On hereditary approximation property

Razvan Anisca and Christopher Chlebovec

Lakehead University, Canada

First Brazilian Workshop in Geometry of Banach spaces

August 2014

Definition A Banach space X has the approximation property provided that, for every compact set $K \subset X$ and every $\epsilon>0$, there exists a finite rank operator $T: X \rightarrow X$ such that $\|T z-z\|<\epsilon$ for every $z \in K$.

We say that a Banach space X has the hereditary approximation property (HAP) if all its subspaces have the approximation property.

Definition A Banach space X has the approximation property provided that, for every compact set $K \subset X$ and every $\epsilon>0$, there exists a finite rank operator $T: X \rightarrow X$ such that $\|T z-z\|<\epsilon$ for every $z \in K$.

We say that a Banach space X has the hereditary approximation property (HAP) if all its subspaces have the approximation property.

Examples of spaces with HAP:

Definition A Banach space X has the approximation property provided that, for every compact set $K \subset X$ and every $\epsilon>0$, there exists a finite rank operator $T: X \rightarrow X$ such that $\|T z-z\|<\epsilon$ for every $z \in K$.

We say that a Banach space X has the hereditary approximation property (HAP) if all its subspaces have the approximation property.

Examples of spaces with HAP:

- Johnson (1980) : for suitable $k_{n} \uparrow \infty$ and $p_{n} \rightarrow 2$, the space $X=\left(\sum_{n} \oplus \ell_{p_{n}}^{k_{n}}\right)_{\ell_{2}}$ has HAP and is not isomorphic to ℓ_{2}
- Johnson (1980): the 2-convexified Tsirelson's space $T^{(2)}$
- Pisier (1988): weak Hilbert spaces have HAP
- Pisier (1988): weak Hilbert spaces have HAP

Definition (Pisier) A Banach space X is a weak Hilbert space provided there exist $\delta>0$ and $K \geq 1$ such that: every finite-dimensional subspace $E \subseteq X$ contains a further subspace F with $\operatorname{dim} F \geq \delta \operatorname{dim} E$ and

$$
d\left(F, \ell_{2}^{\operatorname{dim} F}\right) \leq K \quad \text { and } \quad\|P: X \longrightarrow F\| \leq K
$$

- Pisier (1988): weak Hilbert spaces have HAP

Definition (Pisier) A Banach space X is a weak Hilbert space provided there exist $\delta>0$ and $K \geq 1$ such that: every finite-dimensional subspace $E \subseteq X$ contains a further subspace F with $\operatorname{dim} F \geq \delta \operatorname{dim} E$ and

$$
d\left(F, \ell_{2}^{\operatorname{dim} F}\right) \leq K \quad \text { and } \quad\|P: X \longrightarrow F\| \leq K
$$

It is known that weak Hilbert spaces satisfy some very strong types of approximation properties, in particular they admit a finite-dimensional Schauder decomposition (Maurey-Pisier)

Question: Does every weak Hilbert space have a Schauder basis?

Spaces which do not have HAP

Szankowski (1978): a Banach space X does not have HAP (i.e., admits a subspace without the approximation property) whenever

$$
p(X)=\sup \{p: X \text { has type } p\}<2
$$

or

$$
q(X)=\inf \{q: X \text { has cotype } q\}>2
$$

Spaces which do not have HAP

Szankowski (1978): a Banach space X does not have HAP (i.e., admits a subspace without the approximation property) whenever

$$
p(X)=\sup \{p: X \text { has type } p\}<2
$$

or

$$
q(X)=\inf \{q: X \text { has cotype } q\}>2
$$

X has type $p(\leq 2)$ if there exists $C>0$ such that for all n and $x_{1}, \ldots, x_{n} \in X$

$$
\left(\int_{0}^{1}\left\|\sum_{i=1}^{n} r_{i}(t) x_{i}\right\|^{2} d t\right)^{1 / 2} \leq C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p}
$$

New result on HAP

(Johnson and Szankowski, Annals of Mathematics 2012)

New result on HAP

(Johnson and Szankowski, Annals of Mathematics 2012)

Definition For a Banach space X the sequence of distances to a Hilbert space $\left\{d_{n}(X)\right\}$ is defined by

$$
d_{n}(X)=\sup \left\{d\left(E,,_{2}^{\operatorname{dim} E}\right) \mid E \subset X, \operatorname{dim} E \leq n\right\}
$$

New result on HAP

(Johnson and Szankowski, Annals of Mathematics 2012)

Definition For a Banach space X the sequence of distances to a Hilbert space $\left\{d_{n}(X)\right\}$ is defined by

$$
d_{n}(X)=\sup \left\{d\left(E, \int_{2}^{\operatorname{dim} E}\right) \mid E \subset X, \operatorname{dim} E \leq n\right\}
$$

Theorem If X is a Banach space such that the sequence $\left\{d_{n}(X)\right\}$ grows sufficiently slow as $n \rightarrow \infty$, then X must have HAP.

New result on HAP

(Johnson and Szankowski, Annals of Mathematics 2012)

Definition For a Banach space X the sequence of distances to a Hilbert space $\left\{d_{n}(X)\right\}$ is defined by

$$
d_{n}(X)=\sup \left\{d\left(E, l_{2}^{\operatorname{dim} E}\right) \mid E \subset X, \operatorname{dim} E \leq n\right\}
$$

Theorem If X is a Banach space such that the sequence $\left\{d_{n}(X)\right\}$ grows sufficiently slow as $n \rightarrow \infty$, then X must have HAP.

The rate of growth of $\left\{d_{n}(X)\right\}$ needed is of (inverse) Ackermann type: for a fixed $A>1$, define $D: \mathbb{N} \rightarrow \mathbb{N}$ by $D(j)=3\left[A^{j}\right]$ and let

$$
\gamma(j)=\underbrace{D \circ D \circ \ldots \circ D}_{3^{j+1}}(1) .
$$

The theorem requires $d_{\gamma(j)}(X)=o\left(\beta^{-j}\right)$, for some $\beta<1$.

Question $(J-S)$ If $d_{n}(X)=o(\log n)$, does it imply that X has HAP?

Question $(\mathrm{J}-\mathrm{S})$ If $d_{n}(X)=o(\log n)$, does it imply that X has HAP?

Our result

When the rate of growth of $d_{n}(X)$ is at least the same as $(\log n)^{\beta}$, for some $\beta>1$, then X does not necessarily have HAP.

Question $(J-S)$ If $d_{n}(X)=o(\log n)$, does it imply that X has HAP?

Our result

When the rate of growth of $d_{n}(X)$ is at least the same as $(\log n)^{\beta}$, for some $\beta>1$, then X does not necessarily have HAP.

Theorem (A-Chlebovec) Let \mathcal{X} be the class of Banach spaces X which have cotype 2 and are of the form $X=\ell_{2}(Z)$, for some Banach space Z. Let X in \mathcal{X} and assume that there exist constants $\alpha>0, \beta>1$ such that

$$
d_{n}(X) \geq \alpha(\log n)^{\beta} \quad \forall n
$$

Then X does not have HAP.

Criterion (Enflo): Assume that in a Banach space Z there exist bounded sequences $\left\{z_{k}\right\}_{k} \subset Z,\left\{z_{k}^{*}\right\}_{k} \subset Z^{*}$ such that
(i) $z_{k}^{*}\left(z_{k}\right)=1$, for all k, and $z_{k}^{*} \xrightarrow{w *} 0$.
(ii) for every linear operator $T: Z \rightarrow Z$ and n we have

$$
\left|\beta_{n}(T)-\beta_{n-1}(T)\right| \leq\|T\| \alpha_{n}
$$

with $\sum_{n} \alpha_{n}<\infty$, where

$$
\beta_{n}(T)=\frac{1}{2^{n}} \sum_{2^{n} \leq k<2^{n+1}} z_{k}^{*}\left(T z_{k}\right)
$$

Then Z does not have the bounded approximation property.

Criterion (Enflo): Assume that in a Banach space Z there exist bounded sequences $\left\{z_{k}\right\}_{k} \subset Z,\left\{z_{k}^{*}\right\}_{k} \subset Z^{*}$ such that
(i) $z_{k}^{*}\left(z_{k}\right)=1$, for all k, and $z_{k}^{*} \xrightarrow{w *} 0$.
(ii) for every linear operator $T: Z \rightarrow Z$ and n we have

$$
\left|\beta_{n}(T)-\beta_{n-1}(T)\right| \leq\|T\| \alpha_{n}
$$

with $\sum_{n} \alpha_{n}<\infty$, where

$$
\beta_{n}(T)=\frac{1}{2^{n}} \sum_{2^{n} \leq k<2^{n+1}} z_{k}^{*}\left(T z_{k}\right)
$$

Then Z does not have the bounded approximation property.
Proof $\beta_{j}(I)=1$ for all j and $\beta_{j}(T) \rightarrow 0$ if T has finite rank. Then, for any T of finite rank

$$
\begin{aligned}
& \|I-T\|_{[z k]_{2^{n} \leq k<2^{n+1}}} \geq\left|\beta_{n}(I-T)\right| \geq 1-\left|\beta_{n}(T)\right| \\
& \geq 1-\sum_{j=n}^{\infty}\left|\beta_{j+1}(T)-\beta_{j}(T)\right| \geq 1-\|T\| \sum_{j=n}^{\infty} \alpha_{j} .
\end{aligned}
$$

Some useful vectors in $\ell_{2}(X)$:

Some useful vectors in $\ell_{2}(X)$:

Definition Let X be a Banach space. For $n=1,2, \ldots$, let $\kappa_{n}(X) \geq 1$ be the smallest constant κ such that for every 1 -unconditional normalized sequence of vectors $\left\{u_{i}\right\}_{i=1}^{\prime}$ in X, with $1 \leq I \leq n$, one has

$$
\kappa^{-1} \sqrt{I} \leq\left\|\sum_{i=1}^{\prime} u_{i}\right\| \leq \kappa \sqrt{l}
$$

[We say that X has property (H) provided $\kappa(X):=\sup _{n} \kappa_{n}(X)<\infty$].

Some useful vectors in $\ell_{2}(X)$:

Definition Let X be a Banach space. For $n=1,2, \ldots$, let $\kappa_{n}(X) \geq 1$ be the smallest constant κ such that for every 1 -unconditional normalized sequence of vectors $\left\{u_{i}\right\}_{i=1}^{l}$ in X, with $1 \leq I \leq n$, one has

$$
\kappa^{-1} \sqrt{I} \leq\left\|\sum_{i=1}^{\prime} u_{i}\right\| \leq \kappa \sqrt{l}
$$

[We say that X has property (H) provided $\kappa(X):=\sup _{n} \kappa_{n}(X)<\infty$].

Proposition (Nielsen-Tomczak J.) Let X be a Banach space which has type 2. There is a universal constant $C \geq 1$ such that, for all n,

$$
d_{n}(X) \leq C T_{2}(X)^{3} \kappa_{n}\left(\ell_{2}(X)\right)
$$

This means: for all $n \geq 1$ there are 1-unconditional normalized vectors $\left\{z_{1}, \ldots, z_{n}\right\} \subset \ell_{2}(X)$ such that either

$$
\left\|\sum_{i=1}^{n} z_{i}\right\|_{\ell_{2}(X)}>c d_{n}(X) n^{1 / 2}
$$

or

$$
\left\|\sum_{i=1}^{n} z_{i}\right\|_{\ell_{2}(X)}<\frac{1}{c d_{n}(X)} n^{1 / 2}
$$

When X has type 2 the first alternative fails.

This means: for all $n \geq 1$ there are 1 -unconditional normalized vectors $\left\{z_{1}, \ldots, z_{n}\right\} \subset \ell_{2}(X)$ such that either

$$
\left\|\sum_{i=1}^{n} z_{i}\right\|_{\ell_{2}(X)}>c d_{n}(X) n^{1 / 2}
$$

or

$$
\left\|\sum_{i=1}^{n} z_{i}\right\|_{\ell_{2}(X)}<\frac{1}{c d_{n}(X)} n^{1 / 2}
$$

When X has type 2 the first alternative fails.

Proposition Let X be a Banach space which has type 2. There is $c=c\left(T_{2}(X)\right)>0$ such that, for all $n \geq 1$, there exists a 1-unconditional normalized sequence of vectors $\left\{z_{i}\right\}_{i=1}^{n} \subset \ell_{2}(X)$ with

$$
\left\|\sum_{i=1}^{n} z_{i}\right\|_{\ell_{2}(X)} \leq \frac{1}{c d_{n}(X)} n^{1 / 2}
$$

Theorem Let X be a Banach space which has cotype 2. Assume there exist constants $\alpha>0$ and $\beta>1$ such that

$$
d_{n}(X) \geq \alpha(\log (n))^{\beta} \quad \forall n
$$

Then $\ell_{2}(X)$ has a subspace without the approximation property.

Theorem Let X be a Banach space which has cotype 2. Assume there exist constants $\alpha>0$ and $\beta>1$ such that

$$
d_{n}(X) \geq \alpha(\log (n))^{\beta} \quad \forall n
$$

Then $\ell_{2}(X)$ has a subspace without the approximation property.

Sketch of the proof: WLOG we can assume that X^{*} has type 2. Then

$$
d_{n}\left(X^{*}\right) \geq \alpha / T_{2}\left(X^{*}\right)(\log (n))^{\beta}
$$

Theorem Let X be a Banach space which has cotype 2. Assume there exist constants $\alpha>0$ and $\beta>1$ such that

$$
d_{n}(X) \geq \alpha(\log (n))^{\beta} \quad \forall n
$$

Then $\ell_{2}(X)$ has a subspace without the approximation property.

Sketch of the proof: WLOG we can assume that X^{*} has type 2. Then

$$
d_{n}\left(X^{*}\right) \geq \alpha / T_{2}\left(X^{*}\right)(\log (n))^{\beta}
$$

For all n, we use (similarly as Szankowski) a partition ∇_{n} of $\left\{2^{n}, \ldots, 2^{n+1}-1\right\}$. For $A \in \nabla_{n}$ we can find $\left\{e_{i}^{*}\right\}_{i \in A} \in \ell_{2}\left(X^{*}\right)$ such that

$$
\left\|\sum_{i \in A} e_{i}^{*}\right\|_{\ell_{2}\left(X^{*}\right)} \leq \frac{c}{d_{|A|}\left(X^{*}\right)}|A|^{1 / 2}
$$

Theorem Let X be a Banach space which has cotype 2. Assume there exist constants $\alpha>0$ and $\beta>1$ such that

$$
d_{n}(X) \geq \alpha(\log (n))^{\beta} \quad \forall n
$$

Then $\ell_{2}(X)$ has a subspace without the approximation property.
Sketch of the proof: WLOG we can assume that X^{*} has type 2. Then

$$
d_{n}\left(X^{*}\right) \geq \alpha / T_{2}\left(X^{*}\right)(\log (n))^{\beta}
$$

For all n, we use (similarly as Szankowski) a partition ∇_{n} of $\left\{2^{n}, \ldots, 2^{n+1}-1\right\}$. For $A \in \nabla_{n}$ we can find $\left\{e_{i}^{*}\right\}_{i \in A} \in \ell_{2}\left(X^{*}\right)$ such that

$$
\left\|\sum_{i \in A} e_{i}^{*}\right\|_{\ell_{2}\left(X^{*}\right)} \leq \frac{c}{d_{|A|}\left(X^{*}\right)}|A|^{1 / 2}
$$

Let $\left\{e_{j}\right\}_{j \in A} \subset \ell_{2}(X)$ such that $e_{i}^{*}\left(e_{j}\right)=\delta_{i j}$. Denote $X_{A}=\operatorname{span}\left\{e_{i}\right\}_{i \in A}$ and then set

$$
Y=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus x_{A}\right)_{\ell_{2}} \subset \ell_{2}(X)
$$

$$
Y=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus X_{A}\right)_{\ell_{2}} \subset \ell_{2}(X)
$$

with basis vectors $f_{i}=\left(0, \ldots, 0, e_{i}, 0, \ldots\right) \in Y\left(e_{i} \in X_{A}\right.$ in its corresponding position for $i \in A$)

$$
Y^{*}=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus X_{A}^{*}\right)_{\ell_{2}}
$$

with basis vectors $f_{i}^{*}=\left(\mathbf{0}, \ldots, \mathbf{0},\left.e_{i}^{*}\right|_{X_{A}}, \mathbf{0}, \ldots\right)$.

$$
Y=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus X_{A}\right)_{\ell_{2}} \subset \ell_{2}(X)
$$

with basis vectors $f_{i}=\left(0, \ldots, 0, e_{i}, 0, \ldots\right) \in Y\left(e_{i} \in X_{A}\right.$ in its corresponding position for $i \in A$)

$$
Y^{*}=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus X_{A}^{*}\right)_{\ell_{2}}
$$

with basis vectors $f_{i}^{*}=\left(\mathbf{0}, \ldots, \mathbf{0},\left.e_{i}^{*}\right|_{X_{A}}, \mathbf{0}, \ldots\right)$.
Subspace without AP : $Z=\overline{\operatorname{span}}\left\{z_{i}\right\}_{i} \subset Y$

$$
z_{i}=f_{2 i}-f_{2 i+1}+f_{4 i}+f_{4 i+1}+f_{4 i+2}+f_{4 i+3}
$$

It remains to check Enflo's criterion for $\left\{z_{i}\right\}_{i},\left\{z_{i}^{*}\right\}$

$$
z_{i}^{*}=\left.\frac{1}{2}\left(f_{2 i}^{*}-f_{2 i+1}^{*}\right)\right|_{z}=\left.\frac{1}{4}\left(f_{4 i}^{*}+f_{4 i+1}^{*}+f_{4 i+2}^{*}+f_{4 i+3}^{*}\right)\right|_{z}
$$

Criterion (Enflo): Assume that in Z there exist bounded sequences $\left\{z_{i}\right\}_{i} \subset Z,\left\{z_{i}^{*}\right\}_{i} \subset Z^{*}$ s. t.
(i) $z_{i}^{*}\left(z_{i}\right)=1$, for all i, and $z_{i}^{*} \xrightarrow{w *} 0$.
(ii) for every linear operator $T: Z \rightarrow Z$ and n we have

$$
\left|\beta_{n}(T)-\beta_{n-1}(T)\right| \leq\|T\| \alpha_{n}
$$

with $\sum_{n} \alpha_{n}<\infty$, where

$$
\beta_{n}(T)=\frac{1}{2^{n}} \sum_{2^{n} \leq i<2^{n+1}} z_{i}^{*}\left(T z_{i}\right)
$$

Then Z does not have the bounded approximation property.

$$
\left\{\begin{array}{l}
z_{i}=f_{2 i}-f_{2 i+1}+f_{4 i}+f_{4 i+1}+f_{4 i+2}+f_{4 i+3} \\
z_{i}^{*}=\left.\frac{1}{2}\left(f_{2 i}^{*}-f_{2 i+1}^{*}\right)\right|_{z}=\left.\frac{1}{4}\left(f_{4 i}^{*}+\ldots+f_{4 i+3}^{*}\right)\right|_{z} \\
\beta_{n}(T)=\frac{1}{2^{n}} \sum_{2^{n} \leq i<2^{n+1}} z_{i}^{*}\left(T z_{i}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
z_{i}=f_{2 i}-f_{2 i+1}+f_{4 i}+f_{4 i+1}+f_{4 i+2}+f_{4 i+3} \\
z_{i}^{*}=\left.\frac{1}{2}\left(f_{2 i}^{*}-f_{2 i+1}^{*}\right)\right|_{z}=\left.\frac{1}{4}\left(f_{4 i}^{*}+\ldots+f_{4 i+3}^{*}\right)\right|_{z} \\
\beta_{n}(T)=\frac{1}{2^{n}} \sum_{2^{n} \leq i<2^{n+1}} z_{i}^{*}\left(T z_{i}\right)
\end{array}\right. \\
& \bullet \beta_{n}(T)-\beta_{n-1}(T)=\frac{1}{2^{n+1}} \sum_{2^{n+1} \leq i<2^{n+2}} f_{i}^{*}\left(T y_{i}\right),
\end{aligned}
$$

$y_{i}=$ a linear combination (with bounded coefficients) of 9 vector basis f_{j} not including f_{i}

$$
\begin{aligned}
& \left\{\begin{array}{l}
z_{i}=f_{2 i}-f_{2 i+1}+f_{4 i}+f_{4 i+1}+f_{4 i+2}+f_{4 i+3} \\
z_{i}^{*}=\left.\frac{1}{2}\left(f_{2 i}^{*}-f_{2 i+1}^{*}\right)\right|_{z}=\left.\frac{1}{4}\left(f_{4 i}^{*}+\ldots+f_{4 i+3}^{*}\right)\right|_{z} \\
\beta_{n}(T)=\frac{1}{2^{n}} \sum_{2^{n} \leq i<2^{n+1}} z_{i}^{*}\left(T z_{i}\right)
\end{array}\right. \\
& \bullet \beta_{n}(T)-\beta_{n-1}(T)=\frac{1}{2^{n+1}} \sum_{2^{n+1} \leq i<2^{n+2}} f_{i}^{*}\left(T y_{i}\right),
\end{aligned}
$$

$y_{i}=$ a linear combination (with bounded coefficients) of 9 vector basis $f_{j} \underline{\text { not including }} f_{i}$

- $\left|\beta_{n}(T)-\beta_{n-1}(T)\right| \leq \frac{1}{2^{n+1}} \sum_{A \in \nabla_{n+1}}\left|\sum_{i \in A} f_{i}^{*}\left(T y_{i}\right)\right|$

$$
=\frac{1}{2^{n+1}} \sum_{A \in \nabla_{n+1}}\left|\int_{0}^{1}\left(\sum_{i \in A} r_{i}(t) f_{i}^{*}\right)\left(\sum_{i \in A} r_{i}(t) T y_{i}\right) d t\right|
$$

$$
\begin{aligned}
& \leq \frac{1}{2^{n+1}} \sum_{A \in \nabla_{n+1}} \max _{\varepsilon_{i} \pm \pm 1}\left\{\left\|\sum_{i \in A} \varepsilon_{i} f_{i}^{*}\right\|\left\|T\left(\sum_{i \in A} \varepsilon_{i} y_{i}\right)\right\|\right\} \\
& \leq \frac{1}{2^{n+1}} \frac{2^{n+1}}{m_{n+1}}\|T\| \max _{A, \varepsilon_{i}= \pm 1}\left\|\sum_{i \in A} \varepsilon_{i} f_{i}^{*}\right\| \cdot \max _{A, \varepsilon_{i}= \pm 1}\left\|\sum_{i \in A} \varepsilon_{i} y_{i}\right\|
\end{aligned}
$$

(here we used $|A|=m_{n+1}=2^{(n+1) / 8}$)

$$
\begin{aligned}
& \leq \frac{1}{2^{n+1}} \sum_{A \in \nabla_{n+1}} \max _{\varepsilon_{i}= \pm 1}\left\{\left\|\sum_{i \in A} \varepsilon_{i} f_{i}^{*}\right\|\left\|T\left(\sum_{i \in A} \varepsilon_{i} y_{i}\right)\right\|\right\} \\
& \leq \frac{1}{2^{n+1}} \frac{2^{n+1}}{m_{n+1}}\|T\| \max _{A, \varepsilon_{i}= \pm 1}\left\|\sum_{i \in A} \varepsilon_{i} f_{i}^{*}\right\| \cdot \max _{A, \varepsilon_{i}= \pm 1}\left\|\sum_{i \in A} \varepsilon_{i} y_{i}\right\|
\end{aligned}
$$

(here we used $|A|=m_{n+1}=2^{(n+1) / 8}$)

$$
Y=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus x_{A}\right)_{\ell_{2}}, Y^{*}=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus X_{A}^{*}\right)_{\ell_{2}}
$$

$$
\begin{aligned}
& \leq \frac{1}{2^{n+1}} \sum_{A \in \nabla_{n+1}} \max _{\varepsilon_{i}= \pm 1}\left\{\left\|\sum_{i \in A} \varepsilon_{i} f_{i}^{*}\right\|\left\|T\left(\sum_{i \in A} \varepsilon_{i} y_{i}\right)\right\|\right\} \\
& \leq \frac{1}{2^{n+1}} \frac{2^{n+1}}{m_{n+1}}\|T\| \max _{A, \varepsilon_{i}= \pm 1}\left\|\sum_{i \in A} \varepsilon_{i} f_{i}^{*}\right\| \cdot \max _{A, \varepsilon_{i}= \pm 1}\left\|\sum_{i \in A} \varepsilon_{i} y_{i}\right\|
\end{aligned}
$$

(here we used $|A|=m_{n+1}=2^{(n+1) / 8}$)

$$
\begin{aligned}
& Y=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus x_{A}\right)_{\ell_{2}}, Y^{*}=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus X_{A}^{*}\right)_{\ell_{2}} \\
& \left\|\sum_{i \in A} \varepsilon_{i} f_{i}^{*}\right\| \leq \frac{c}{d_{|A|}\left(X^{*}\right)}|A|^{1 / 2}=\frac{c}{\left(\log \left(m_{n+1}\right)\right)^{\beta}} m_{n+1}^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{2^{n+1}} \sum_{A \in \nabla_{n+1}} \max _{\varepsilon_{i}= \pm 1}\left\{\left\|\sum_{i \in A} \varepsilon_{i} f_{i}^{*}\right\|\left\|T\left(\sum_{i \in A} \varepsilon_{i} y_{i}\right)\right\|\right\} \\
& \leq \frac{1}{2^{n+1}} \frac{2^{n+1}}{m_{n+1}}\|T\| \max _{A, \varepsilon_{i}= \pm 1}\left\|\sum_{i \in A} \varepsilon_{i} f_{i}^{*}\right\| \cdot \max _{A, \varepsilon_{i}= \pm 1}\left\|\sum_{i \in A} \varepsilon_{i} y_{i}\right\|
\end{aligned}
$$

(here we used $|A|=m_{n+1}=2^{(n+1) / 8}$)

$$
\begin{gathered}
Y=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus x_{A}\right)_{\ell_{2}}, Y^{*}=\left(\sum_{n=1}^{\infty} \sum_{A \in \nabla_{n}} \bigoplus X_{A}^{*}\right)_{\ell_{2}} \\
\left\|\sum_{i \in A} \varepsilon_{i} f_{i}^{*}\right\| \leq \frac{c}{d_{|A|}\left(X^{*}\right)}|A|^{1 / 2}=\frac{c}{\left(\log \left(m_{n+1}\right)\right)^{\beta}} m_{n+1}^{1 / 2}
\end{gathered}
$$

- special choice of $A^{\prime} s:\left\|\sum_{i \in A} \varepsilon_{i} y_{i}\right\| \leq 9|A|^{1 / 2}=9 m_{n+1}^{1 / 2}$
$\left(y_{i}=\right.$ a linear combination of 9 vector basis $\left.f_{j}\right)$

Thus

$$
\left|\beta_{n}(T)-\beta_{n-1}(T)\right| \leq c\|T\| \frac{1}{\left(\log \left(m_{n+1}\right)\right)^{\beta}}
$$

with $m_{n+1}=2^{(n+1) / 8}$.

Since $\beta>1$, Enflo's criterion is satisfied:

$$
\sum_{n} \frac{1}{\left(\log \left(m_{n+1}\right)\right)^{\beta}}<\infty
$$

Final remarks

The result suggests a possible way of dealing with another question raised by Johnson and Szankoswski:

Question (J-S) Is HAP preserved under ℓ_{2}-sums?

Final remarks

The result suggests a possible way of dealing with another question raised by Johnson and Szankoswski:

Question (J-S) Is HAP preserved under ℓ_{2}-sums?

Possible candidate for a counterexample:

$$
X=\left(\sum_{n} \oplus \ell_{p_{n}}^{k_{n}}\right)_{\ell_{2}}
$$

The parameters $k_{n} \uparrow \infty$ and $p_{n} \rightarrow 2$ can be chosen such that X has HAP and

$$
d_{n}(X) \geq \alpha(\log \log \log (n))^{\beta}
$$

for some absolute constants $\alpha>0$ and $\beta>1$.

Final remarks

The result suggests a possible way of dealing with another question raised by Johnson and Szankoswski:

Question (J-S) Is HAP preserved under ℓ_{2}-sums?

Possible candidate for a counterexample:

$$
X=\left(\sum_{n} \oplus \ell_{p_{n}}^{k_{n}}\right)_{\ell_{2}}
$$

The parameters $k_{n} \uparrow \infty$ and $p_{n} \rightarrow 2$ can be chosen such that X has HAP and

$$
d_{n}(X) \geq \alpha(\log \log \log (n))^{\beta}
$$

for some absolute constants $\alpha>0$ and $\beta>1$.
Question Is it true that $\ell_{2}(X)$ does not have HAP?

