Minimum degree conditions for cycles

Peter Allen*
DIMAP
Computer Science Building
University of Warwick
Coventry
CV4 7AL, U.K.

January 6, 2009

Abstract

In this note we discuss the lengths of cycles which are forced to exist in an \(n \)-vertex graph with minimum degree \(\delta \). We show that for any integer \(k \geq 2 \) there exists \(n_0 \) such that if \(n \geq n_0 \) and \(G \) is an \(n \)-vertex graph with \(\delta(G) = \delta \geq n/k \) then the following are true.

(i) \(G \) contains \(C_t \) for every even \(4 \leq t \leq \left\lfloor \frac{n}{k} - 1 \right\rfloor \),
(ii) either \(G \) is in a known exceptional class or \(G \) contains \(C_t \) for every odd \(t \in \left\lfloor \frac{2n}{\delta} \right\rfloor - 1, \delta + 1 \), and
(iii) if \(G \) does not contain a cycle of every length from \(\left\lfloor \frac{2n}{\delta} \right\rfloor - 1 \) to \(\left\lceil \frac{n}{k} - 1 \right\rceil \) inclusive then \(G \) does contain \(C_t \) for every even \(4 \leq t \leq 2\delta \).

This is an improvement on a theorem of Nikiforov and Schelp [7].

We recall that the circumference \(c(G) \) of a graph \(G \) is the length of the longest cycle in \(G \); we define also \(oc(G) \) and \(ec(G) \) to be the lengths of the longest odd and even cycles in \(G \).

Early results of Dirac [3] and Voss and Zuluaga [8] examined 2-connected graphs:

Theorem 1. (Dirac [3]) If \(G \) is a 2-connected graph with minimum degree \(\delta \) then \(c(G) \geq \min(|V(G)|, 2\delta) \).

Theorem 2. (Voss and Zuluaga [8]) If \(G \) is a 2-connected graph on at least \(2\delta \) vertices with minimum degree at least \(\delta \) then \(ec(G) \geq 2\delta \); furthermore if \(G \) is not bipartite then also \(oc(G) \geq 2\delta - 1 \).

More recently various authors [1, 2, 4] removed the connectivity requirement, resulting in:

*email: P.D.Allen@warwick.ac.uk
Theorem 3. Let k be any integer, and G an n-vertex graph with minimum degree $\delta \geq \frac{n}{k}$. Then $c(G) \geq \left\lceil \frac{n}{k} \right\rceil$.

For illustration we prove the (very easy) corresponding result for paths.

Given a graph G we define a block of G to be a vertex-maximal 2-connected induced subgraph of G. We call a vertex whose removal increases the number of components of G a cutvertex, and a block with only one cutvertex we call an endblock.

Theorem 4. If G is an n-vertex graph with minimum degree δ, then G contains a path of length at least

$$p_{n,\delta} = \left\lceil \frac{n}{\left\lceil \frac{n}{\delta+1} \right\rceil} \right\rceil.$$

Proof. If G contains a component with more than one block, let X and Y be distinct endblocks of this component with cutvertices x and y (it is possible that $x = y$). We greedily construct a path P_x starting at x and contained in X with at least $\delta + 1$ vertices, and similarly a path P_y from y in Y, and join them with a path from x to y to obtain a path P on at least $2\delta + 1 \geq p_{n,\delta}$ vertices.

If every component of G is a block, by Dirac’s theorem there is certainly a path in G of length $\min(2\delta, C)$ where C is the size of the largest component of G. This quantity could only be smaller than $p_{n,\delta}$ if C were smaller than $p_{n,\delta}$. But then by averaging G would have to have a component with at most δ vertices, which is impossible. \hfill \Box

All these theorems are easily seen to be best possible; but one might wish to be able to find a cycle of some specified length. Nikiforov and Schelp [7] examined this problem, but their result was not best possible.

Naturally, one cannot expect to find odd cycles of any length in a graph G with $\delta(G) \leq \frac{n}{2}$; G may be bipartite. However, if one is told that G is not bipartite, then a little more may be said.

We observe that there is a simple construction of non-bipartite graphs with large minimum degree and very restricted odd cycle lengths: given δ, partition $[n]$ into sets X_1, \ldots, X_r of size at least 2δ. On each set X_i place a complete bipartite graph with parts of size at least δ. Choose from each X_i a vertex v_i. Now this graph satisfies the minimum degree conditions already and contains no odd cycles; we may place any r-vertex graph H we desire on the vertices $\{v_1, \ldots, v_r\}$, and the odd cycle lengths of the resulting graph G will be exactly those of H. We note that the vertices of H are all cutvertices of G.

We define the set $B_k(n)$ to be those n-vertex graphs with minimum degree at least n/k whose blocks are either bipartite or composed entirely of cutvertices (and therefore of size at most $k/2$). We now give our main theorem.

Theorem 5. Given an integer $k \geq 2$ there is n_0 such that whenever $n \geq n_0$ and G is an n-vertex graph with minimum degree $\delta \geq n/k$, the following are true.

(i) G contains C_t for every even $4 \leq t \leq \left\lceil \frac{n}{k-1} \right\rceil$.

2
(ii) if G is not in $\mathcal{B}_k(n)$ then G contains C_t for every odd $t \in [\lceil \frac{2n}{\delta} \rceil - 1, \delta + 1]$, and

(iii) if G does not contain a cycle of every length from $\lceil \frac{2n}{\delta} \rceil - 1$ to $\left\lceil \frac{n}{k-1} \right\rceil$ inclusive then G does contain C_t for every even $4 \leq t \leq 2\delta$.

This theorem is a modification of that given by Nikiforov and Schelp [7], whose conditions (i) and (ii) were weaker (most importantly, they guaranteed even cycles only up to $\delta + 1$ vertices) and who gave no equivalent to condition (iii); our proof is also significantly shorter. Our theorem is best possible up to the value of n_0:

- We cannot hope to find longer even cycles in general since a graph consisting of a union of $k-1$ cliques on $\left\lceil \frac{n}{k-1} \right\rceil$ vertices, disjoint except for $(k-1) \left\lceil \frac{n}{k-1} \right\rceil - n < k-1$ vertices each of which is a cutvertex lying in two cliques, contains no longer even cycles and has minimum degree $\left\lceil \frac{n}{k-1} \right\rceil - 1$.

- We cannot expect to find shorter odd cycles since a blow-up of $C_{2\delta-1}$ with approximately equal parts contains none and has minimum degree at least $2\left\lfloor \frac{n}{2\delta-1} \right\rfloor$. We cannot expect to find longer odd cycles since a graph consisting of $K_{\delta+1}$ together with a complete balanced bipartite graph contains none (provided that $k \geq 4$; when $k = 2, 3$ we can replace $\delta + 1$ by $\left\lceil \frac{n}{k-1} \right\rceil$, the proof of which is trivial).

- Finally, we cannot expect even in the absence of odd cycles to find even cycles longer than 2δ since the bipartite graph $K_{\delta,n-\delta}$ contains none.

Before giving the proof we give two well-known modifications of Dirac’s theorem.

Lemma 6. Given d and $c \geq 1$, let H be a graph on at most $2d - 9c$ vertices, with $\delta(H) \geq 7c$ and all but at most $2c$ vertices having degree at least d. Then H contains a cycle of every length up to and including $|H|$.

Proof. We first consider the vertices with degree less than d. Since each such vertex has $7c$ neighbours, at least $5c$ of which have degree at least d, we can find two high-degree neighbours of each low-degree vertex creating a set of disjoint three-vertex paths. Now two high-degree vertices have at least $9c$ common neighbours, so we can form a path P through all these three-vertex paths and at most $2c$ further high-degree vertices. We then take a path P' of maximum length extending P; let v be the right-hand endvertex of this path. There are at least $d - 8c$ neighbours of v on $P' - P$, and hence if there were a (high-degree) vertex w not on P', we could find a neighbour of w immediately right on P' of a neighbour of v, and so extend the path. It follows that P' covers H, and since both its endvertices have degree greater than $|H|/2$ there is a cycle C covering H.

Now let x and y be successive high-degree vertices on C. Given any $3 \leq t < |H|$, for each neighbour z of x on C there is an associated vertex z' such that if $z'y$ is an edge of H, then there would be a cycle using parts of C, xz and yz' with exactly t vertices. Since the vertices associated to distinct neighbours of x are distinct and $2d > |H| + 1$, for at least one neighbour z of x, $z'y$ is an edge of H, and so H contains a cycle of length t. \qed
Lemma 7. Given a graph \(H \) with at most \(2d - 8 \) vertices, minimum degree \(d \) and vertices \(x \neq y \), for each \(3 \leq t \leq |H| - 2 \), there exists a \(t \)-vertex path \(P \) in \(H \) whose endvertices are \(x \) and \(y \).

The proof (whose detail we omit) is essentially the same as the previous; we find a cycle covering \(H \) on which \(x \) and \(y \) are either adjacent or at distance two, and shorten it (preserving the short \(x - y \) segment) to a desired length, yielding the desired path.

We also recall two theorems which will be useful.

Theorem 8. (Gould, Hazell and Scott [5]) For all \(c > 0 \) there exists \(K = K(c) \) such that if \(n > 45Kc^{-4} \) and \(G \) is an \(n \)-vertex graph with \(\delta(G) \geq cn \) then \(G \) contains \(C_t \) for every even \(t \in [4, ec(G) - K] \) and every odd \(t \in [K, oc(G) - K] \).

Theorem 9. (Häggkvist [6]) Given an integer \(l \geq 2 \), \(n \geq \binom{l+1}{2}(2l + 1)(3l - 1) \) and \(G \) an \(n \)-vertex graph with \(\delta(G) > \frac{2n}{2l+1} \), either \(G \) contains \(C_{2l-1} \) or it contains no odd cycle on more than \(l/2 \) vertices.

We now prove our main theorem.

Proof. Let \(G \) satisfy the conditions of the theorem. We suppose that \(n_0 \) is large enough that the inequalities in what follows hold.

Given a set \(X \) of vertices of \(G \) and a vertex \(v \), we say that \(v \) is dense to \(X \) if \(d_X(v) \geq 10k \), and sparse otherwise. Note that there are at most \(k \) cutvertices in \(G \), and that every cutvertex of \(G \) is dense to some block of \(G \).

First suppose that every block of \(G \) has less than \(2\delta - 13k \) vertices. Let \(B_1, \ldots, B_r \) be the blocks of \(G \) which are not composed entirely of cutvertices, and for each \(i \) let \(b_i \) be the number of vertices in \(B_i \) that are not cutvertices of \(G \) sparse to \(B_i \). Then by Lemma 6, \(B_i \) contains a cycle of every length from 3 up to \(b_i \). Since every block \(B_i \) contains at least \(\delta + 1 > k + 10k^2 \) vertices, there is a vertex of \(B_i \) which is neither a cutvertex nor a neighbour of any sparse cutvertices: thus \(b_i \geq \delta + 1 \), and so \(r \leq k - 1 \). Since \(\sum_i b_i \geq n \) there is \(i \) such that \(b_i \geq \left\lceil \frac{n}{k-1} \right\rceil \), so \(G \) contains \(C_t \) for every \(t \in [3, \left\lceil \frac{n}{k-1} \right\rceil] \) and satisfies all three conditions.

Now suppose that \(G \) contains a non-bipartite block \(B \) with at least \(2\delta - 13k \) vertices.

Let \(V \) be a minimal set of vertices such that every component of \(G[B - V] \) is 3-connected and has minimum degree \(\delta - 2k \). Observe that we could create such a set by sequentially identifying and removing pairs of vertices of \(B \) whose removal increases the number of components of \(G \). If \(2k \) vertices have been removed, the number of components must be at least \(k + 1 \), and since only \(2k \) vertices have been removed the minimum degree of what remains is at least \(\delta - 2k \). It follows that \((k + 1)(\delta - 2k + 1) \leq n \), which is not true. Thus the procedure must have terminated with \(|V| < 2k \).

If \(G[B - V] \) has a component \(X \) which is not bipartite, then either it contains at least \(2\delta - 15k \) vertices and by Theorem 2 we have \(ec(G), oc(G) \geq 2\delta - 15k - 1 \), or \(|X| < 2\delta - 15k \). In this second case, let \(Y \) be another component of \(G[B - V] \). If \(|Y| \geq 2\delta - 6k \) then let \(Q \) be a longest cycle in \(Y \). There exist vertex-disjoint paths \(P_1 \) and \(P_2 \) from \(X \) to \(Q \); let \(P \) be
the longer of the two possible paths formed from P_1, P_2 and part of Q. Then P has both endpoints in X and at least $\delta - 3k$ vertices. If $|Y| < 2\delta - 6k$, let P_1 and P_2 be vertex-disjoint paths from X to Y; by Lemma 7 we can find a path on $|Y| - 2 \geq \delta - 2k - 2$ vertices linking P_1 and P_2, and again $|P| \geq \delta - 3k$. Finally by Lemma 7 applied to the endpoints of P_1 and P_2 in X, we can find both an even and an odd path of length at least $\delta - 5k$ in X linking the endpoints of P_1 and P_2; so $oc(G), ec(G) \geq 2\delta - 10k$.

If every component of $G[B - V]$ is bipartite, let Q be an odd cycle in B. Let X be a component of $G[B - V]$. By either examining $Q - X$ (if Q meets X in two or more vertices) or by using 2-connectivity of $G[B]$ to construct two vertex disjoint paths from Q to X (if not) we can find a path P with an even number of vertices whose endvertices u and v lie in the same bipartition class of X and with at most one interior vertex x contained in X. Let H be the graph obtained by adding the edge uv to $G[X - x]$. Then $\delta(H) \geq \delta - 2k - 1$, and H is 2-connected and not bipartite. By Theorem 2, $oc(H) \geq 2\delta - 4k - 3$. Since every odd cycle in H uses uv, on replacing uv with P in the longest odd cycle of H, we see that $oc(G) \geq 2\delta - 4k - 1$. Also by applying Theorem 2 to X we see that $ec(G) \geq 2\delta - 4k$.

Applying Theorem 8 with $c = 1/k$ and $K = K(1/k)$ we have in both cases that C_t is contained in G for every even $4 \leq t \leq 2\delta - 16k - K$, and for every odd $K \leq t \leq 2\delta - 16k - K$. It remains only to show that in both cases G also contains the requisite short odd cycles. Let l be the smallest integer such that $\delta > \frac{2n}{2l+1}$. By Theorem 9, since $\delta(G) > \frac{2n}{2l+2j+1}$ for each $0 \leq j \leq K/2$ and since $oc(G) \geq 2\delta - 16k > K + l$, provided that $n_0 > 3K^4$, G contains $C_{2l+2j-1}$ for each $0 \leq j \leq K/2$ as required.

Finally, suppose that G contains a bipartite block B with at least $2\delta - 13k$ vertices, and all its non-bipartite blocks have less than $2\delta - 13k$ vertices.

Let X be B with the cutvertices of G sparse to B removed, so that $\delta(X) \geq 9k$. Let P be a path of maximum length in X. Observe that there are at most k vertices of X with less than $\delta - k$ neighbours in X; so if an endvertex u of P has $d_X(u) < \delta - k$ then there is a neighbour of u whose successor u' on P has $d_X(u') \geq \delta - k$, and we obtain a path P' with $V(P') = V(P)$ and endvertex u'. Similarly there are at most $k + 10k^2$ vertices of X with less than δ neighbours in X (the second term counting neighbours of cutvertices sparse to B), so by the same method we obtain a path P'' on the same vertex set as P with an endvertex v of degree at least δ, all of whose neighbours are on P'' by maximality. By averaging, either there exists a neighbour x of v at distance at least $5\delta/2$ from v along P'', or for every even $4 \leq t \leq 2\delta$ there exist neighbours x and y of v such that the $x - y$ segment of P'' together with v forms a copy of C_t. In the first case we have $ec(G) \geq 5\delta/2$, to which we can apply Theorem 8. Since $5\delta/2 - K > 2\delta$, in either case we have that G contains C_t for every even $4 \leq t \leq 2\delta$ and satisfies conditions (i) and (iii).

If G contains a non-bipartite block B', at least one of whose vertices is not a cutvertex, then as before by applying Lemma 6 to B' with its sparse cutvertices removed we see that G contains C_t for every $3 \leq t \leq \delta + 1$ and so satisfies all three conditions. If G has no non-bipartite blocks which are not composed entirely of cutvertices, then $G \in \mathcal{B}_k$ and again G satisfies all three conditions. \qed
We note that although we have made no effort to optimise n_0, we can say $n_0 = O(k^{20})$, since in Theorem 8 we can take $K = O(k^5)$. It is certainly true that $n_0 = \Omega(k^2)$ is necessary, since there are graphs with n vertices and minimum degree $\Theta(\sqrt{n})$ which do not contain C_4.

Acknowledgements

The author would like to thank Julia Böttcher and Jan Hladký for useful comments and discussion.

References

