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1 Introduction

The large time behavior of solutions of the linearly damped wave equation

utt + 2αut = (aν(x)ux)x + f(u), 0 < x < 1, t > 0 (1.1)

with Neumann boundary condition

ux(0, t) = ux(1, t) = 0, t > 0, (1.2)

has been considered by several authors and some results showing almost no spatial
dependence on the x variable were obtained - see, for example, [Carvalho], [Sola-Morales
and Valencia], ... (see also [Conway, Hoff and Smoller], [Hale], [Fusco] for the equivalent
problem for reaction-diffusion equations). As it is shown in [Carvalho], if inf{a(x) :
x ∈ [0, 1]} is sufficiently large, then any solution converges to a spatially homogeneous
solution of (??) (in the case a constant, a similar result was obtained by [Sola-Morales
and Valencia]).

For the wave equation with large damping, the existence of a exponentially at-
tracting finite dimensional invariant manifold was shown by [Mora]. In this paper we
consider the case in which aν is large except in a neighborhood of a fixed point x1 in
[0, 1], where it becomes small.

Since aν is large outside a small neighborhood of x1, we expect that the solutions of
(??) converge to a constant on each subinterval as ν → 0+. In fact, we will prove that
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if α is sufficiently large then, as ν → 0, the solutions of (??) approach the solutions of
a system of O.D.Es.

Diffusion coefficients of this type have been considered by some authors (e.g.,
[Fusco], [Hale], [Carvalho and Pereira], [Carvalho and Oliveira]) in the context of
parabolic equations and some nice results were obtained concerning to the structure of
the global attractor.

The main goal of the present paper is to extend those results for equation (1.1),
(1.2). Specifically, we will show that the global attractor Aν of (1.1), (1.2) approaches
the attractor A0 of a system of two ordinary differential equations.

Remark 1.1 In fact, one can consider the case where the diffusion coefficient becomes
small in a neighborhood of a finite set of points. The difficulties thus introduced are
only of a notational nature. We have chosen to keep the notation as simple as possible
in order to better convey the main idea.

Remark 1.2 The case where the diffusion coefficient becomes large everywhere is not
explicitly considered here. However, it will become clear from our approach that, in this
case the asymptotic behavior is governed by a single first order differential equation.
This improves the results of [Carvalho], where a second order equation is obtained.

2 Hypotheses

In this section we state the hypotheses to be used throughout the paper.

H1 f : IR→ IR is C2 and satisfies the dissipativeness condition

lim sup
|u|→∞

f(u)

u
≤ −r, (2.3)

for some r > 0.

H2 There exist x1 ∈ (0, 1), positive constants `1, a1, e1, e2 and functions `′1 > `1,
a′1 > a1 of a small parameter ν > 0 such that `′1(ν) − `1 = O(νq), for some
0 < q < 1, and a′1(ν)− a1 = o(1) as ν → 0+, in such a way that a = aν is a C1

function satisfying
a(x) ≥ e1

ν
, for 0 ≤ x ≤ x1 − ν`′1

a(x) ≥ e2
ν
, for x1 + ν`′1 ≤ x ≤ 1

a(x) ≥ νa1, for x1 − ν`′1 ≤ x ≤ x1 + ν`′1
a(x) ≤ νa′1, for x1 − ν`1 ≤ x ≤ x1 + ν`1

(2.4)
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3 The linear problem

Let X be the real Hilbert space of square integrable functions on [0, 1]. For each
0 < ν ≤ ν0, define the operator Aν in X by

D(Aν) = {u ∈ H2(0, 1) : u′(0) = u′(1) = 0}

and
(Aνu)(x) = −(aν(x)u′(x))′, 0 < x < 1.

Since Aν is a closed selfadjoint nonnegative operator in L(X), Aν is sectorial and
therefore the fractional power spaces Xγ

ν = D(Aγν) endowed with the graph norm are
well defined and they are Hilbert spaces. Since Aν has compact resolvent, the spectrum
of Aν consists only of eigenvalues and, for each 0 < γ ≤ 1, the embbeding Xγ

ν ⊂ X

is compact. In this paper we shall assume that γ = 1
2
, in which case X

1
2
ν = H1(0, 1)

endowed with the norm given by the inner product

〈u, ũ〉 =
∫ 1

0
[u(x)ũ(x) + aν(x)u′(x)ũ′(x)] dx.

The following result is proved in [?].

Lemma 3.1 There exists a constant E > 0 such that

sup
0≤x≤1

|φ(x)| ≤ E
(∫ 1

0
[φ(x)2 + aν(x)φ′(x)2 dx

) 1
2

,

for all ν > 0 and φ ∈ H1(0, 1). Therefore, the constant appearing in the embbeding

L∞(0, 1) ↪→ X
1
2
ν is independent of ν.

Let H be the Hilbert space H1(0, 1)× L2(0, 1) endowed with the norm defined by
the inner product

〈(u, v), (ũ, ṽ)〉 =
∫ 1

0
[u(x)ũ(x) + v(x)(̃v)(x) + aν(x)u′(x)ũ′(x)] dx.

Let Cν : D(Cν) ⊂ H → H be defined by

D(Cν) = D(Aν)×H1(0, 1)

and
Cν(u, v)(x) = (v(x), (aν(x)u′(x))′ − 2αv(x)) , 0 < x < 1.
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Lemma 3.2 The operator Cν is the generator of a strongly continuous semigroup on
H.

Proof. Let Bν : D(Bν) = D(Cν)→ H be defined by

Bν(u, v) = (v, (aνu
′)′ − 2αv − u).

If (u, v) ∈ D(Cν), then integration by parts gives

〈Bν(u, v), (u, v)〉 =
∫ 1

0 (uv + au′v′ + v(au′)′ − uv − 2αv2) dx
= −2α

∫ 1
0 v(x)2 dx ≤ 0

and therefore Bν is dissipative. Moreover, given (f, g) ∈ H, the equations{
u(x)− v(x) = f(x)
−(aν(x)u′(x))′ + (2α + 1)v(x) + u(x) = g(x)

have an unique solution (u, v) ∈ D(Cν), which shows that R(I − Bν) = H. By
the Lumer-Phillips Theorem, Bν is the generator of a strongly continuous semigroup
of contractions on H. Since Cν = Bν + N , where N(u, v) = (0,−u) is a bounded
linear operator on H, it follows that Cν is also the generator of a strongly continuous
semigroup {eCνt, t ≥ 0} in H.

We now study the spectrum of Cν and prove exponential decay in a subspace of H.

Lemma 3.3 Let 0 = λ0(ν) < λ1(ν) < ...→∞ be the sequence of the eigenvalues and
φ0ν(x) ≡ 1, φ1ν , ... be the corresponding eigenfunctions of{

−(aν(x)φjν(x))′ = λj(ν)φjν(x), 0 < x < 1,
φ′jν(x) = 0, for x = 0, 1

(that is: the eigenvalues and eigenfunctions of Aν).
As ν → 0+, we have λ1(ν)→ a1l1

2l1x1(1−x1)
and λn(ν) = O( 1

ν
), for all n ≥ 2. Futher-

more, ‖φ1(ν)‖L∞(0,1) is bounded and we have

φ1ν(x)→



−
√

x1
1−x1 +O(ν

1
2 ), if x ∈ [0, x1 − ν`′1]

−
√

1−x1
x1

+O(ν
q
2 ), if x ∈ [x1 − ν`′1, x1 − ν`1]

O(1), if x ∈ x1 − ν`1, x1 + ν`1]√
x1

1−x1 +O(ν
q
2 ), if x ∈ [x1 − ν`′1, x1 − ν`1]√

x1
1−x1 +O(ν

1
2 ), if x ∈ [x1 + ν`′1, 1],

(3.5)

as ν → 0+.
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The spectrum of Cν is given by Σ = {µ±k , k = 0, 1, 2, · · · , }, where

µ±k (ν) = −α±
√
α2 − λk(ν).

If ν is small enough, we have four real eigenvalues µ±0 (ν), µ±1 (ν) , with corresponding
normalized eigenfunctions ψ±k = 1√

1−2αµ±
k

(ν)
(φk, µ

±
k (ν)φk), k = 0, 1.

Corresponding to each pair of complex eigenvalues µ±k (ν), k ≥ 2 there is an or-
thonormal basis in the two-dimensional generalized eigenspace
ψ1
k = ( 1√

λk+1
φk, 0) , ψ2

k = (0, φk).

We then have the basis in H
{
ψ+

0 , ψ
+
1 , ψ

−
0 , ψ

−
1 , ψ

1
k≥2, ψ

2
k≥2

}
.

We observe that 〈ψ+
1 , ψ

−
1 〉 = 1+2λ1√

1+4α2(1+λ1)
and 〈ψ±i , ψ−±j 〉 = δij in any other case.

The matrix of the operator Cν with respect to this basis is given by

0
µ+

1

−2α
µ−1

C2

C3

. . .


where

Cn =

[
0

√
λn + 1

−λ√
λn+1

−2α

]

It is convenient at this point to introduce a new inner product in H. To this end
we observe that any z ∈ H can be written (in a unique way) as

z = x+
0 ψ

+
0 + x−0 ψ

−
0 + x+

1 ψ
+
1 + x−1 ψ

−
1 +

∞∑
n=2

x1
nψ

1
n + x2

nψ
2
n

and define

〈〈z, z̃〉〉 = x+
0 x̃

+
0 + x−0 x̃

−
0 + x+

1 x̃
+
1 + x−1 x̃

−
1 +

∞∑
n=2

x1
nx̃

1
n + x2

nx̃
2
n

For later purposes, we observe here that

x+
0 =

| < z, ψ+
0 > < ψ−0 , ψ

+
0 >

< z, ψ−0 > < ψ−0 , ψ
−
0 >

|

| < ψ+
0 , ψ

+
0 > < ψ−0 , ψ

+
0 >

< ψ+
0 , ψ

−
0 > < ψ−0 , ψ

−
0 >

|
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=
1 + 4α2

4α2
< z, ψ+

0 > −
√

1 + 4α2

4α2
< z, ψ−0 > (3.6)

x+
1 =

| < z, ψ+
1 > < ψ−1 , ψ

+
1 >

< z, ψ−1 > < ψ−1 , ψ
−
1 >

|

| < ψ+
1 , ψ

+
1 > < ψ−1 , ψ

+
1 >

< ψ+
1 , ψ

−
1 > < ψ−1 , ψ

−
1 >

|

=
1 + 4α2(1 + λ1)

4(α2 − λ1)(1 + λ1)
< z, ψ+

1 > −

(√
1 + 4α2(1 + λ1)

)
(1 + 2λ1)

4(α2 − λ1)(1 + λ1)
< z, ψ−1 >(3.7)

Now, denoting the new norm by ||| · |||, we have

||z||2 = x+
0

2
+ x−0

2
+ x+

1
2

+ x−1
2

+
∞∑
n=2

x1
n

2
+ x2

n
2

+ x+
0 x
−
0 〈ψ+

0 , ψ
−
0 〉+ x+

1 x
−
1 〈ψ+

1 , ψ
−
1 〉

≤ |||z|||2 + 1/2
(
x+

0
2

+ x−0
2
)
|〈ψ+

0 , ψ
−
0 〉|+ 1/2

(
x+

1
2

+ x−1
2
)
|〈ψ+

1 , ψ
−
1 〉|

and

||z||2 ≥ |||z|||2 − 1/2
(
x+

0
2

+ x−0
2
)
|〈ψ+

0 , ψ
−
0 〉| − 1/2

(
x+

1
2

+ x−1
2
)
|〈ψ+

1 , ψ
−
1 〉|

If α2 ≥ λ1, then |〈ψ+
0 , ψ

−
0 〉| , |〈ψ+

1 , ψ
−
1 | ≤ 1 and it follows that

1/2|||z|||2 ≤ ||z||2 ≤ 3/2|||z|||2

Furthermore, the basis defined above is, by construction, orthonormal in the new
inner product, which we adopt from now on. We also denote it simply by 〈·〉.

We now write z = x+
0 ψ

+
0 + x+

1 ψ
+
1 + w where w ∈ W = [ψ+

0 , ψ
+
1 ]⊥.

Lemma 3.4 Let C̃ = C|W be the restrition of C to the subspace W . Then

||etC̃w|| ≤ e−αt||w||

for any t > 0, w ∈ W .

Proof It is enough to prove the inequality in each of the invariant orthogonal eigenspaces
X−0 = [ψ−0 ], X−1 = [ψ+

1 ] and Xn = [ψn
1, ψn

2], n = 2, 3, · · ·. We treat only the two di-
mensional eigenspaces Xn, since the proof is easier in the one dimensional cases.
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If w ∈ Xn, w = anψn
1 + bnψn

2 then ||w|| = |(a, b)| where | · | denotes euclidean

norm. Thus ||eC̃tw|| = |eCnt(a, b)|.

Let P =

[ √
1 + λn 0
−α

√
λn − α2

]
. Then

P−1CnP =

[
−α

√
λn − α2

−
√
λn − α2 −α2

]
= Bn

It follows that

|eCnt(a, b)| ≤ |eBnt(a, b)|

= |e−αt
[

cosαt sin(
√
λn − α2t)

− sin(
√
λn − α2t) cosαt

]
(a, b)|

≤ e−αt|(a, b)|

which proves the claim.

4 Well-posedness and existence of attractors

In this section we discuss the well-posedness of problem (??), (??) and prove that
it generates a dynamical system in H1(0, 1) × L2(0, 1). Although these results are
well known we include them here for the sake of completeness. We also show that
the problem has a global compact attractor which is bounded in the L∞-norm by a
constant independent of ν and α.

With z = (u, v) ∈ H and G : H → H defined by G(z)(x) = (0, f(u(x))), 0 < x <
1,equation (??) can be written as an evolution equation

ż(t) = Cνz(t) +G(z), (4.1)

or in a ”matrix notation” that will be convenient later:(
u̇
v̇

)
=

(
0 I
−Aν −2α

) (
u
v

)
+

(
0

f e(u)

)

Our first goal is to show that the initial value problem for (??) has a global unique
solution. As usual, solutions of (??) are defined as continuous solutions of the integral
equation

z(t) = eCνtz(0) +
∫ t

0
eCν(t−s)G(z(s)) ds. (4.2)
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We denote by C1,1 the set of differentiable functions with Lipschitz continuos deriva-
tives.

Lemma 4.1 If f : IR→ IR is C1,1, then G : H → H is C1,1 and compact. Moreover,
G and DG maps bounded sets into bounded sets.

Proof. (PROVA DA PRIMEIRA PARTE?) We prove first that G is compact. Observe
that G = Ψ ◦ F ◦ Φ where Φ : H → H1, Ψ : L2 → H, F : H1 → L2 are given
byΦ(u, v) = u, Ψ(w) = (0, w) F (u)(x) = f(u(x)).

Since Φ and Ψ are clearly continuous we only have to prove that F is compact. Also
since by Sobolev’s imbeding theorem, the imersion H1 ↪→ L2 is compact it is enough
to prove that F , considered as function from H1 into H1 is bounded. Suppose then,
that ||u||H1 ≤ C, where C is a real positive constant. Since H1 ↪→ L∞ with contin-
uous imersion, it follows that ||u||∞ ≤ K, where K is a positive constant depending
only ond C. Therefore, there exists a constant M (depending only on C), such that
sup {f(u(x)), f ′(u(x))}, where u varies in the set {u ∈ H1, ||u||H1 ≤ C} . Thus

||F (u)||H1 =
(∫ 1

0
(f(u(x)))2 + (f ′(u(x)))

2
d x
)1/2

≤
(
M2 +M2

∫ 1

0
(u′(x))

2
)1/2

≤
(
M2 +M2||u||2H1

)1/2

≤ M
(
1 + ||u||2H1

)1/2

≤ M
(
1 + C2

)1/2

So G is compact (and therefore also bounded).
Now, if h = (ξ, η) ∈ H (G′(z) · h)(x) = (0, f ′(u(x)) · ξ(x)
Reasoning as before, all we have to prove is that F ′ : H1 −→ L(H1, L2) is bounded.
Take h ∈ H1. Then ||F ′(u)(h)||2L2 =

∫ 1
0 ||f ′(u(x)) · h(x)||2 d x ≤M

∫ 1
0 ||h(x)||2 d x ≤

M ||h||H1 which proves proves the claim.
By using standard arguments and the Contraction Mapping Principle (see [?], [?])

we can prove the following

Theorem 4.2 For any z0 ∈ H, there exists 0 < β ≤ ∞ and a unique solution z(·, z0)
of (??) defined on [0, β) satifying z(0) = z0. If β < ∞, then lim supt→β− ‖z(t)‖ = ∞.
If z0 ∈ D(Cν), then t ∈ (0, β) 7→ z(t, z0) ∈ H is C1, t ∈ [0, β) 7→ z(t, z0) ∈ D(Cν) is
continuous and z is a strict solution of (??).
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Next we show that all solutions are bounded and therefore defined on [0,∞). In
fact, we show that there exists a bounded set in H which attracts any bounded set
of H under the flow generated by (??), (??). To this end, we consider the Liapunov
function

V (u, v) =
∫ 1

0

[
v(x)2

2
+
aν(x)u′(x)2

2

]
− F (u)

where F (u) =
∫ u

0 f(s) ds.

Lemma 4.3 If B is a bounded subset of H, then ∪t≥0T (t)B is also a bounded subset
of H. In particular, any orbit of (??) is bounded.

Proof. Hypothesis (??) implies that there exist positive constants k1 and k2 such that
uf(u) ≤ −r

2
u2 + k1 and F (u) ≤ −r

4
u2 + k2, for all u ∈ IR. Therefore,

V (u, v) ≥
∫ 1

0

{
v(x)2

2
+
r

4
u(x)2 +

1

2
aν(x)u′(x)2 − k2

}
dx

≥ C1||(u, v)||2 − k2 (4.3)

where C1 = min{1
2
, r

4
}. (Observe that C1 does not depend on ν or α.

Now, if z(t) = (u(·, t), v(·, t)) is a solution of (??) with initial value in D(Cν), then

d

dt
V (u(·, t), v(·, t)) =

∫ 1

0
{vvt + aν(x)uxuxt − f(u)ut} dx

=
∫ 1

0
−2αv2 dx (4.4)

Therefore V (u(t), v(t)) decreases if (u(t), v(t) is a solution with initial value in
D(Cν) and then, by continuity, this is also true for any solution.

Suppose B ⊂ H is bounded, say B ⊂ B(0, r). The there exists a constant
C2 = C2(B) such that ‖u‖∞ ≤ C2 if (u, v) ∈ B (and this constant can be chosen
independently of α and ν.

Therefore, there exists C3 = C3(B) such that |f(s)| ≤ C3 if 0 ≤ s ≤ C3. Thus

|F (u(x))| ≤
∫ u(x)
0 |f(s)| ds ≤ C2C3 and

∫ 1
0 |F (u(x))| dx ≤ C2C3, so

|V (u, v)| ≤ 1

2
‖(u, v)‖2

H + C2C3 ≤
1

2
R2 + C2C3

We conclude that, for t ≥ 0 and (u, v) ∈ B

‖T (t)(u, v)‖ ≤ V (T (t)(u, v)) + k2 ≤ V (u, v) + k2 ≤
1

2
R2 + C2C3 + k2

(Observe that these constants do not depend on ν or α).
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Lemma 4.4 The semigroup T (t) is asymptoticaly smooth.

From the variation of constants formula and lemma ?? it follows that

T (t)z = eCνtz + U(t)z

where U(t) is compact.
Writing z = x+

0 ψ
+
0 + x+

1 ψ
+
1 + w, it follows from the representation of Cν given in

section ?? that
T (t)z = eCνtw + x1

+eµ
+
1 tψ+

1 + x+
0 ψ

+
0 + U(t)z

Writing S(t) = eCνtw + x1
+eµ

+
1 tψ+

1 and V (t) = x+
0 ψ

+
0 + U(t)z, we have

T (t) = S(t) + V (t), with ‖S(t)z‖ ≤ eµ
+
1 tz‖ by lemma ?? and V (t) compact.

Using lemma 3.2.6 of [?] the result follows immediately.
For convenience we trancribe here the definition of a gradient system as given in

[?].

Definition 4.1 A strongly continous Cr-semigroup T (t) : X → X, t ≥ 0, r ≥ 1 is said
to be a gradient system if

1. Each bounded orbit is precompact.

2. There exists a Lyapunov function for T (t); that is, there is a continuos function
V : X → IR with the property that

(a) V is bounded below.

(b) V (x)→∞ as t→∞.

(c) V (T (t)x) is noincreasing in t for each x ∈ X.

(d) If x is such that T (t)x is defined for t ∈ IR and V (T (t)x) = V (x) for t ∈ IR,
then x is and equilibrium point.

Lemma 4.5 T(t) is a gradient system

Proof. ??. follows from lemmas ??, ?? and the variation of constants formula. ??),
??), ??) follow from ?? and ?? ( in the proof of lemma ??). Finally, suppose that
V (T (t)z) = V (z) for t ∈ IR, where z = (u(t), v(t)). Then, by ??, v(t, x) ≡ 0 and so
u(t, x) = u(0, x) = ϕ(x) and satisfies

(aϕ(x))x + f(ϕ(x)) = 0 , ϕx(0) = ϕx(1) = 0

that is z = (ϕ, 0) is an equilibrium. This proves ??.
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Lemma 4.6 Let E be the set of equilibrium points of T (t). Then, there exists a con-
stant C, independent of ν and α such that ‖ϕ‖ ≤ C, for all (ϕ, 0) ∈ E.

Proof. If (ϕ, 0) ∈ E then (aν(x)ϕ(x))x+f(ϕ(x)) = 0 , ϕx(0) = ϕx(1) = 0. Multiplying
by ϕ(x) and integrating, we obtain∫ 1

0
(aν(x)ϕ(x))ϕx dx =

∫ 1

0
f(ϕ(x)) dx

From ??, it follows that∫ 1

0
(aν(x)ϕx(x))ϕx(x) ≤

∫ 1

0
−r

2
u2(x) + k1 dx

and so

‖ϕ‖2 =
∫ 1

0
(aν(x)ϕx(x))ϕx(x)) + u2(x) dx

≤ max{1, 2

r
}
∫ 1

0
k1 dx

which gives the result.

Theorem 4.7 The problem (??) has a global compact attractor A for any ν > 0 and
α > 0, and A = W u(E). If each element of E is hyperbolic then A =

⋃
x∈EW

u(x).
Furthermore there exists a constant C independent of ν and α such that ‖u‖ ≤ C for
any (u, v) ∈ A.
Proof. The existence follows from theorem 3.8.5 of [?]. For the boundeness we use
lemma ??, the decreasing property of V and the imbbeding given by lemma ??.

5 Invariant Manifold and Asymptotic Behavior

Using the notation of section ?? we write z = x+
0 ψ

+
0 + x+

1 ψ
+
1 + w for z ∈ H.

Then equation ?? can be decomposed as
ẋ+

0 = P0(x+
0 , x

+
1 , w)

ẋ+
1 = µ+

1 x
+
1 + P1(x+

0 , x
+
1 , w)

ẇ = C3w +Q(x+
0 , x

+
1 , w)

where

C3 =

[
0 I

−A|W −2α

]
P0(x+

0 , x
+
1 , w) = < G(z), ψ+

0 >
P1(x+

0 , x
+
1 , w) = < G(z), ψ+

1 >
Q(x+

0 , x
+
1 , w) = G(z)− P0(x+

0 , x
+
1 , w)ψ+

0 − P0(x+
0 , x

+
1 , w)ψ+

1
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Using equations ?? e ?? (with z = (0, f(u))), we obtain (after some routine com-
putation)

P0(x+
0 , x

+
1 , w) =

1

2α

∫ 1

0
f(z)φ0 (5.5)

P1(x+
0 , x

+
1 , w) =

√
1− 2αµ+

1

µ+
1 − µ−1

∫ 1

0
f(z)φ1 (5.6)

We now proceed formally in order to obtain a set of O.D.Es, which we expect to
describe the asymptotic behavior of ?? if α is big and ν goes to infinity.

If α is big we expect, from lemma ??, the w-component to die out very fast. Taking
also into account the behavior of the eigenvalues and eigenfunctions of A, given by
lemma ?? as ν → 0, we obtain

P0(x+
0 , x

+
1 , w) =

1

2α

∫ 1

0
f(x+

0 φ0 + x+
1

1√
1− 2αµ+

1

φ1 + w)

∼ 1

2α

(∫ x1

0
f(x+

0 + x+
1

k1

γ
) +

∫ 1

x1
f(x+

0 + x+
1

k2

γ
)

)

=
1

2α

(
x1f(x+

0 + x+
1

k1

γ
) + (1− x1)f(x+

0 + x+
1

k2

γ
)

)
(5.7)

P1(x+
0 , x

+
1 , w) =

√
1− 2αµ+

1

µ+
1 − µ−1

∫ 1

0
f(x+

0 φ0 + x+
1

1√
1− 2αµ+

1

φ1 + w)φ1

∼
√
γ

2
√
α2 − β

(∫ x1

0
f(x+

0 − x+
1

k1

γ
)k1 +

∫ 1

x1
f(x+

0 + x+
1

k2

γ
)

)
k2

=
γ

2
√
α2 − β

(
−x1k1f(x+

0 − x+
1

k1

γ
) + (1− x1)k2f(x+

0 + x+
1

k2

γ
)

)
(5.8)

where

β = lim
µ→0

λ1 =
2x1l1

x1(1− x1)

γ = lim
ν→0

√
1− 2αµ+

1 = 1 +
2β

1 +
√

1− β
α
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After the change of variables

x+
0 = x1z1 + (1− x1)z2

x+
1 = γ (−k1x1z1 + k2(1− x1)z2) (5.9)

equations ??, ?? become

ż1 =

(
x1

2α
+

1− x1

2
√
α2 − β

)
f(z1) +

(
1− x1

2α
− 1− x1

2
√
α2 − β

)
f(z2)

+ (
√
α2 − β − α)(1− x1)(z1 − z2)

=
1

2α
(f(z1) + (1− x1)β(z2 − z1))

+
1

2α3

 β2

2− β
α2 + 2

√
1− β

α2

(z2 − z1)− (1− x1)
β

1− β
α2 +

√
1− β

α2 (f(z2)− f(z1))


ż2 =

(
x1

2α
− x1

2
√
α2 − β

)
f(z1) +

(
1− x1

2α
+

x1

2
√
α2 − β

)
f(z2)

+ (
√
α2 − β − α)(x1)(z2 − z1)

=
1

2α
(f(z2)− x1β(z2 − z1))

+
1

2α3

 β2

2− β
α2 + 2

√
1− β

α2

(z2 − z1) + x1
β

1− β
α2 +

√
1− β

α2 (f(z2)− f(z1))



Reescaling the time by 2α, we obtain

ż1 =
(
f(z1) +

a1

2l1x1

(z2 − z1)
)

+
1

2α2
R1(α)

ż2 =

(
f(z2)− a1

2l1(1− x1)
(z2 − z1)

)
+

1

2α2
R1(α)

where R1(α), R2(α) = O(1) as α→∞.
As α grows, these equations approach the system{

ż1 = f(z1) + a1
2l1x1

(z2 − z1)

ż2 = f(z2)− a1
2l1(1−x1)

(z2 − z1)
(5.10)
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which determines the asymptotic behavior in the parabolic case (see [?], [FUSCO] ).
This is in agreement with the results of [?], showing the attractor of the hyperbolic
equation hyperbolic− with− ε approachs the attractor of the parabolic.

We now want to proceed in showing that these equations indeed describe the asym-
potic behavior of ??. To this end we first modify the function G outside a ball of H
containing the attractor for all ν and α, in order to obtain a function that is globally
bounded in C1,1(H,H), that is, the space of functions in H whose derivative satisfies
a Lipschitz condition. The existence of a ball B of H with the required property is
granted by theorem ??. Furthermore, from lemma ??, there exists a constant C such
that {u(x)|z = (u, v) ∈ B} ⊂ [−C,C] We then modify f outside [−C,C] in such a way
that f becomes bounded in C1,1(IR, IR), It is then easily verified (needs a proof?) that
G satisfies the required properties.

We will now prove that the modified flow admits a (global) exponentially attracting
invariant manyfold. This will, of course, be only a local invariant manyfold for the
original system. But, since it contains the global attractor of the original equation, the
asymptotic behavior is determined by the flow in it.

The following result can be proved following the lines of Henry [?] (Thms. 6.1.2,6.1.4,6.1.5,6.1.7).
A somewhat different proof can be found in [Chow].

Theorem 5.1 Let X, Y be Banach spaces with dimY < ∞ and assume that A is the
generator of a C0 semigroup. Suppose F : X × Y → X and G : X × Y → Y are
bounded in C1,1(X × Y,X × Y ).

Consider the system {
ẋ = Ax+ F (x, y)
ẏ = G(x, y)

(5.11)

Assume that

1. ||F (x, y) − F (x′, y′)|| ≤ λ (||x− x′||+ ||y − y′||) , ||F (x, y)|| ≤ N , for any
(x, y) ∈ X × Y .

2. ||e−At|| ≤M ||e−αt|| for t > 0.

3. ||G(x, y)−G(x′, y′)|| ≤M2 (||x− x′||+ ||y − y′||) for any (x, y) ∈ X × Y .

Suppose that, for some positive constants ∆ and D

1. N
α
< D.

2. θ = λ
α−(1+∆)M2

< ∆
1+∆

.

3. 2λ
α−2(1+∆)M2

< 1.

14



Then there exists a (global) exponentially attracting invariant manifold

S = {(x, y) | x = σ(y), y ∈ Y }

which is bounded in C1,1(X × Y,X × Y ), and satisfies
||σ(y)|| ≤ D, ||σ(y1)− σ(y2)|| ≤ ∆||y1 − y2||.

Corollary 5.1 Suppose f belongs to C1,1(IR, IR) with sup{f(x)|x ∈ IR} = M , sup{fx(x)|x ∈
IR} = L. Assume that

a)
√
λ2(ν) > α > 6L.

Then, there exists a (global) exponentially attracting invariant manifold

S =
{

(x+
0 , x

+
1 , w) | w = σ(x+

0 , x
+
1 ),∈ IR2

}
for system [??].
The flow on S is given by u(t, x) = x+

0 φ0(x) + x+
1 φ1(x) + σ(x+

0 , x
+
1 ) where (x+

0 , x
+
1 ) is

the solution of {
ẋ+

0 = P0(x+
0 , x

+
1 , σ(x+

0 , x
+
1 ))

ẋ+
1 = µ+

1 x
+
1 + P1(x+

0 , x
+
1 , σ(x+

0 , x
+
1 ))

(5.12)

As α and ν → 0, ( with λ2

1
2 > α) σ → 0 in C1(IR2,W ).

Proof. If f satisfies the conditions above, it is easy to prove that P0, P1 and Q belong
to C1,1(H,H) with the same bounds L and M . The first part follows from the theorem
?? with ∆ = 1 and D any number bigger than M

α
. For the second part we observe that

∆ and D can be taken as small as wished by taking α big enough.

Theorem 5.2 Suppose the system ?? is structurally stable. Then, for α sufficiently

big and ν sufficiently small, with
√
λ2(ν) > α the flow on the invariant manifold given

by ?? is topologically equivalent to ??.

Proof. For each α and ν satisfying the conditions of corolary ?? consider the flow in the
two-dimensional subspace generated by φ0 and φ1, given by v(t, x) = x+

0 φ0(x)+x+
1 φ1(x),

where {
ẋ+

0 = P0(+, x+
1 , σ(x+

0 , x
+
1 ))

ẋ+
1 = µ+

1 x
+
1 + P1(x+

0 , x
+
1 , σ(x+

0 , x
+
1 ))

(5.13)

Since the application v → u = v + σu is a conjugation betwen orbits of this flow and
orbits of ??, we only have to prove that system ?? is topologically conjugate to ??.
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Now, reescaling the time by 1
2α

, and changing back the variables to x+
0 , x

+
1 by using ??,

we see that what remains to be proved is that the vector fields

X(α,ν)(x
+
0 , x

+
1 ) =

(
P̃0(α, ν), P̃1(α, ν)

)
and

X(∞,0)(x
+
0 , x

+
1 ) =

(
P̃0(∞, 0), P̃1(∞, 0)

)
where

P̃0(α, ν) =
∫ 1

0
f(x+

0 φ0(x) + x+
1 φ1(x) + σ(x+

0 , x
+
1 ))φ0

P̃1(α, ν) = 2α

√
1− 2αµ+

1

µ+
1 − µ−1

∫ 1

0
f(x+

0 φ0(x) + x+
1 φ1(x) + σ(x+

0 , x
+
1 ))φ1

P̃0(∞, 0) =

(
x1f(x+

0 + x+
1

k1

γ
) + (1− x1)f(x+

0 + x+
1

k2

γ
)

)

P̃1(∞, 0) = 2α
γ

2
√
α2 − β

(
−x1k1f(x+

0 − x+
1

k1

γ
) + (1− x1)k2f(x+

0 + x+
1

k2

γ
)

)

are C1 close.
This follows easily from the fact that σ approaches 0 in the C1 topology and the
asymptotic properties of the eigenvalues and eigenfunctions of C as ν → 0 and α→∞.
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