}{m_j} e^*_{\xi} \circ P_l$$

Then $w(\gamma) = m_j, \ a(\gamma) = a(\eta) + 1 \leqslant n_j.$

Mixed Tsirelson \mathcal{L}_{∞} spaces

• There are three types of functionals.

• Let
$$\gamma \in \Delta_{q+1}$$
.
(1)
 $c_{\gamma}^{*} = 0$
Then $w(\gamma) = 0, \ a(\gamma) = 0.$
(2)
 $c_{\gamma}^{*} = \frac{1}{m_{j}}e_{\xi}^{*} \circ P_{l}$
Then $w(\gamma) = m_{j}, \ a(\gamma) = 1.$
(3)
 $c_{\gamma}^{*} = e_{\eta}^{*} + \frac{1}{m_{j}}e_{\xi}^{*} \circ P_{l}$
Then $w(\gamma) = m_{j}, \ a(\gamma) = a(\eta) + 1 \leq n_{j}.$

Mixed Tsirelson \mathcal{L}_{∞} spaces

• There are three types of functionals.

• Let
$$\gamma \in \Delta_{q+1}$$
.
(1)
 $c_{\gamma}^{*} = 0$
Then $w(\gamma) = 0, \ a(\gamma) = 0$.
(2)
 $c_{\gamma}^{*} = \frac{1}{m_{j}}e_{\xi}^{*} \circ P_{l}$
Then $w(\gamma) = m_{j}, \ a(\gamma) = 1$.
(3)

Then $w(\gamma) = m_j$, $a(\gamma) = a(\eta) + 1 \leq n_j$

Mixed Tsirelson \mathcal{L}_{∞} spaces

• There are three types of functionals.

• Let
$$\gamma \in \Delta_{q+1}$$
.
(1)
 $c_{\gamma}^{*} = 0$
Then $w(\gamma) = 0, \ a(\gamma) = 0$.
(2)
 $c_{\gamma}^{*} = \frac{1}{m_{j}}e_{\xi}^{*} \circ P_{I}$
Then $w(\gamma) = m_{j}, \ a(\gamma) = 1$.
(3)
 $c_{\gamma}^{*} = e_{\eta}^{*} + \frac{1}{m_{j}}e_{\xi}^{*} \circ P_{I}$
Then $w(\gamma) = m_{j}, \ a(\gamma) = a(\eta) + 1 \leq n_{j}$.

The evaluation analysis of e_{γ}^*

$$e_{\gamma}^{*} = \frac{1}{m_{j}}\sum_{i=1}^{k} e_{\xi_{i}}^{*} \circ P_{l_{i}} + \sum_{i=1}^{k} d_{\eta_{i}}^{*}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─ のへぐ

The evaluation analysis of e_{γ}^*

$$\frac{\xi_{1}}{\bigcup_{\ell \in I_{1}} \Delta_{\ell}} \stackrel{\eta_{1}}{\cdot} \frac{\xi_{2}}{\bigcup_{\ell \in I_{2}} \Delta_{\ell}} \stackrel{\eta_{2}}{\cdot} \frac{\xi_{k}}{\bigcup_{\ell \in I_{k}} \Delta_{\ell}} \stackrel{\eta_{k} = \gamma}{\cdot} \frac{\xi_{k}}{\bigcup_{\ell \in I_{k}} \Delta_{\ell}}$$

• For $\gamma \in \Delta_{q+1}$ with $w(\gamma) = \frac{1}{m_{j}}$ and $\alpha(\gamma) = k \leq n_{j}$, there exist $\xi_{1}, \xi_{2}, \ldots, \xi_{k}, \eta_{1}, \eta_{2}, \ldots, \eta_{k}$ and $I_{1}, I_{2}, \ldots, I_{k}$ such that

$$oldsymbol{e}_{\gamma}^{*}=rac{1}{m_{j}}\sum_{i=1}^{K}oldsymbol{e}_{\xi_{i}}^{*}\circ oldsymbol{P}_{I_{i}}+\sum_{i=1}^{K}oldsymbol{d}_{\eta_{i}}^{*}.$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

- The mixed Tsirelson BD-L_∞ space is defined by induction by setting Δ₁ = Γ₁ = {γ₁} with w(γ₁).
- Assuming that Δ₁,..., Δ_q have been defined, Δ_{q+1} is defined by taking all possible φ ∈ ℓ₁(Γ_q) of the previous form with w(φ) = m_j, j ≤ q + 1.

◆□ → ◆◎ → ◆臣 → ◆臣 → ○

• It is shown that the extensions operators $i_q : \ell_{\infty}(\Gamma_q) \to \ell_{\infty}(\Gamma)$ satisfy $||i_q|| \le 1 + 8/m_1$

- The mixed Tsirelson BD-L_∞ space is defined by induction by setting Δ₁ = Γ₁ = {γ₁} with w(γ₁).
- Assuming that Δ₁,..., Δ_q have been defined, Δ_{q+1} is defined by taking all possible φ ∈ ℓ₁(Γ_q) of the previous form with w(φ) = m_j, j ≤ q + 1.

・ロン・西方・ ・ ヨン・ ヨン・

• It is shown that the extensions operators $i_q : \ell_{\infty}(\Gamma_q) \to \ell_{\infty}(\Gamma)$ satisfy $||i_q|| \le 1 + 8/m_1$

- The mixed Tsirelson BD-L_∞ space is defined by induction by setting Δ₁ = Γ₁ = {γ₁} with w(γ₁).
- Assuming that Δ₁,..., Δ_q have been defined, Δ_{q+1} is defined by taking all possible φ ∈ ℓ₁(Γ_q) of the previous form with w(φ) = m_i, j ≤ q + 1.

<ロ> <問> <問> < E> < E> < E> < E

• It is shown that the extensions operators $i_q : \ell_{\infty}(\Gamma_q) \to \ell_{\infty}(\Gamma)$ satisfy $||i_q|| \le 1 + 8/m_1$

- The mixed Tsirelson BD-L_∞ space is defined by induction by setting Δ₁ = Γ₁ = {γ₁} with w(γ₁).
- Assuming that Δ₁,..., Δ_q have been defined, Δ_{q+1} is defined by taking all possible φ ∈ ℓ₁(Γ_q) of the previous form with w(φ) = m_i, j ≤ q + 1.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

It is shown that the extensions operators
 i_q : ℓ_∞(Γ_q) → ℓ_∞(Γ) satisfy ||*i_q*|| ≤ 1 + 8/*m*₁.

The mixed Tsirelson BD- \mathcal{L}_{∞} space \mathfrak{X} = has separable dual and does not contain c_0 or ℓ_p for $1 . Every skipped block sequence with respect to the FDD <math>\{i_q(\ell_{\infty}(\Delta_q))\}_{n=0}^{\infty}$ generates a reflexive subspace. Hence, every skipped block sequence does not generate a \mathcal{L}_{∞} space.

The mixed Tsirelson BD- \mathcal{L}_{∞} space \mathfrak{X} = has separable dual and does not contain c_0 or ℓ_p for $1 . Every skipped block sequence with respect to the FDD <math>\{i_q(\ell_{\infty}(\Delta_q))\}_{n=0}^{\infty}$ generates a reflexive subspace. Hence, every skipped block sequence does not generate a \mathcal{L}_{∞} space.

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $(d_n)_n$ such that for every infinite subset *L* of \mathbb{N} the subspace $\mathfrak{X}_L = \overline{\langle d_n : n \in L \rangle}$ contains a \mathcal{L}_{∞} space.

Theorem (A first Step)

There exists a Mixed Tsirelson BD \mathcal{L}_{∞} space not containing c_0 or ℓ_p for $1 \leq p < \infty$ and a skipped block basis that that generates a \mathcal{L}_{∞} space.

• The definition of this space requires a modification of the previous techniques.

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $(d_n)_n$ such that for every infinite subset *L* of \mathbb{N} the subspace $\mathfrak{X}_L = \overline{\langle d_n : n \in L \rangle}$ contains a \mathcal{L}_{∞} space.

Theorem (A first Step)

There exists a Mixed Tsirelson BD \mathcal{L}_{∞} space not containing c_0 or ℓ_p for $1 \leq p < \infty$ and a skipped block basis that that generates a \mathcal{L}_{∞} space.

• The definition of this space requires a modification of the previous techniques.

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $(d_n)_n$ such that for every infinite subset *L* of \mathbb{N} the subspace $\mathfrak{X}_L = \overline{\langle d_n : n \in L \rangle}$ contains a \mathcal{L}_{∞} space.

Theorem (A first Step)

There exists a Mixed Tsirelson BD \mathcal{L}_{∞} space not containing c_0 or ℓ_p for $1 \leq p < \infty$ and a skipped block basis that that generates a \mathcal{L}_{∞} space.

• The definition of this space requires a modification of the previous techniques.

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $(d_n)_n$ such that for every infinite subset *L* of \mathbb{N} the subspace $\mathfrak{X}_L = \overline{\langle d_n : n \in L \rangle}$ contains a \mathcal{L}_{∞} space.

Theorem (A first Step)

There exists a Mixed Tsirelson BD \mathcal{L}_{∞} space not containing c_0 or ℓ_p for $1 \leq p < \infty$ and a skipped block basis that that generates a \mathcal{L}_{∞} space.

 The definition of this space requires a modification of the previous techniques.

- How to create a BD \mathcal{L}_{∞} space with a Schauder basis $(d_n)_n$ and a block sequence $(x_k)_k$ such that $\overline{\langle x_k : k \in \mathbb{N} \rangle}$ is also a \mathcal{L}_{∞} space.
- We start with a sequence of parameters $(m_i, n_j)_i$ as before.
- For define a set Γ = ∪[∞]_{n=1}Δ_q such that each Δ_q = {γ} and if γ ∈ Δ_{2q-1} then

 $w(\gamma) = \mathbf{0} \Leftrightarrow \mathbf{C}^*_{\gamma} = \mathbf{0}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- How to create a BD \mathcal{L}_{∞} space with a Schauder basis $(d_n)_n$ and a block sequence $(x_k)_k$ such that $\overline{\langle x_k : k \in \mathbb{N} \rangle}$ is also a \mathcal{L}_{∞} space.
- We start with a sequence of parameters $(m_i, n_j)_i$ as before.
- For define a set Γ = ∪[∞]_{n=1}Δ_q such that each Δ_q = {γ} and if γ ∈ Δ_{2q-1} then

 $w(\gamma) = \mathbf{0} \Leftrightarrow \mathbf{C}^*_{\gamma} = \mathbf{0}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- How to create a BD \mathcal{L}_{∞} space with a Schauder basis $(d_n)_n$ and a block sequence $(x_k)_k$ such that $\overline{\langle x_k : k \in \mathbb{N} \rangle}$ is also a \mathcal{L}_{∞} space.
- We start with a sequence of parameters $(m_i, n_j)_i$ as before.
- For define a set Γ = ∪[∞]_{n=1}Δ_q such that each Δ_q = {γ} and if γ ∈ Δ_{2q-1} then

 $w(\gamma) = \mathbf{0} \Leftrightarrow \mathbf{C}^*_{\gamma} = \mathbf{0}.$

- How to create a BD \mathcal{L}_{∞} space with a Schauder basis $(d_n)_n$ and a block sequence $(x_k)_k$ such that $\overline{\langle x_k : k \in \mathbb{N} \rangle}$ is also a \mathcal{L}_{∞} space.
- We start with a sequence of parameters $(m_i, n_j)_i$ as before.
- For define a set Γ = ∪[∞]_{n=1}Δ_q such that each Δ_q = {γ} and if γ ∈ Δ_{2q-1} then

 $w(\gamma) = \mathbf{0} \Leftrightarrow \mathbf{c}^*_{\gamma} = \mathbf{0}.$

- If $\gamma \in \Delta_{2q}$ then $w(\gamma) = (m_{2i}, m_{2j_1-1}, \dots, m_{2j_k-1})$, where
- $2i \leq 2q$,
- $1 \leq k \leq n_{2i}, m_{2j_k-1}$ is determined by $(m_{2i-1}, \dots, m_{2j_{k-1}-1})$.
- In this case we say that γ has multiple weight and m_{2i} is called its primitive weight.

- If $\gamma \in \Delta_{2q}$ then $w(\gamma) = (m_{2i}, m_{2j_1-1}, \dots, m_{2j_k-1})$, where • $2i \leq 2q$,
- $1 \leq k \leq n_{2i}, m_{2j_k-1}$ is determined by $(m_{2i-1}, \dots, m_{2j_{k-1}-1})$.
- In this case we say that γ has multiple weight and m_{2i} is called its primitive weight.

- If $\gamma \in \Delta_{2q}$ then $w(\gamma) = (m_{2i}, m_{2j_1-1}, \dots, m_{2j_k-1})$, where • $2i \leq 2q$,
- $1 \leq k \leq n_{2i}, m_{2j_k-1}$ is determined by $(m_{2i-1}, \dots, m_{2j_{k-1}-1})$.
- In this case we say that γ has multiple weight and m_{2i} is called its primitive weight.

- If $\gamma \in \Delta_{2q}$ then $w(\gamma) = (m_{2i}, m_{2j_1-1}, \dots, m_{2j_k-1})$, where
- $2i \leq 2q$,
- $1 \leq k \leq n_{2i}, m_{2j_k-1}$ is determined by $(m_{2i-1}, \dots, m_{2j_{k-1}-1})$.
- In this case we say that γ has multiple weight and m_{2i} is called its primitive weight.

- If $\gamma \in \Delta_{2q}$ then $w(\gamma) = (m_{2i}, m_{2j_1-1}, \dots, m_{2j_k-1})$, where
- $2i \leq 2q$,
- $1 \leq k \leq n_{2i}, m_{2j_k-1}$ is determined by $(m_{2i-1}, \dots, m_{2j_{k-1}-1})$.
- In this case we say that γ has multiple weight and m_{2i} is called its primitive weight.

- The idea in the use of the multiple weights is to succeed that the γ which codes c^{*}_γ, at the same time norms a block vector.
- How to define a η with multiple weights $w(\eta)$, starting with γ with $w(\gamma) = (m_{2i}, m_{2j_1-1}, \dots, m_{2j_{\ell}-1})$:

★週 ▶ ★ 国 ▶ ★ 国 ▶ .

- The idea in the use of the multiple weights is to succeed that the *γ* which codes *c*^{*}_γ, at the same time norms a block vector.
- How to define a η with multiple weights $w(\eta)$, starting with γ with $w(\gamma) = (m_{2i}, m_{2j_1-1}, \dots, m_{2j_\ell-1})$:

・ロト ・聞 と ・ ヨ と ・ ヨ と …

- The idea in the use of the multiple weights is to succeed that the γ which codes c^{*}_γ, at the same time norms a block vector.
- How to define a η with multiple weights $w(\eta)$, starting with γ with $w(\gamma) = (m_{2i}, m_{2j_1-1}, \dots, m_{2j_{\ell}-1})$:

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- The idea in the use of the multiple weights is to succeed that the γ which codes c^{*}_γ, at the same time norms a block vector.
- How to define a η with multiple weights $w(\eta)$, starting with γ with $w(\gamma) = (m_{2i}, m_{2j_1-1}, \dots, m_{2j_\ell-1})$:

<ロ> <問> <問> < E> < E> < E> < E

- We inductively define θ₁, η₁, θ₂, η₂, ..., θ<sub>n_{2j_{ℓ+1}-1}, η<sub>n_{2j_{ℓ+1}-1}
 with w(θ_i) = 0 for all *i* and
 </sub></sub>
- $c_{\eta_i}^* = (1/n_{2j_{\ell+1}-1}) \left(e_{\gamma}^* + \frac{1}{m_{2i}} e_{\xi}^* \circ P_I \right) + e_{\eta_{i-1}}^* + (1/m_{2j_{\ell+1}-1}) e_{\theta_i}^*.$
- The $\eta_{n_{2j_{\ell+1}-1}} = \eta$ norms the following vector:

$$x_{\eta} = \frac{m_{2j_{\ell+1}-1}}{n_{2j_{\ell+1}-1}} \sum_{i=1}^{n_{2j_{\ell+1}-1}} d_{\theta_i},$$

- We inductively define θ₁, η₁, θ₂, η₂, ..., θ<sub>n_{2j_{ℓ+1}-1}, η<sub>n_{2j_{ℓ+1}-1}
 with w(θ_i) = 0 for all *i* and
 </sub></sub>
- $c_{\eta_i}^* = (1/n_{2j_{\ell+1}-1}) \left(e_{\gamma}^* + \frac{1}{m_{2i}} e_{\xi}^* \circ P_I \right) + e_{\eta_{i-1}}^* + (1/m_{2j_{\ell+1}-1}) e_{\theta_i}^*.$ • The $\eta_{n_{2j_{\ell+1}-1}} = \eta$ norms the following vector:

$$x_{\eta} = \frac{m_{2j_{\ell+1}-1}}{n_{2j_{\ell+1}-1}} \sum_{j=1}^{n_{2j_{\ell+1}-1}} d_{\theta_{j}},$$

- We inductively define $\theta_1, \eta_1, \theta_2, \eta_2, \dots, \theta_{n_{2j_{\ell+1}-1}}, \eta_{n_{2j_{\ell+1}-1}}$ with $w(\theta_i) = 0$ for all *i* and
- $c_{\eta_i}^* = (1/n_{2j_{\ell+1}-1}) \left(e_{\gamma}^* + \frac{1}{m_{2i}} e_{\xi}^* \circ P_I \right) + e_{\eta_{i-1}}^* + (1/m_{2j_{\ell+1}-1}) e_{\theta_i}^*.$

• The $\eta_{n_{2j_{\ell+1}-1}} = \eta$ norms the following vector:

$$x_{\eta} = \frac{m_{2j_{\ell+1}-1}}{n_{2j_{\ell+1}-1}} \sum_{j=1}^{n_{2j_{\ell+1}-1}} d_{\theta_j},$$

• We inductively define $\theta_1, \eta_1, \theta_2, \eta_2, \dots, \theta_{n_{2j_{\ell+1}-1}}, \eta_{n_{2j_{\ell+1}-1}}$ with $w(\theta_i) = 0$ for all *i* and

•
$$c_{\eta_i}^* = (1/n_{2j_{\ell+1}-1}) \left(e_{\gamma}^* + \frac{1}{m_{2i}} e_{\xi}^* \circ P_I \right) + e_{\eta_{i-1}}^* + (1/m_{2j_{\ell+1}-1}) e_{\theta_i}^*.$$

• The $\eta_{n_{2j_{\ell+1}-1}} = \eta$ norms the following vector:

$$x_{\eta} = \frac{m_{2j_{\ell+1}-1}}{n_{2j_{\ell+1}-1}} \sum_{i=1}^{n_{2j_{\ell+1}-1}} d_{\theta_i},$$

• We inductively define $\theta_1, \eta_1, \theta_2, \eta_2, \dots, \theta_{n_{2j_{\ell+1}-1}}, \eta_{n_{2j_{\ell+1}-1}}$ with $w(\theta_i) = 0$ for all *i* and

•
$$c_{\eta_i}^* = (1/n_{2j_{\ell+1}-1}) \left(e_{\gamma}^* + \frac{1}{m_{2i}} e_{\xi}^* \circ P_I \right) + e_{\eta_{i-1}}^* + (1/m_{2j_{\ell+1}-1}) e_{\theta_i}^*.$$

• The $\eta_{n_{2j_{\ell+1}-1}} = \eta$ norms the following vector:

$$x_{\eta} = \frac{m_{2j_{\ell+1}-1}}{n_{2j_{\ell+1}-1}} \sum_{i=1}^{n_{2j_{\ell+1}-1}} d_{\theta_i},$$

• We inductively define $\theta_1, \eta_1, \theta_2, \eta_2, \dots, \theta_{n_{2j_{\ell+1}-1}}, \eta_{n_{2j_{\ell+1}-1}}$ with $w(\theta_i) = 0$ for all *i* and

•
$$c_{\eta_i}^* = (1/n_{2j_{\ell+1}-1}) \left(e_{\gamma}^* + \frac{1}{m_{2i}} e_{\xi}^* \circ P_I \right) + e_{\eta_{i-1}}^* + (1/m_{2j_{\ell+1}-1}) e_{\theta_i}^*.$$

• The $\eta_{n_{2j_{\ell+1}-1}} = \eta$ norms the following vector:

$$x_{\eta} = \frac{m_{2j_{\ell+1}-1}}{n_{2j_{\ell+1}-1}} \sum_{i=1}^{n_{2j_{\ell+1}-1}} d_{\theta_i},$$

• The construction yields that the family

$\{x_{\eta}: \eta \text{ of multiple weight}\}$

・ロト ・回ト ・ヨト ・

- defines a skipped block sequence and the space generated by this sequence is normed by the multiple weight γ's.
- In particular, this space is a \mathcal{L}_{∞} space.

• The construction yields that the family

{ x_η : η of multiple weight}

・ロト ・日下・ ・ ヨト・

- defines a skipped block sequence and the space generated by this sequence is normed by the multiple weight γ's.
- In particular, this space is a \mathcal{L}_{∞} space.

The construction yields that the family

$\{x_{\eta}: \eta \text{ of multiple weight}\}$

- defines a skipped block sequence and the space generated by this sequence is normed by the multiple weight γ's.
- In particular, this space is a \mathcal{L}_{∞} space.

The construction yields that the family

{ x_η : η of multiple weight}

- defines a skipped block sequence and the space generated by this sequence is normed by the multiple weight γ's.
- In particular, this space is a \mathcal{L}_{∞} space.

The construction yields that the family

{ x_η : η of multiple weight}

- defines a skipped block sequence and the space generated by this sequence is normed by the multiple weight γ's.
- In particular, this space is a \mathcal{L}_{∞} space.