Banach spaces with rich \mathcal{L}_{∞} structure

Spiros A. Argyros

Department of Mathematics
National Technical University of Athens
Athens, Greece

First Brazilian Workshop in Geometry of Banach spaces Maresias, August 2014

- A separable space X is a \mathcal{L}_{∞} space, if there exists a constant $C>0$ and an increasing sequence of finite dimensional spaces $\left(F_{n}\right)_{n}$ such that each F_{n} is C-isomorphic to $\ell_{\infty}\left(\operatorname{dimF} F_{n}\right)$ and $\overline{\cup_{n} F_{n}}=X$.
- (Lewis - Stegall) If X is a separable \mathcal{L}_{∞} space then $X^{*} \simeq \ell_{1}$ or $X^{*} \simeq M[0,1]$.
- (Pelczynski) If X^{*} is non-separable then X isomorphically contains ℓ_{1}.
- A separable space X is a \mathcal{L}_{∞} space, if there exists a constant $C>0$ and an increasing sequence of finite dimensional spaces $\left(F_{n}\right)_{n}$ such that each F_{n} is
C-isomorphic to $\ell_{\infty}\left(d i m F_{n}\right)$ and $\overline{\cup_{n} F_{n}}=X$.

- (Pelczynski) If X^{*} is non-separable then X isomorphically contains ℓ_{1}
- A separable space X is a \mathcal{L}_{∞} space, if there exists a constant $C>0$ and an increasing sequence of finite dimensional spaces $\left(F_{n}\right)_{n}$ such that each F_{n} is C-isomorphic to $\ell_{\infty}\left(\operatorname{dim} F_{n}\right)$ and $\overline{\cup_{n} F_{n}}=X$.
- (Lewis - Stegall) If X is a separable \mathcal{L}_{∞} space then $X^{*} \simeq \ell_{1}$ or $X^{*} \simeq M[0,1]$.
- (Pelczynski) If X^{*} is non-separable then X isomorphically
contains ℓ_{1}
- A separable space X is a \mathcal{L}_{∞} space, if there exists a constant $C>0$ and an increasing sequence of finite dimensional spaces $\left(F_{n}\right)_{n}$ such that each F_{n} is C-isomorphic to $\ell_{\infty}\left(\operatorname{dimF} F_{n}\right)$ and $\overline{\cup_{n} F_{n}}=X$.
- (Lewis - Stegall) If X is a separable \mathcal{L}_{∞} space then $X^{*} \simeq \ell_{1}$ or $X^{*} \simeq M[0,1]$.
- (Pelczynski) If X^{*} is non-separable then X isomorphically contains ℓ_{1}.
- In 1980 J. Bourgain and F. Delbaen constructed the first \mathcal{L}_{∞} space not containing c_{0}.
- Bourgain-Delbaen method was a critical ingredient for the solution of the "scalar-plus-compact" problem.
- In 1980 J. Bourgain and F. Delbaen constructed the first \mathcal{L}_{∞} space not containing c_{0}.
- Bourgain-Delbaen method was a critical ingredient for the solution of the "scalar-plus-compact" problem.
- In 1980 J. Bourgain and F. Delbaen constructed the first \mathcal{L}_{∞} space not containing c_{0}.
- Bourgain-Delbaen method was a critical ingredient for the solution of the "scalar-plus-compact" problem.

Theorem (S. A., R. Haydon 2011)

There exists a \mathcal{L}_{∞} Hereditarily Indecomposable Banach space \mathfrak{X}_{K} such that \mathfrak{X}_{K}^{*} is isomorphic to $\ell_{1}(\mathbb{N})$ and every $T: \mathfrak{X}_{K} \rightarrow \mathfrak{X}_{K}$ is of the form $T=\lambda I+K$ with K a compact operator.

- This is the first example of a Banach space X such that every operator $T \in \mathcal{L}(X)$ admits a non trivial closed invariant subspace.

Theorem (S. A., R. Haydon 2011)

There exists a \mathcal{L}_{∞} Hereditarily Indecomposable Banach space \mathfrak{X}_{K} such that \mathfrak{X}_{K}^{*} is isomorphic to $\ell_{1}(\mathbb{N})$ and every $T: \mathfrak{X}_{K} \rightarrow \mathfrak{X}_{K}$ is of the form $T=\lambda I+K$ with K a compact operator.

- This is the first example of a Banach space X such that every operator $T \in \mathcal{L}(X)$ admits a non trivial closed invariant subspace.

Problem

Does there exist a separable Banach space X with the hereditary "scalar-plus-compact" property? i.e. for every Y closed subspace of \mathfrak{X} every operator $T \in \mathcal{L}(Y, \mathfrak{X})$ is of the form $T=\lambda I_{Y, \mathfrak{X}}+K$ with $K \in \mathcal{K}(Y, \mathfrak{X})$.

Problem (weaker version)

Does there exists \mathfrak{X} saturated by infinite dimensional closed subspaces each one satisfying the "scalar-plus-compact" property?

Problem

Does there exist a separable Banach space \mathfrak{X} with the hereditary "scalar-plus-compact" property? i.e. for every Y closed subspace of \mathfrak{X} every operator $T \in \mathcal{L}(Y, \mathfrak{X})$ is of the form $T=\lambda I_{Y, \mathfrak{X}}+K$ with $K \in \mathcal{K}(Y, \mathfrak{X})$.

Problem (weaker version)

Does there exists $\mathfrak{¥}$ saturated by infinite dimensional closed
subspaces each one satisfying the "scalar-plus-compact"
property?

Problem

Does there exist a separable Banach space \mathfrak{X} with the hereditary "scalar-plus-compact" property? i.e. for every Y closed subspace of \mathfrak{X} every operator $T \in \mathcal{L}(Y, \mathfrak{X})$ is of the form $T=\lambda I_{Y, \mathfrak{X}}+K$ with $K \in \mathcal{K}(Y, \mathfrak{X})$.

Problem (weaker version)

Does there exists \mathfrak{X} saturated by infinite dimensional closed subspaces each one satisfying the "scalar-plus-compact" property?

Problem (Ramsey Property for " $s+c$ ")

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace Y of \mathfrak{X} such that either:

Problem (weaker version)

Assuming that the space \mathfrak{X} has a Schauder basis, what is the answer to the above for the class of all block subspaces of \mathfrak{X}.

Problem (Ramsey Property for " $s+c$ ")

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace Y of \mathfrak{X} such that either:

- Every further subspace of Y satisfies the "scalar-plus-compact" property.
or
- Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)

Assuming that the space \mathfrak{X} has a Schauder basis, what is the answer to the above for the class of all block subspaces of \mathfrak{X}

Problem (Ramsey Property for "s + c")

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace Y of \mathfrak{X} such that either:

- Every further subspace of Y satisfies the "scalar-plus-compact" property.
- Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)
Assuming that the space \mathfrak{X} has a Schauder basis, what is the answer to the above for the class of all block subspaces of \mathfrak{X}.

Problem (Ramsey Property for " $s+c$ ")

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace Y of \mathfrak{X} such that either:

- Every further subspace of Y satisfies the "scalar-plus-compact" property.
or
- Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)

Assuming that the space \ddot{x} has a Schauder basis, what is the answer to the above for the class of all block subspaces of \mathfrak{X}.

Problem (Ramsey Property for " $s+c$ ")

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace Y of \mathfrak{X} such that either:

- Every further subspace of Y satisfies the "scalar-plus-compact" property.
or
- Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)

Assuming that the space \mathfrak{x} has a Schauder basis, what is the answer to the above for the class of all block subspaces of \mathfrak{X}.

Problem (Ramsey Property for " $s+c$ ")

Let \mathfrak{X} be a separable Banach space. Does there exist an infinite dimensional closed subspace Y of \mathfrak{X} such that either:

- Every further subspace of Y satisfies the "scalar-plus-compact" property.
or
- Every infinite dimensional closed subspace of Y does not satisfy the "scalar-plus-compact" property.

Problem (weaker version)

Assuming that the space \mathfrak{X} has a Schauder basis, what is the answer to the above for the class of all block subspaces of \mathfrak{X}.

Problem

Does there exists a reflexive Banach space X with the "scalar-plus-compact" property?

Problem

Does there exists a reflexive Banach space \mathfrak{X} with the "scalar-plus-compact" property?

A reflexive space with ISP

Theorem (S.A, Pavlos Motakis, Proc.LMS (2014))

There exists a reflexive HI Banach space $\mathfrak{X}_{\text {Isp }}$ satisfying the following:

- Every Banach space satisfying (i) and (ii), also satisfies the hereditary Invariant Subspace Property (i.e. for every infinite dimensional closed subspace Y of $\mathfrak{X}_{\text {ISP }}$ and every operator $T \in \mathcal{L}(Y)$ admits a non trivial closed invariant subspace).

A reflexive space with ISP

Theorem (S.A, Pavlos Motakis, Proc.LMS (2014))

There exists a reflexive HI Banach space $\mathfrak{X}_{\text {ISP }}$ satisfying the following:
(i) For every Y closed subspace of $\mathfrak{X}_{I S P}$, every $T \in \mathcal{L}(Y)$ is of the form $T=\lambda I+S$, with S strictly singular.

(ii) For every Y and $Q, S, T: Y \rightarrow Y$ strictly singular operators, the

 composition QST is a compact one.- Every Banach space satisfying (i) and (ii), also satisfies the hereditary Invariant Subspace Property (i.e. for every infinite dimensional closed subspace Y of $\mathfrak{X}_{I S p}$ and every operator $T \in \mathcal{L}(Y)$ admits a non trivial closed invariant subspace).

A reflexive space with ISP

Theorem (S.A, Pavlos Motakis, Proc.LMS (2014))

There exists a reflexive HI Banach space $\mathfrak{X}_{I S P}$ satisfying the following:
(i) For every Y closed subspace of $\mathfrak{X}_{\text {ISP }}$, every $T \in \mathcal{L}(Y)$ is of the form $T=\lambda I+S$, with S strictly singular.
(ii) For every Y and $Q, S, T: Y \rightarrow Y$ strictly singular operators, the composition QST is a compact one.

- Every Banach space satisfying (i) and (ii), also satisfies the hereditary Invariant Subspace Property (i.e. for every infinite dimensional closed subspace Y of $\mathfrak{X}_{\text {ISP }}$ and every operator $T \in \mathcal{L}(Y)$ admits a non trivial closed invariant subspace)

A reflexive space with ISP

Theorem (S.A, Pavlos Motakis, Proc.LMS (2014))

There exists a reflexive HI Banach space $\mathfrak{X}_{I S P}$ satisfying the following:
(i) For every Y closed subspace of $\mathfrak{X}_{\text {ISP }}$, every $T \in \mathcal{L}(Y)$ is of the form $T=\lambda I+S$, with S strictly singular.
(ii) For every Y and $Q, S, T: Y \rightarrow Y$ strictly singular operators, the composition QST is a compact one.

- Every Banach space satisfying (i) and (ii), also satisfies the hereditary Invariant Subspace Property (i.e. for every infinite dimensional closed subspace Y of $\mathfrak{X}_{\text {ISP }}$ and every operator $T \in \mathcal{L}(Y)$ admits a non trivial closed invariant subspace)

A reflexive space with ISP

Theorem (S.A, Pavlos Motakis, Proc.LMS (2014))

There exists a reflexive HI Banach space $\mathfrak{X}_{I S P}$ satisfying the following:
(i) For every Y closed subspace of $\mathfrak{X}_{\text {ISP }}$, every $T \in \mathcal{L}(Y)$ is of the form $T=\lambda I+S$, with S strictly singular.
(ii) For every Y and $Q, S, T: Y \rightarrow Y$ strictly singular operators, the composition QST is a compact one.

- Every Banach space satisfying (i) and (ii), also satisfies the hereditary Invariant Subspace Property (i.e. for every infinite dimensional closed subspace Y of $\mathfrak{X}_{\text {ISP }}$ and every operator $T \in \mathcal{L}(Y)$ admits a non trivial closed invariant subspace).

Rosenthal's Problem

- A Banach space X is said to be \mathcal{L}_{∞} saturated if every closed infinite dimension subspace Y of X contains a further subspace which is an \mathcal{L}_{∞} space.
- The known examples of \mathcal{L}_{∞} saturated Banach spaces are the classical ones, namely the space c_{0} and the spaces $C(\alpha)$ where α is an infinite ordinal number with the usual order topology.
- A Banach space X is said to be \mathcal{L}_{∞} saturated if every closed infinite dimension subspace Y of X contains a further subspace which is an \mathcal{L}_{∞} space.
- The known examples of \mathcal{L}_{∞} saturated Banach spaces are the classical ones, namely the space c_{0} and the spaces $C(\alpha)$ where α is an infinite ordinal number with the usual order topology.
- A Banach space X is said to be \mathcal{L}_{∞} saturated if every closed infinite dimension subspace Y of X contains a further subspace which is an \mathcal{L}_{∞} space.
- The known examples of \mathcal{L}_{∞} saturated Banach spaces are the classical ones, namely the space c_{0} and the spaces $C(\alpha)$ where α is an infinite ordinal number with the usual order topology.

Rosenthal's Problem

Problem

Does there exist a Banach space X which is \mathcal{L}_{∞} saturated and does not contain a subspace isomorphic to c_{0} ?

- The problem was stated by H.P. Rosenthal in the 80's and in particular he was interested for a negative answer.
- If such a space exists then passing to a subspace we may assume that a \mathcal{L}_{∞} space exists which is \mathcal{L}_{∞} saturated and does not contain c_{0}.
- Any \mathcal{L}_{∞} space which is \mathcal{L}_{∞} saturated has separable dual. Moreover, if it does not contain c_{0} then it does not contain unconditional basic sequences. Hence, by Gowers
Dichotomy it contains an HI subspace.

Rosenthal's Problem

Problem

Does there exist a Banach space X which is \mathcal{L}_{∞} saturated and does not contain a subspace isomorphic to c_{0} ?

- The problem was stated by H.P. Rosenthal in the 80's and in particular he was interested for a negative answer.
- If such a space exists then passing to a subspace we may assume that a \mathcal{L}_{∞} space exists which is \mathcal{L}_{∞} saturated and does not contain c_{0}.
- Any \mathcal{L}_{∞} space which is \mathcal{L}_{∞} saturated has separable dual. Moreover, if it does not contain c_{0} then it does not contain unconditional basic sequences. Hence, by Gowers Dichotomy it contains an HI subspace.

Rosenthal's Problem

Problem

Does there exist a Banach space X which is \mathcal{L}_{∞} saturated and does not contain a subspace isomorphic to c_{0} ?

- The problem was stated by H.P. Rosenthal in the 80's and in particular he was interested for a negative answer.
- If such a space exists then passing to a subspace we may assume that a \mathcal{L}_{∞} space exists which is \mathcal{L}_{∞} saturated and does not contain c_{0}.
- Any \mathcal{L}_{∞} space which is \mathcal{L}_{∞} saturated has separable dual. Moreover, if it does not contain c_{0} then it does not contain unconditional basic sequences. Hence, by Gowers Dichotomy it contains an HI subspace.

Rosenthal's Problem

Problem

Does there exist a Banach space X which is \mathcal{L}_{∞} saturated and does not contain a subspace isomorphic to c_{0} ?

- The problem was stated by H.P. Rosenthal in the 80's and in particular he was interested for a negative answer.
- If such a space exists then passing to a subspace we may assume that a \mathcal{L}_{∞} space exists which is \mathcal{L}_{∞} saturated and does not contain c_{0}.
- Any \mathcal{L}_{∞} space which is \mathcal{L}_{∞} saturated has separable dual. Moreover, if it does not contain c_{0} then it does not contain unconditional basic sequences. Hence, by Gowers Dichotomy it contains an HI subspace.

Rosenthal's Problem

Problem

Does there exist a Banach space X which is \mathcal{L}_{∞} saturated and does not contain a subspace isomorphic to c_{0} ?

- The problem was stated by H.P. Rosenthal in the 80 's and in particular he was interested for a negative answer.
- If such a space exists then passing to a subspace we may assume that a \mathcal{L}_{∞} space exists which is \mathcal{L}_{∞} saturated and does not contain c_{0}.
- Any \mathcal{L}_{∞} space which is \mathcal{L}_{∞} saturated has separable dual. Moreover, if it does not contain c_{0} then it does not contain unconditional basic sequences. Hence, by Gowers Dichotomy it contains an HI subspace.

Rosenthal＇s Problem

－A solution to the Rosenthal＇s Problem will yield answers to some of the problems stated before．
－The aim of the present talk is to present some recent joint work with Pavlos Motakis related to Rosenthal＇s problem．

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $\left(d_{n}\right)_{n}$ such that for every infinite subset L of \mathbb{N} the subspace $\mathfrak{X}_{L}=\overline{\left\langle d_{n}: n \in L\right\rangle}$ contains a \mathcal{L}_{∞} space．

Rosenthal's Problem

- A solution to the Rosenthal's Problem will yield answers to some of the problems stated before.
- The aim of the present talk is to present some recent joint work with Pavlos Motakis related to Rosenthal's problem.

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $\left(d_{n}\right)_{n}$ such that for every infinite subset L of \mathbb{N} the subspace $\mathfrak{X}_{L}={\overline{<} d_{n}: n \in L}^{\prime}$ contains a \mathcal{L}_{∞} space.

- A solution to the Rosenthal's Problem will yield answers to some of the problems stated before.
- The aim of the present talk is to present some recent joint work with Pavlos Motakis related to Rosenthal's problem.

Theorem
There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $\left(d_{n}\right)_{n}$ such that for every infinite subset L of \mathbb{N} the subspace $\mathfrak{X}_{L}=\overline{\left\langle d_{n}: n \in L\right\rangle}$ contains a \mathcal{L}_{∞} space.

Rosenthal's Problem

- A solution to the Rosenthal's Problem will yield answers to some of the problems stated before.
- The aim of the present talk is to present some recent joint work with Pavlos Motakis related to Rosenthal's problem.

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $\left(d_{n}\right)_{n}$ such that for every infinite subset L of \mathbb{N} the subspace $\mathfrak{X}_{L}=\overline{\left\langle d_{n}: n \in L>\right.}$ contains a \mathcal{L}_{∞} space.

General Bourgain-Delbaen construction

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, $\Gamma=\cup_{n=1}^{\infty} \Gamma_{n}$ where $\left(\Gamma_{n}\right)$ is an increasing sequence of finite sets.
- We set $\Delta_{1}=\Gamma_{1}$ and $\Delta_{n+1}=\Gamma_{n+1} \backslash \Gamma_{n}$.
- There exists $C>0$ and extension operators $i_{n}: \ell_{\infty}\left(\Gamma_{n}\right) \rightarrow \ell_{\infty}(\Gamma)$
(i.e. $\left.i_{n}(x)\right|_{\Gamma_{n}}=x$) such that $\left\|i_{n}\right\| \leqslant C$ for every $n \in \mathbb{N}$.
- Hence i_{n} is C - isomorphic embedding for every $n \in \mathbb{N}$.

General Bourgain-Delbaen construction

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, $\Gamma=\cup_{n=1}^{\infty} \Gamma_{n}$ where $\left(\Gamma_{n}\right)$ is an increasing sequence of finite sets.
- We set $\Delta_{1}=\Gamma_{1}$ and $\Delta_{n+1}=\Gamma_{n+1} \backslash \Gamma_{n}$.
- There exists $C>0$ and extension operators (i.e. $\left.i_{n}(x)\right|_{\Gamma_{n}}=x$) such that $\left\|i_{n}\right\| \leqslant C$ for every $n \in \mathbb{N}$.

General Bourgain-Delbaen construction

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, $\Gamma=\cup_{n=1}^{\infty} \Gamma_{n}$ where $\left(\Gamma_{n}\right)$ is an increasing sequence of finite sets.
- We set $\Delta_{1}=\Gamma_{1}$ and $\Delta_{n+1}=\Gamma_{n+1} \backslash \Gamma_{n}$.
- There exists $C>0$ and extension operators
(i.e. $\left.i_{n}(x)\right|_{\Gamma_{n}}=x$) such that $\left\|i_{n}\right\| \leqslant C$ for every $n \in \mathbb{N}$.
- Hence i_{n} is C - isomorphic embedding for every $n \in \mathbb{N}$.

General Bourgain-Delbaen construction

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, $\Gamma=\cup_{n=1}^{\infty} \Gamma_{n}$ where $\left(\Gamma_{n}\right)$ is an increasing sequence of finite sets.
- We set $\Delta_{1}=\Gamma_{1}$ and $\Delta_{n+1}=\Gamma_{n+1} \backslash \Gamma_{n}$.
- There exists $C>0$ and extension operators
(i.e. $\left.i_{n}(x)\right|_{\Gamma_{n}}=x$) such that $\left\|i_{n}\right\| \leqslant C$ for every $n \in \mathbb{N}$.
- Hence i_{n} is C - isomorphic embedding for every $n \in \mathbb{N}$.

General Bourgain-Delbaen construction

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, $\Gamma=\cup_{n=1}^{\infty} \Gamma_{n}$ where $\left(\Gamma_{n}\right)$ is an increasing sequence of finite sets.
- We set $\Delta_{1}=\Gamma_{1}$ and $\Delta_{n+1}=\Gamma_{n+1} \backslash \Gamma_{n}$.
- There exists $C>0$ and extension operators

$$
i_{n}: \ell_{\infty}\left(\Gamma_{n}\right) \rightarrow \ell_{\infty}(\Gamma)
$$

(i.e. $\left.i_{n}(x)\right|_{\Gamma_{n}}=x$) such that $\left\|i_{n}\right\| \leqslant C$ for every $n \in \mathbb{N}$.

General Bourgain-Delbaen construction

- A BD \mathcal{L}_{∞} space is a separable subspace \mathfrak{X} of $\ell_{\infty}(\Gamma)$ with the supremum norm.
- The set Γ is countable, $\Gamma=\cup_{n=1}^{\infty} \Gamma_{n}$ where $\left(\Gamma_{n}\right)$ is an increasing sequence of finite sets.
- We set $\Delta_{1}=\Gamma_{1}$ and $\Delta_{n+1}=\Gamma_{n+1} \backslash \Gamma_{n}$.
- There exists $C>0$ and extension operators

$$
i_{n}: \ell_{\infty}\left(\Gamma_{n}\right) \rightarrow \ell_{\infty}(\Gamma)
$$

(i.e. $\left.i_{n}(x)\right|_{\Gamma_{n}}=x$) such that $\left\|i_{n}\right\| \leqslant C$ for every $n \in \mathbb{N}$.

- Hence i_{n} is C - isomorphic embedding for every $n \in \mathbb{N}$.

General Bourgain-Delbaen construction

- The operators i_{n} are compatible. Namely, for $n<k$ $\ell^{\infty}\left(\Gamma_{n}\right) \xrightarrow[P_{\Gamma_{k}} \circ i_{n}]{ } \quad \ell^{\infty}\left(\Gamma_{k}\right)$

- For $\gamma \in \Delta_{q}$ we set $d_{\gamma}=i_{q}\left(e_{\gamma}\right)$ and

$$
\mathfrak{X}=\overline{\left\langle\left\{d_{\gamma}: \gamma \in \Gamma\right\}\right\rangle}
$$

General Bourgain-Delbaen construction

- The operators i_{n} are compatible. Namely, for $n<k$ $\ell^{\infty}\left(\Gamma_{n}\right) \xrightarrow[P_{\Gamma_{k}} \circ i_{n}]{ } \stackrel{\ell}{ } \ell^{\infty}\left(\Gamma_{k}\right)$
${ }^{\prime}{ }^{\infty}(\Gamma)$
- For $\gamma \in \Delta_{q}$ we set $d_{\gamma}=i_{q}\left(e_{\gamma}\right)$ and

General Bourgain-Delbaen construction

- The operators i_{n} are compatible. Namely, for $n<k$ $\ell^{\infty}\left(\Gamma_{n}\right) \longrightarrow P_{\Gamma_{k}} \circ i_{n}$
- For $\gamma \in \Delta_{q}$ we set $d_{\gamma}=i_{q}\left(e_{\gamma}\right)$ and

$$
\mathfrak{X}=\overline{\left\langle\left\{d_{\gamma}: \gamma \in \Gamma\right\}\right\rangle}
$$

General Bourgain-Delbaen construction

- The operators i_{n} are compatible. Namely, for $n<k$

- For $\gamma \in \Delta_{q}$ we set $d_{\gamma}=i_{q}\left(e_{\gamma}\right)$ and

General Bourgain-Delbaen construction

- The operators i_{n} are compatible. Namely, for $n<k$

- For $\gamma \in \Delta_{q}$ we set $d_{\gamma}=i_{q}\left(e_{\gamma}\right)$ and
-

$$
\mathfrak{X}=\overline{\left\langle\left\{d_{\gamma}: \gamma \in \Gamma\right\}\right\rangle}
$$

The functionals c_{γ}^{*}

- For every $\gamma \in \Delta_{q+1}$ we define a linear functional

$$
c_{\gamma}^{*}=e_{\gamma}^{*} \circ \dot{i}_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \mathbb{R}
$$

- For every $p \leqslant q$ and $x \in \ell_{\infty}\left(\Gamma_{p}\right)$

$$
i_{p}(x)(\gamma)=C_{\gamma}^{*}\left(i_{q}\left(\left.i_{p}(x)\right|_{\Gamma_{q}}\right)\right)
$$

- The above explains that the construction of specific BD spaces essentially concerns the definition of the functionals $c_{\gamma, \gamma}^{*}, \gamma \in \Gamma$ which by induction determine the extension operators $i_{q}, q \in \mathbb{N}$.

The functionals c_{γ}^{*}

- For every $\gamma \in \Delta_{q+1}$ we define a linear functional

$$
c_{\gamma}^{*}=e_{\gamma}^{*} \circ i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \mathbb{R} .
$$

- For every $p \leqslant q$ and $x \in \ell_{\infty}\left(\Gamma_{p}\right)$

$$
i_{p}(x)(\gamma)=c_{\gamma}^{*}\left(i_{q}\left(\left.i_{p}(x)\right|_{r_{q}}\right)\right)
$$

- The above explains that the construction of specific BD spaces essentially concerns the definition of the functionals $c_{\gamma, \gamma}^{*}, \gamma$ which by induction determine the extension operators $i_{q}, q \in \mathbb{N}$.

The functionals c_{γ}^{*}

- For every $\gamma \in \Delta_{q+1}$ we define a linear functional

$$
c_{\gamma}^{*}=e_{\gamma}^{*} \circ i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \mathbb{R} .
$$

- For every $p \leqslant q$ and $x \in \ell_{\infty}\left(\Gamma_{p}\right)$

$$
i_{p}(x)(\gamma)=c_{\gamma}^{*}\left(i_{q}\left(\left.i_{p}(x)\right|_{\Gamma_{q}}\right)\right)
$$

- The above explains that the construction of specific BD spaces essentially concerns the definition of the functionals $c_{\gamma}^{*}, \gamma \in \Gamma$ which by induction determine the extension operators $i_{q}, q \in \mathbb{N}$

The functionals c_{γ}^{*}

- For every $\gamma \in \Delta_{q+1}$ we define a linear functional

$$
c_{\gamma}^{*}=e_{\gamma}^{*} \circ i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \mathbb{R}
$$

- For every $p \leqslant q$ and $x \in \ell_{\infty}\left(\Gamma_{p}\right)$

$$
i_{p}(x)(\gamma)=c_{\gamma}^{*}\left(i_{q}\left(\left.i_{p}(x)\right|_{r_{q}}\right)\right)
$$

- The above explains that the construction of specific BD spaces essentially concerns the definition of the functionals $c_{\gamma}^{*}, \gamma \in \Gamma$ which by induction determine the extension operators $i_{q}, q \in \mathbb{N}$.

Properties of the space \mathfrak{X}

- The space \mathfrak{X} is a $C-\mathcal{L}_{\infty}$ space.

Indeed, for $q \in \mathbb{N}\left\langle\left\{d_{\gamma} \mid \Gamma_{q}: \gamma \in \Gamma_{q}\right\}\right\rangle=\ell_{\infty}\left(\Gamma_{q}\right)$.

- Setting $F_{q}=i_{q}\left[\ell_{\infty}\left(\Delta_{q}\right)\right],\left(F_{q}\right)$ is an $F D D$ for the space \mathfrak{X}.
- In particular, $\left\{d_{\gamma}: \gamma \in \Gamma\right\}$ is a Schauder basis for the space \mathfrak{X}.
- For I an interval of \mathbb{N} we denote with $P_{\text {}}$ the projection with respect to the $\operatorname{FDD}\left(F_{q}\right)_{q}$.

Properties of the space \mathfrak{X}

- The space \mathfrak{X} is a $C-\mathcal{L}_{\infty}$ space.

Indeed, for $q \in \mathbb{N}\left\langle\left\{d_{\gamma} \mid \Gamma_{q}: \gamma \in \Gamma_{q}\right\}\right\rangle=\ell_{\infty}\left(\Gamma_{q}\right)$.

- Setting $F_{q}=i_{q}\left[\ell_{\infty}\left(\Delta_{q}\right)\right],\left(F_{q}\right)_{q}$ is an $F D D$ for the space \mathfrak{X}.
- In particular, $\left\{d_{\gamma}: \gamma \in \Gamma\right\}$ is a Schauder basis for the space \mathfrak{X}.
- For I an interval of \mathbb{N} we denote with $P_{\text {I }}$ the projection with respect to the $\operatorname{FDD}\left(F_{q}\right)_{q}$.
- The space \mathfrak{X} is a $C-\mathcal{L}_{\infty}$ space.

Indeed, for $q \in \mathbb{N}\left\langle\left\{d_{\gamma} \mid \Gamma_{q}: \gamma \in \Gamma_{q}\right\}\right\rangle=\ell_{\infty}\left(\Gamma_{q}\right)$.

- Setting $F_{q}=i_{q}\left[\ell_{\infty}\left(\Delta_{q}\right)\right],\left(F_{q}\right)_{q}$ is an $F D D$ for the space \mathfrak{X}.
- In particular, $\left\{d_{\gamma}: \gamma \in \Gamma\right\}$ is a Schauder basis for the space X.
- For I an interval of \mathbb{N} we denote with P_{I} the projection with respect to the FDD $\left(F_{q}\right)_{q}$.
- The space \mathfrak{X} is a $C-\mathcal{L}_{\infty}$ space.

Indeed, for $q \in \mathbb{N}\left\langle\left\{d_{\gamma} \mid \Gamma_{q}: \gamma \in \Gamma_{q}\right\}\right\rangle=\ell_{\infty}\left(\Gamma_{q}\right)$.

- Setting $F_{q}=i_{q}\left[\ell_{\infty}\left(\Delta_{q}\right)\right],\left(F_{q}\right)_{q}$ is an $F D D$ for the space \mathfrak{X}.
- In particular, $\left\{d_{\gamma}: \gamma \in \Gamma\right\}$ is a Schauder basis for the space \mathfrak{X}.
- For I an interval of \mathbb{N} we denote with P_{I} the projection with respect to the FDD $\left(F_{q}\right)_{q}$.
- The space \mathfrak{X} is a $C-\mathcal{L}_{\infty}$ space.

Indeed, for $q \in \mathbb{N}\left\langle\left\{d_{\gamma} \mid \Gamma_{q}: \gamma \in \Gamma_{q}\right\}\right\rangle=\ell_{\infty}\left(\Gamma_{q}\right)$.

- Setting $F_{q}=i_{q}\left[\ell_{\infty}\left(\Delta_{q}\right)\right],\left(F_{q}\right)_{q}$ is an $F D D$ for the space \mathfrak{X}.
- In particular, $\left\{d_{\gamma}: \gamma \in \Gamma\right\}$ is a Schauder basis for the space \mathfrak{X}.
- For I an interval of \mathbb{N} we denote with P_{I} the projection with respect to the $\operatorname{FDD}\left(F_{q}\right)_{q}$.

Properties of the space \mathfrak{X}

- We denote with e_{γ}^{*} the evaluation functional restricted on \mathfrak{X}. Then the family $\left\{e_{\gamma}^{*}: \gamma \in \Gamma\right\}$ is equivalent to ℓ_{1} basis. Moreover if $\left\{d_{\gamma}: \gamma \in \Gamma\right\}$ is shrinking, then $\left\{e_{\gamma}^{*}: \gamma \in \Gamma\right\}$ generates the dual of \mathfrak{X}.
- The biorthogonals $\left\{d_{\gamma}^{*}: \gamma \in \Gamma\right\}$ are defined as

$$
d_{\gamma}^{* *}=e_{\gamma}^{*}-c_{\gamma}^{*} .
$$

Properties of the space \mathfrak{X}

- We denote with e_{γ}^{*} the evaluation functional restricted on \mathfrak{X}. Then the family $\left\{e_{\gamma}^{*}: \gamma \in \Gamma\right\}$ is equivalent to ℓ_{1} basis. Moreover if $\left\{d_{\gamma}: \gamma \in \Gamma\right\}$ is shrinking, then $\left\{e_{\gamma}^{*}: \gamma \in \Gamma\right\}$ generates the dual of \mathfrak{X}.
- The biorthogonals $\left\{d_{\gamma}^{*}: \gamma \in \Gamma\right\}$ are defined as
- We denote with e_{γ}^{*} the evaluation functional restricted on \mathfrak{X}. Then the family $\left\{e_{\gamma}^{*}: \gamma \in \Gamma\right\}$ is equivalent to ℓ_{1} basis. Moreover if $\left\{d_{\gamma}: \gamma \in \Gamma\right\}$ is shrinking, then $\left\{e_{\gamma}^{*}: \gamma \in \Gamma\right\}$ generates the dual of \mathfrak{X}.
- The biorthogonals $\left\{d_{\gamma}^{*}: \gamma \in \Gamma\right\}$ are defined as

$$
d_{\gamma}^{*}=e_{\gamma}^{*}-c_{\gamma}^{*} .
$$

The double role of e_{γ}^{*}

- For $\gamma \in \Gamma_{n+1} \backslash \Gamma_{n}, e_{\gamma}^{*}=d_{\gamma}^{*}+C_{\gamma}^{*}$ where

$$
\begin{aligned}
& c_{\gamma}^{*}: \ell_{\infty}\left(\Gamma_{n}\right) \rightarrow \mathbb{R} \\
& d_{\gamma}^{*} \mid i_{n}\left(\ell_{\infty}\left(\Gamma_{n}\right)\right)=0
\end{aligned}
$$

- The critical point of the BD constructions is the definition of the functionals c_{γ}^{*}. The variety of the method used in their definition yields spaces with divergent properties.

The double role of e_{γ}^{*}

- For $\gamma \in \Gamma_{n+1} \backslash \Gamma_{n}, e_{\gamma}^{*}=d_{\gamma}^{*}+c_{\gamma}^{*}$ where

$$
c_{\gamma}^{*}: \ell_{\infty}\left(\Gamma_{n}\right) \rightarrow \mathbb{R}
$$

- The critical point of the BD constructions is the definition of the functionals c_{γ}^{*}. The variety of the method used in their definition yields spaces with divergent properties.

The double role of e_{γ}^{*}

- For $\gamma \in \Gamma_{n+1} \backslash \Gamma_{n}, e_{\gamma}^{*}=d_{\gamma}^{*}+c_{\gamma}^{*}$ where

$$
c_{\gamma}^{*}: \ell_{\infty}\left(\Gamma_{n}\right) \rightarrow \mathbb{R}
$$

- The critical point of the BD constructions is the definition of the functionals c_{γ}^{*}. The variety of the method used in their definition yields spaces with divergent properties.

The double role of e_{γ}^{*}

- For $\gamma \in \Gamma_{n+1} \backslash \Gamma_{n}, e_{\gamma}^{*}=d_{\gamma}^{*}+c_{\gamma}^{*}$ where

$$
\begin{aligned}
& c_{\gamma}^{*}: \ell_{\infty}\left(\Gamma_{n}\right) \rightarrow \mathbb{R} \\
& \left.d_{\gamma}^{*}\right|_{i_{n}\left(\ell_{\infty}\left(\Gamma_{n}\right)\right)}=0
\end{aligned}
$$

- The critical point of the BD constructions is the definition of the functionals c_{γ}^{*}. The variety of the method used in their definition yields spaces with divergent properties.

The double role of e_{γ}^{*}

- For $\gamma \in \Gamma_{n+1} \backslash \Gamma_{n}, e_{\gamma}^{*}=d_{\gamma}^{*}+c_{\gamma}^{*}$ where

$$
\begin{aligned}
& c_{\gamma}^{*}: \ell_{\infty}\left(\Gamma_{n}\right) \rightarrow \mathbb{R} \\
& \left.d_{\gamma}^{*}\right|_{i_{n}\left(\ell_{\infty}\left(\Gamma_{n}\right)\right)}=0
\end{aligned}
$$

- The critical point of the BD constructions is the definition of the functionals c_{γ}^{*}. The variety of the method used in their definition yields spaces with divergent properties.

Mixed Tsirelson \mathcal{L}_{∞} spaces

- We define the functionals $\left\{c_{\gamma}^{*}: \gamma \in \Gamma\right\}$ in a similar manner as the functionals in the norming set of a Mixed Tsirelson spaces.
- We start with two strictly increasing sequences of natural numbers $\left(m_{j}\right)_{j},\left(n_{j}\right)_{j}$ which satisfy certain growth conditions. Among others, $\frac{n_{j}}{m_{j}} \rightarrow \infty$ and $m_{1} \geqslant 8$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

- We define the functionals $\left\{c_{\gamma}^{*}: \gamma \in \Gamma\right\}$ in a similar manner as the functionals in the norming set of a Mixed Tsirelson spaces.
- We start with two strictly increasing sequences of natural numbers $\left(m_{i}\right)_{i},\left(n_{i}\right)_{i}$ which satisfy certain growth conditions. Among others, $\frac{n_{j}}{m_{j}} \rightarrow \infty$ and $m_{1} \geqslant 8$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

- We define the functionals $\left\{c_{\gamma}^{*}: \gamma \in \Gamma\right\}$ in a similar manner as the functionals in the norming set of a Mixed Tsirelson spaces.
- We start with two strictly increasing sequences of natural numbers $\left(m_{j}\right)_{j},\left(n_{j}\right)_{j}$ which satisfy certain growth conditions. Among others, $\frac{n_{j}}{m_{j}} \rightarrow \infty$ and $m_{1} \geqslant 8$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

- There are three types of functionals.
- Let $\gamma \in \Delta_{q+1}$.

$$
\text { Then } w(\gamma)=0, a(\gamma)=0
$$

$$
\begin{equation*}
c_{\gamma}^{*}=\frac{1}{m_{j}} e_{\xi}^{*} \circ P_{l} \tag{2}
\end{equation*}
$$

$$
\text { Then } w(\gamma)=m_{j}, a(\gamma)=1
$$

$$
c_{\gamma}^{*}=e_{\eta}^{*}+\frac{1}{m_{j}} e_{\xi}^{*} \circ P_{l}
$$

Then $w(\gamma)=m_{j}, a(\gamma)=a(\eta)+1 \leqslant n_{j}$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

- There are three types of functionals.
- Let $\gamma \in \Delta_{q+1}$.

Then $w(\gamma)=0, a(\gamma)=0$.

Then $w(\gamma)=m_{j}, a(\gamma)=1$.

Then $w(\gamma)=m_{j}, a(\gamma)=a(\eta)+1 \leqslant n_{j}$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

- There are three types of functionals.
- Let $\gamma \in \Delta_{q+1}$.

$$
\text { Then } w(\gamma)=0, a(\gamma)=0
$$

$$
\text { Then } w(\gamma)=m_{j}, a(\gamma)=1
$$

Then $w(\gamma)=m_{j}, a(\gamma)=a(\eta)+1 \leqslant n_{j}$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

- There are three types of functionals.
- Let $\gamma \in \Delta_{q+1}$.
(1)

$$
c_{\gamma}^{*}=0
$$

Then $\boldsymbol{w}(\gamma)=0, \boldsymbol{a}(\gamma)=0$.

Then $w(\gamma)=m_{j}, \quad a(\gamma)=1$.

Then $w(\gamma)=m_{j}, a(\gamma)=a(\eta)+1 \leqslant n_{j}$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

- There are three types of functionals.
- Let $\gamma \in \Delta_{q+1}$.
(1)

$$
c_{\gamma}^{*}=0
$$

Then $w(\gamma)=0, \boldsymbol{a}(\gamma)=0$.
(2)

$$
c_{\gamma}^{*}=\frac{1}{m_{j}} e_{\xi}^{*} \circ P_{l}
$$

Then $w(\gamma)=m_{j}, \boldsymbol{a}(\gamma)=1$.

Then $w(\gamma)=m_{j}, a(\gamma)=a(\eta)+1 \leqslant n_{j}$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

- There are three types of functionals.
- Let $\gamma \in \Delta_{q+1}$.
(1)

$$
c_{\gamma}^{*}=0
$$

Then $\boldsymbol{w}(\gamma)=0, \boldsymbol{a}(\gamma)=0$.
(2)

$$
c_{\gamma}^{*}=\frac{1}{m_{j}} e_{\xi}^{*} \circ P_{l}
$$

Then $w(\gamma)=m_{j}, \boldsymbol{a}(\gamma)=1$.
(3)

$$
c_{\gamma}^{*}=e_{\eta}^{*}+\frac{1}{m_{j}} e_{\xi}^{*} \circ P_{l}
$$

Then $\boldsymbol{w}(\gamma)=m_{j}, \boldsymbol{a}(\gamma)=a(\eta)+1 \leqslant n_{j}$.

The evaluation analysis of e_{γ}^{*}

- For $\gamma \in \Delta_{q+1}$ with $w(\gamma)=\frac{1}{m_{j}}$ and $\alpha(\gamma)=k \leqslant n_{j}$, there exist $\xi_{1}, \xi_{2}, \ldots, \xi_{k}, \eta_{1}, \eta_{2}, \ldots, \eta_{k}$ and $I_{1}, I_{2}, \ldots, I_{k}$ such that

The evaluation analysis of e_{γ}^{*}

$$
\frac{\xi_{1}}{\cup_{\ell \in I_{1}} \Delta_{\ell}} \stackrel{\eta_{1}}{\cdot} \frac{\xi_{2}}{\cup_{\ell \in I_{2}} \Delta_{\ell}} \stackrel{\eta_{2}}{0} \quad \frac{\xi_{k}}{\cup_{\ell \in I_{k}} \Delta_{\ell}} \stackrel{\eta_{k}=\gamma}{0}
$$

- For $\gamma \in \Delta_{q+1}$ with $w(\gamma)=\frac{1}{m_{j}}$ and $\alpha(\gamma)=k \leqslant n_{j}$, there exist $\xi_{1}, \xi_{2}, \ldots, \xi_{k}, \eta_{1}, \eta_{2}, \ldots, \eta_{k}$ and $I_{1}, I_{2}, \ldots, I_{k}$ such that

$$
e_{\gamma}^{*}=\frac{1}{m_{j}} \sum_{i=1}^{k} e_{\xi_{i}}^{*} \circ P_{l_{i}}+\sum_{i=1}^{k} d_{\eta_{i}}^{*} .
$$

The evaluation analysis of e_{γ}^{*}

- The mixed Tsirelson BD- \mathcal{L}_{∞} space is defined by induction by setting $\Delta_{1}=\Gamma_{1}=\left\{\gamma_{1}\right\}$ with $\boldsymbol{w}\left(\gamma_{1}\right)$.
- Assuming that $\Delta_{1}, \ldots, \Delta_{q}$ have been defined, Δ_{q+1} is defined by taking all possible $\phi \in \ell_{1}\left(\Gamma_{q}\right)$ of the previous form with $w(\phi)=m_{j}, j \leqslant q+1$.
- It is shown that the extensions operators
$i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \ell_{\infty}(\Gamma)$ satisfy $\left\|i_{q}\right\| \leqslant 1+8 / m_{1}$.

The evaluation analysis of e_{γ}^{*}

- The mixed Tsirelson BD- \mathcal{L}_{∞} space is defined by induction by setting $\Delta_{1}=\Gamma_{1}=\left\{\gamma_{1}\right\}$ with $\boldsymbol{w}\left(\gamma_{1}\right)$.
- Assuming that $\Delta_{1}, \ldots, \Delta_{q}$ have been defined, Δ_{q+1} is defined by taking all possible $\phi \in \ell_{1}\left(\Gamma_{q}\right)$ of the previous form with $w(\phi)=m_{j}, j \leqslant q+1$
- It is shown that the extensions operators $i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \ell_{\infty}(\Gamma)$ satisfy $\left\|i_{q}\right\| \leqslant 1+8 / m_{1}$.

The evaluation analysis of e_{γ}^{*}

- The mixed Tsirelson BD- \mathcal{L}_{∞} space is defined by induction by setting $\Delta_{1}=\Gamma_{1}=\left\{\gamma_{1}\right\}$ with $w\left(\gamma_{1}\right)$.
- Assuming that $\Delta_{1}, \ldots, \Delta_{q}$ have been defined, Δ_{q+1} is defined by taking all possible $\phi \in \ell_{1}\left(\Gamma_{q}\right)$ of the previous form with $w(\phi)=m_{j}, j \leqslant q+1$.
- It is shown that the extensions operators

The evaluation analysis of e_{γ}^{*}

- The mixed Tsirelson BD- \mathcal{L}_{∞} space is defined by induction by setting $\Delta_{1}=\Gamma_{1}=\left\{\gamma_{1}\right\}$ with $w\left(\gamma_{1}\right)$.
- Assuming that $\Delta_{1}, \ldots, \Delta_{q}$ have been defined, Δ_{q+1} is defined by taking all possible $\phi \in \ell_{1}\left(\Gamma_{q}\right)$ of the previous form with $w(\phi)=m_{j}, j \leqslant q+1$.
- It is shown that the extensions operators $i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \ell_{\infty}(\Gamma)$ satisfy $\left\|i_{q}\right\| \leqslant 1+8 / m_{1}$.

Mixed Tsirelson \mathcal{L}_{∞} spaces

Theorem

The mixed Tsirelson BD- \mathcal{L}_{∞} space $\mathfrak{X}=$ has separable dual and does not contain c_{0} or ℓ_{p} for $1<p<\infty$. Every skipped block sequence with respect to the FDD $\left\{i_{q}\left(\ell_{\infty}\left(\Delta_{q}\right)\right)\right\}_{n=0}^{\infty}$ generates a reflexive subspace. Hence, every skipped block sequence does not generate a \mathcal{L}_{∞} space.

Mixed Tsirelson \mathcal{L}_{∞} spaces

Theorem

The mixed Tsirelson BD- \mathcal{L}_{∞} space $\mathfrak{X}=$ has separable dual and does not contain c_{0} or ℓ_{p} for $1<p<\infty$. Every skipped block sequence with respect to the FDD $\left\{i_{q}\left(\ell_{\infty}\left(\Delta_{q}\right)\right)\right\}_{n=0}^{\infty}$ generates a reflexive subspace. Hence, every skipped block sequence does not generate a \mathcal{L}_{∞} space.

The Fundamental Construction

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $\left(d_{n}\right)_{n}$ such that for every infinite subset L of \mathbb{N} the subspace $\mathfrak{X}_{L}=<d_{n}: n \in L>$ contains a \mathcal{L}_{∞} space.

Theorem (A first Step)

There exists a Mixed Tsirelson BD \mathcal{L}_{∞} space not containing c_{0} or ℓ_{p} for $1 \leqslant p<\infty$ and a skipped block basis that that generates a \mathcal{L}_{∞} space.

- The definition of this space requires a modification of the previous techniques.

The Fundamental Construction

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $\left(d_{n}\right)_{n}$ such that for every infinite subset L of \mathbb{N} the subspace $\mathfrak{X}_{L}=\left\langle d_{n}: n \in L>\right.$ contains a \mathcal{L}_{∞} space.

Theorem (A first Step)
 There exists a Mixed Tsirelson BD \mathcal{L}_{∞} space not containing c_{0} or ℓ_{p} for $1 \leqslant p<\infty$ and a skipped block basis that that generates a \mathcal{L}_{∞} space.

- The definition of this space requires a modification of the previous techniques.

The Fundamental Construction

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $\left(d_{n}\right)_{n}$ such that for every infinite subset L of \mathbb{N} the subspace $\mathfrak{X}_{L}=\overline{<d}_{n}: n \in L>$ contains a \mathcal{L}_{∞} space.

Theorem (A first Step)

There exists a Mixed Tsirelson BD \mathcal{L}_{∞} space not containing c_{0} or ℓ_{p} for $1 \leqslant p<\infty$ and a skipped block basis that that generates a \mathcal{L}_{∞} space.

- The definition of this space requires a modification of the previous techniques.

The Fundamental Construction

Theorem

There exists a \mathcal{L}_{∞} space \mathfrak{X} with a basis $\left(d_{n}\right)_{n}$ such that for every infinite subset L of \mathbb{N} the subspace $\mathfrak{X}_{L}=\overline{<d}_{n}: n \in L>$ contains a \mathcal{L}_{∞} space.

Theorem (A first Step)

There exists a Mixed Tsirelson BD \mathcal{L}_{∞} space not containing c_{0} or ℓ_{p} for $1 \leqslant p<\infty$ and a skipped block basis that that generates a \mathcal{L}_{∞} space.

- The definition of this space requires a modification of the previous techniques.

The Fundamental Construction

- How to create a BD \mathcal{L}_{∞} space with a Schauder basis $\left(d_{n}\right)_{n}$ and a block sequence $\left(x_{k}\right)_{k}$ such that $\left\langle x_{k}: k \in \mathbb{N}>\right.$ is also a \mathcal{L}_{∞} space.
- We start with a sequence of parameters $\left(m_{j}, n_{j}\right)_{j}$ as before.
- For define a set $\Gamma=\cup_{n=+}^{\infty} \Delta_{q}$ such that each $\Delta_{q}=\{\gamma\}$ and if $\gamma \in \Delta_{2 q-1}$ then

$$
w(\gamma)=0 \Leftrightarrow c_{\gamma}^{*}=0 .
$$

The Fundamental Construction

- How to create a BD \mathcal{L}_{∞} space with a Schauder basis $\left(d_{n}\right)_{n}$ and a block sequence $\left(x_{k}\right)_{k}$ such that $\left\langle x_{k}: k \in \mathbb{N}\right\rangle$ is also a \mathcal{L}_{∞} space.
- We start with a sequence of parameters $\left(m_{j}, n_{j}\right)_{j}$ as before.
- For define a set $\Gamma=\cup_{n=1}^{\infty} \Delta_{q}$ such that each $\Delta_{q}=\{\gamma\}$ and if $\gamma \in \Delta_{2 q-1}$ then

The Fundamental Construction

- How to create a BD \mathcal{L}_{∞} space with a Schauder basis $\left(d_{n}\right)_{n}$ and a block sequence $\left(x_{k}\right)_{k}$ such that $\left\langle x_{k}: k \in \mathbb{N}\right\rangle$ is also a \mathcal{L}_{∞} space.
- We start with a sequence of parameters $\left(m_{j}, n_{j}\right)_{j}$ as before.
- For define a set $\Gamma=\cup_{n=1}^{\infty} \Delta_{q}$ such that each $\Delta_{q}=\{\gamma\}$ and if $\gamma \in \Delta_{2 q-1}$ then

The Fundamental Construction

- How to create a BD \mathcal{L}_{∞} space with a Schauder basis $\left(d_{n}\right)_{n}$ and a block sequence $\left(x_{k}\right)_{k}$ such that $\left\langle x_{k}: k \in \mathbb{N}\right\rangle$ is also a \mathcal{L}_{∞} space.
- We start with a sequence of parameters $\left(m_{j}, n_{j}\right)_{j}$ as before.
- For define a set $\Gamma=\cup_{n=1}^{\infty} \Delta_{q}$ such that each $\Delta_{q}=\{\gamma\}$ and if $\gamma \in \Delta_{2 q-1}$ then

$$
w(\gamma)=0 \Leftrightarrow c_{\gamma}^{*}=0
$$

The Fundamental Construction

- If $\gamma \in \Delta_{2 q}$ then $w(\gamma)=\left(m_{2 i}, m_{2 j_{1}-1}, \ldots, m_{2 j_{k}-1}\right)$, where
- $2 i \leqslant 2 q$,
- $1 \leqslant k \leqslant n_{2 i}, m_{2 j_{k}-1}$ is determined by $\left(m_{2 i-1}, \ldots, m_{2 j_{k-1}-1}\right)$.
- In this case we say that γ has multiple weig't and $m_{2 i}$ is called its primitive weight.

The Fundamental Construction

- If $\gamma \in \Delta_{2 q}$ then $w(\gamma)=\left(m_{2 i}, m_{2 j_{1}-1}, \ldots, m_{2 j_{k}-1}\right)$, where
- $2 i \leqslant 2 q$,
- $1 \leqslant k \leqslant n_{2 i}, m_{2 j_{k}-1}$ is determined by $\left(m_{2 i-1}, \ldots, m_{2 j_{k-1}-1}\right)$.
- In this case we say that γ has multiple weig't and $m_{2 i}$ is called its primitive weight.

The Fundamental Construction

- If $\gamma \in \Delta_{2 q}$ then $w(\gamma)=\left(m_{2 i}, m_{2 j_{1}-1}, \ldots, m_{2 j_{k}-1}\right)$, where
- $2 i \leqslant 2 q$,
- $1 \leqslant k \leqslant n_{2 i}, m_{2 j_{k}-1}$ is determined by $\left(m_{2 i-1}, \ldots, m_{2 j_{k-1}-1}\right)$.
- In this case we say that γ has multiple weight and $m_{2 i}$ is called its primitive weight.

The Fundamental Construction

- If $\gamma \in \Delta_{2 q}$ then $w(\gamma)=\left(m_{2 i}, m_{2 j_{1}-1}, \ldots, m_{2 j_{k}-1}\right)$, where
- $2 i \leqslant 2 q$,
- $1 \leqslant k \leqslant n_{2 i}, m_{2 j_{k}-1}$ is determined by $\left(m_{2 i-1}, \ldots, m_{2 j_{k-1}-1}\right)$.
- In this case we say that γ has multiple weight and $m_{2 i}$ is called its primitive weight.

The Fundamental Construction

- If $\gamma \in \Delta_{2 q}$ then $w(\gamma)=\left(m_{2 i}, m_{2 j_{1}-1}, \ldots, m_{2 j_{k}-1}\right)$, where
- $2 i \leqslant 2 q$,
- $1 \leqslant k \leqslant n_{2 i}, m_{2 j_{k}-1}$ is determined by $\left(m_{2 i-1}, \ldots, m_{2 j_{k-1}-1}\right)$.
- In this case we say that γ has multiple weight and $m_{2 i}$ is called its primitive weight.

The Fundamental Construction

- The idea in the use of the multiple weights is to succeed that the γ which codes c_{γ}^{*}, at the same time norms a block vector.
- How to define a η with multiple weights $w(\eta)$, starting with γ with $w(\gamma)=\left(m_{2 i}, m_{2 j_{1}-1}, \ldots, m_{2 j_{\ell}-1}\right)$:
- If $\gamma \in \Gamma_{k}$, choose $\xi \in \Gamma_{n} \backslash \Gamma_{k}$ and set $I=(k, n]$.

The Fundamental Construction

- The idea in the use of the multiple weights is to succeed that the γ which codes c_{γ}^{*}, at the same time norms a block vector.
- How to define a η with multiple weights $w(\eta)$, starting with with $w(\gamma)=\left(m_{2 i}, m_{2 j_{1}-1}, \ldots, m_{2 j_{\ell}-1}\right)$
a If $\gamma \in \Gamma_{k}$, choose $\xi \in \Gamma_{n} \backslash \Gamma_{k}$ and set $I=(k, n]$.

The Fundamental Construction

- The idea in the use of the multiple weights is to succeed that the γ which codes c_{γ}^{*}, at the same time norms a block vector.
- How to define a η with multiple weights $w(\eta)$, starting with γ with $w(\gamma)=\left(m_{2 i}, m_{2 j_{1}-1}, \ldots, m_{2 j_{\ell}-1}\right)$:
- If $\gamma \in \Gamma_{k}$, choose $\xi \in \Gamma_{n} \backslash \Gamma_{k}$ and set $I=(k, n]$.

The Fundamental Construction

- The idea in the use of the multiple weights is to succeed that the γ which codes c_{γ}^{*}, at the same time norms a block vector.
- How to define a η with multiple weights $w(\eta)$, starting with γ with $w(\gamma)=\left(m_{2 i}, m_{2 j_{1}-1}, \ldots, m_{2 j_{\ell}-1}\right)$:
- If $\gamma \in \Gamma_{k}$, choose $\xi \in \Gamma_{n} \backslash \Gamma_{k}$ and set $I=(k, n]$.

The Fundamental Construction

- We inductively define $\theta_{1}, \eta_{1}, \theta_{2}, \eta_{2}, \ldots, \theta_{n_{2 j_{\ell+1}-1}}, \eta_{n_{2 j_{\ell+1}-1}}$ with $w\left(\theta_{i}\right)=0$ for all i and
- $c_{\eta_{i}}^{*}=\left(1 / n_{2 j_{\ell+1}-1}\right)\left(e_{\gamma}^{*}+\frac{1}{m_{2 i}} e_{\xi}^{*} \circ P_{l}\right)+e_{\eta_{i-1}}^{*}+\left(1 / m_{2 j_{\ell+1}-1}\right) e_{\theta_{i}}^{*}$.
- The $\eta_{n_{2_{\ell+1}-1}}=\eta$ norms the following vector:

- Thus every η of multiple weight norms a vector x_{η}.

The Fundamental Construction

- We inductively define $\theta_{1}, \eta_{1}, \theta_{2}, \eta_{2}, \ldots, \theta_{n_{2 j_{+1}-1}}, \eta_{n_{j_{\ell+1}-1}}$ with $w\left(\theta_{i}\right)=0$ for all i and
- The $\eta_{n_{2 j_{+1}-1}}=\eta$ norms the following vector:
- Thus every η of multiple weight norms a vector x_{η}.

The Fundamental Construction

- We inductively define $\theta_{1}, \eta_{1}, \theta_{2}, \eta_{2}, \ldots, \theta_{n_{2 j_{+1}-1}}, \eta_{n_{j_{\ell+1}-1}}$ with $w\left(\theta_{i}\right)=0$ for all i and
- $c_{\eta_{i}}^{*}=\left(1 / n_{2 j_{\ell+1}-1}\right)\left(e_{\gamma}^{*}+\frac{1}{m_{2 i}} e_{\xi}^{*} \circ P_{l}\right)+e_{\eta_{i-1}}^{*}+\left(1 / m_{2 j_{\ell+1}-1}\right) e_{\theta_{i}}^{*}$.
- The $\eta_{n_{2 j_{+1}-1}}=\eta$ norms the following vector:
- Thus every η of multiple weight norms a vector x_{η}.

The Fundamental Construction

- We inductively define $\theta_{1}, \eta_{1}, \theta_{2}, \eta_{2}, \ldots, \theta_{n_{2 j_{+1}-1}}, \eta_{n_{j_{\ell+1}-1}}$ with $w\left(\theta_{i}\right)=0$ for all i and
- $c_{\eta_{i}}^{*}=\left(1 / n_{2 j_{\ell+1}-1}\right)\left(e_{\gamma}^{*}+\frac{1}{m_{2 i}} e_{\xi}^{*} \circ P_{l}\right)+e_{\eta_{i-1}}^{*}+\left(1 / m_{2 j_{\ell+1}-1}\right) e_{\theta_{i}}^{*}$.
- The $\eta_{n_{2_{\ell+1}-1}}=\eta$ norms the following vector:
- Thus every η of multiple weight norms a vector x_{η}.

The Fundamental Construction

- We inductively define $\theta_{1}, \eta_{1}, \theta_{2}, \eta_{2}, \ldots, \theta_{n_{2 j_{+1}-1}}, \eta_{n_{j_{\ell+1}-1}}$
with $w\left(\theta_{i}\right)=0$ for all i and
- $c_{\eta_{i}}^{*}=\left(1 / n_{2 j_{\ell+1}-1}\right)\left(e_{\gamma}^{*}+\frac{1}{m_{2 i}} e_{\xi}^{*} \circ P_{l}\right)+e_{\eta_{i-1}}^{*}+\left(1 / m_{2 j_{\ell+1}-1}\right) e_{\theta_{i}}^{*}$.
- The $\eta_{n_{2_{\ell_{+1}-1}}}=\eta$ norms the following vector:

$$
x_{\eta}=\frac{m_{2 j_{\ell+1}-1}}{n_{2 j_{\ell+1}-1}} \sum_{i=1}^{n_{2 j_{\ell+1}}-1} d_{\theta_{i}}
$$

- Thus every η of multiple weight norms a vector x_{η}.

The Fundamental Construction

- We inductively define $\theta_{1}, \eta_{1}, \theta_{2}, \eta_{2}, \ldots, \theta_{n_{2_{\ell+1}-1}}, \eta_{n_{2_{\ell+1}-1}}$ with $w\left(\theta_{i}\right)=0$ for all i and
- $c_{\eta_{i}}^{*}=\left(1 / n_{2 j_{\ell+1}-1}\right)\left(e_{\gamma}^{*}+\frac{1}{m_{2 i}} e_{\xi}^{*} \circ P_{l}\right)+e_{\eta_{i-1}}^{*}+\left(1 / m_{2 j_{\ell+1}-1}\right) e_{\theta_{i}}^{*}$.
- The $\eta_{n_{2_{\ell+1}-1}}=\eta$ norms the following vector:

$$
x_{\eta}=\frac{m_{2 j_{\ell+1}-1}}{n_{2 j_{\ell+1}-1}} \sum_{i=1}^{n_{2 j_{\ell+1}}-1} d_{\theta_{i}}
$$

- Thus every η of multiple weight norms a vector x_{η}.

The Fundamental Construction

- The construction yields that the family

$$
\left\{x_{\eta}: \eta \text { of multiple weight }\right\}
$$

- defines a skipped block sequence and the space generated by this sequence is normed by the multiple weight γ 's.
- In particular, this space is a \mathcal{L}_{∞} space.

The Fundamental Construction

- The construction yields that the family
$\left\{x_{\eta}: \eta\right.$ of multiple weight $\}$
- defines a skipned block sequence and the snace generated by this sequence is normed by the multiple weight γ 's.
- In particular, this space is a \mathcal{L}_{∞} space.

The Fundamental Construction

- The construction yields that the family
$\left\{x_{\eta}: \eta\right.$ of multiple weight $\}$
- defines a skipped block sequence and the space generated by this sequence is normed by the multiple weight γ 's.
- In particular, this space is a \mathcal{L}_{∞} space.

The Fundamental Construction

- The construction yields that the family

$$
\left\{x_{\eta}: \eta \text { of multiple weight }\right\}
$$

- defines a skipped block sequence and the space generated by this sequence is normed by the multiple weight γ 's.
- In particular, this space is a \mathcal{L}_{∞} space.

The Fundamental Construction

- The construction yields that the family

$$
\left\{x_{\eta}: \eta \text { of multiple weight }\right\}
$$

- defines a skipped block sequence and the space generated by this sequence is normed by the multiple weight γ 's.
- In particular, this space is a \mathcal{L}_{∞} space.

