
A sparse dynamic programming algorithm for

alignment with non-overlapping inversions

Alair Pereira do Lago Ilya Muchnik
Casimir Kulikowski

September 26, 2003

Abstract

Alignment of sequences is widely used for biological sequence com-
parisons, and only biological events like mutations, insertions and dele-
tions are considered. Other biological events like inversions are not
automatically detected by the usual alignment algorithms, thus some
alternative approaches have been tried in order to include inversions
or other kind of rearrangements.

Despite many important results in the last decade, the complexity
of the problem of alignment with inversions is still unknown. In 1992,
Schöniger and Waterman proposed the simplification hypothesis that
the inversions do not overlap. They also presented an O(n6) exact so-
lution for the alignment with non-overlapping inversions problem, and
introduced a heuristic for it that brings the running-time complexity
down.

The present paper gives two exact algorithms for the simplified
problem. We give a quite simple dynamic program with O(n4)-time
and O(n2)-space complexity for alignments with non-overlapping in-
versions and exhibit a sparse and exact implementation version of this
procedure that uses much less resources for some applications with
real data.

1 Introduction

In evolution history, some biological events introduce changes in the DNA
sequences. Some typical biological events include mutations, in which a nu-

September 26, 2003 4:51 (1)

cleotide is substituted by another one, deletions and insertions of nucleotides.
Hence, any sequence comparison must take into consideration the possibil-
ity of these events if it is expected to identify high similarity between two
sequences. Typical alignment procedures try to identify which parts do not
change and where these biological events are, after exhibiting one best align-
ment according to some optimization criteria.

For instance, in Figure 1, we see two alignments of actagatcagtca against
attgaatcgacta. From left to right, one can detect a deletion of c, a mutation

actaga-tcagtc-a actaga-tcagtca

| | || || | | | | | || ||****|

a-ttgaatc-gacta a-ttgaatcgacta

Figure 1: Two alignments for actagatcagtca and attgaatcgacta

from a to t and an insertion of a in both alignments. At the rightmost
part, the first alignment report a deletion of a, a mutation from t to a and
an insertion of t. In contrast, the second alignment highlights the inversion
of agtc to its reverse complement gact. Since common aligners do not take
inversions into consideration, they would report the first alignment. Figure 2
shows how an inversion can occur and why one segment is substituted by its
reverse complement sequence. Alignments can be associated with a set of edit
operations that transform one sequence to the other. Usually, the only edit
operations that are considered are the substitution (mutation) of one symbol
by another one, the insertion of one symbol and deletion of one symbol. If
costs are associated with each operation, there is a classic O(n2) dynamic
program that computes a set of edit operations with minimal total cost and
exhibit the associated alignment, which has good quality and high likelihood
for realistic costs.

Consider three new possible edit operations:

• the 2-reversion, which reverses the order of two consecutive symbols ;

• the reversion operation, which reverses the order of any segment of
symbols instead of a segment of length 2;

• the inversion operation, which substitutes any segment by its reverse
complement sequence. The inversion operation is the operation that is
interesting in molecular biology. (See Figure 2.)

September 26, 2003 4:51 (2)

C´D´

D C

BA

A´ B´

FE

E´ F´

original sequence

new sequence

DC

C´ D´

BA

A´ B´

FE

E´ F´

A
A´

B
B´

C
C´D

D´

E

F
F´

E´

A
A´

B
B´

C
C´D

D´

E

F
F´

E´

Figure 2: Example of DNA inversion

Associated with any of these three operations, we can define new alignment
problems. For instance, given two sequences and fixed costs for each kind
of edit operation, the alignment with inversions problem is an optimization
problem that queries the minimal total cost of an edit operations set that
transforms one sequence to the other. Moreover, one may also be interested
in the exhibition of its correspondent alignment and/or edit operations. Sim-
ilarly, we can define the alignment with 2-reversions and the alignment with
reversions problems.

In 1975, Wagner [1] studied the alignment with 2-reversions problem and
proved that it admits a polynomial solution if the cost of 2-reversion is null.
On the other hand, he also proved that the obtainment of an optimal solution
is NP-hard, if any operation has a constant positive cost.

To the best of our knowledge, the computational complexities of align-
ment with reversions and alignment with inversions problems are unknown.

In order to deal with alignments with inversions, three main approaches
have been considered through the years:

• non-overlapping inversions;

• sorting unsigned permutations by reversals and;

September 26, 2003 4:51 (3)

• sorting signed permutations by reversals.

Before we proceed with the results of this paper, we will give a brief
summary of these three approaches.

In 1992, Schöniger and Waterman [2] introduced a simplification hypoth-
esis : all regions involving the inversions do not overlap. This led to the
alignment with non-overlapping inversions problem. They presented a O(n6)
solution for this problem and also introduced a heuristic for it that reduced
the running-time. This heuristic uses the algorithm by Waterman and Eg-
gert [3] that reports the K best non mutual intersecting local alignments in
order to reduce the running time to something between O(n2) and O(n4),
depending on the data.

Another approach has been tried in order to study inversions. This ap-
proach applies well for alignment of sequences of genes and has been very
used with mitochondrial genomes. It does not apply for sequences of nu-
cleotides nor for sequences of aminoacids because no repetitions of symbols
are allowed. (Repeated genes and paralogs are not allowed.) Moreover, no in-
sertion and no deletion are considered and the only admitted operation is the
reversal, where a reversal is defined to transform a sequence like (1, 2, 3, 4, 5)
into (1, 4, 3, 2, 5).

The problem, also called sorting unsigned permutations by reversals, means
the computation of the edit distance of two permutations when only the re-
versal operation is allowed. In this case, the data are two permutations of
(1, 2, 3, . . . , n), where n is the number of genes. Kececioglu and Sankoff [4]
gave a quadratic 2-approximation algorithm in 1995 and Christie [5] gave a
3/2-approximation algorithm in 1998. Caprara [6] proved in 1999 that this
problem is in fact NP-hard.

Another interesting approach is the problem called sorting signed permu-
tations by reversals. This is the same problem as sorting unsigned permu-
tations by reversals up to the fact that signals are also attributed to a gene
and a reversal also flips its signal. For instance, one reversal could transform
(1, 2, 3, 4, 5) to (1,−4,−3,−2, 5). This signal is usually associated with the
direction of the gene (which DNA strand it belongs to).

Hannenhalli and Pevzner [7, 8] gave the first polynomial algorithm for the
problem in 1995 and started a sequence of papers based on this approach.
Hannenhalli and Pevzner’s algorithm was O(n4) and it was improved to O(n2)
by Kaplan, Shamir and Tarjan [9, 10] in 1997. In 2001, Bader, Moret and
Yan [11] gave an algorithm that computes the minimal number of reversals

September 26, 2003 4:51 (4)

distance in O(n) (finding the sequence of reversals still requires O(n2)). These
studies have been applied for philogenetic reconstruction studies.

In 2000, El-Mabrouk [12, 13] studied the inclusion of two operations:
insertions and deletions of gene segments. She obtained partial results and
gave an exact polynomial solution for one case and a polynomial heuristic
with a polynomial tester for optimality in the other case. Repeated symbols
are still not allowed. In 2002, El-Mabrouk [14] also obtained some partial
results on considering reversals and duplications.

This paper gives two exact algorithms for the alignment with non-overlapping
inversions problem, which is the first approach. Algorithm 1 is a O(n4) solu-
tion that uses O(n) space and Algorithm 2 is a sparse dynamic implementa-
tion of it that reduces the resources usage if there are o(n2) matches. This is
often expected if the cardinality of the alphabet is large and it is true for the
kind of application we have in mind, where the letters are DNA fragments of
fixed length.

2 Basic Definitions

Let A be any alphabet, a set of letters. Any finite sequence on A is also
called a word on A or simply a word if the alphabet is clear. Let A∗ be the
set of all words on A, including the empty word denoted by 1. We identify
words of length 1 to the letters they contain. The concatenation · of words
is an associative operation defined over A∗ and it will be often omitted. Let
w = w1w2 . . . wk be a word. We denote by |w| the length k of w. We will
also denote wi, the i-th letter of w, by w[i]. Let x, y, z ∈ A∗. We denote by
xA∗ the set {xy | y ∈ A∗}, we denote by A∗x the set {yx | y ∈ A∗} and we
denote by A∗xA∗ the set {yxz | y, z ∈ A∗}. We say that x is a prefix of w
if w ∈ xA∗, we say that x is a suffix of w if y ∈ A∗x and we say that x is a
factor of w if w ∈ A∗xA∗. For 1 ≤ i ≤ j ≤ k, the factor wiwi+1 · · ·wj of w is
also represented by w[i . . j].

Let , also called inversion, be any operation on A∗ that satisfies the
following properties:

1. a ∈ A,∀a ∈ A

2. x · y = y · x,∀x, y ∈ A∗

September 26, 2003 4:51 (5)

Notice that the inversion operation on A∗ is defined by its values on the
letters of A. For instance, let A = {a, c, t, g} and let s ∈ A∗ be any DNA
sequence. If the inversion is defined by a = a, t = t, c = c and g = g, it maps
s to its reverse sequence. On the other hand, if the inversion is defined by
a = t, t = a, c = g and g = c, it maps s to its reverse complement sequence.
Last case is the interesting case for DNA sequences in molecular biology.

Let ω : A × A −→ R ∪ {−∞} be any weight function. We say that
(a, b) ∈ A× A is a match if ω(a, b) 6= −∞.

Let s = s1s2 · · · sk and t = t1t2 · · · tk′ be two words. We define the
matching graph of s and t as the weighted and colored bipartite graph G =
G(s, t, ω,) = (V,E). The vertex set is a set of symbols V = {s1, . . . , sk, t1, . . . , tk′}
and has size |s|+ |t|. (We do not identify two symbols si and tj even in the
case the letters si and tj are the same letter in A.) The edge set E is a
double copy of K|s|,|t|: for any pair of vertices si and tj we link them with one
blue/dark-gray edge of weight ω(si, tj) and one red/light-gray edge of weight
ω(si, tj). (In fact, edges with weight −∞ will not be used for our purposes
and could be deleted.) An edge with weight that is not −∞ is called a direct
match if it is blue and it is called inverted match if it is red. In Figure 3 we
have an example of a matching graph. In this figure, as in others, we do not
draw edges with weight −∞.

t1 t2 t4 t5 t6 t8 t9 t10t7t3

s2 s4 s5 s6 s8 s9s3 s7

t11

s1 s10

Figure 3: Example of a matching graph

Given u ∈ V ∗ a nonempty factor of s1s2 · · · sk and v ∈ V ∗ a nonempty
factor of t1t2 · · · tk′ , we call B = (u, v) a block. Given a block B = (u, v), there
exist integers 1 ≤ i′ ≤ i ≤ |s| and 1 ≤ j ′ ≤ j ≤ |t| such that u = s[i′ . . i] and
t = t[j ′ . . j]. Hence, we can associate ([i′ . . i]× [j ′ . . j]), the rectangle associ-
ated with the block B. In Figure 4 we have an incidence matrix of the match-
ing graph of Figure 3 and only matches are shown. Cells at position (si, tj)
are colored according to the color of the edge linking these vertices. (We
could use purple if we had both matches for the same cell.) We can also see

September 26, 2003 4:51 (6)

four rectangles corresponding to the blocks (s1s2, t1t2t3), (s3s4s5s6, t4t5t6t7),
(s7s8, t8t9) and (s9s10, t10t11). Cells inside a rectangle correspond to edges
with vertices in the factors that form the respective block.

0

0

5

5

10

10

0 0

5 5

10 10

15 15

11 11

s

t

Figure 4: Bicoloured incidence matrix

Consider an edge that links si to tj and an edge that links si′ to tj′ . We say
that they cross each other if (i− i′)(j− j ′) < 0, we say that they touch each
other if (i−i′)(j−j ′) = 0 and we say that they are parallel if (i−i′)(j−j ′) > 0.
Let M ⊆ E be any set of edges in a matching graph. Recall that M is called
a matching if any two edges of M do not touch each other. Moreover, M is
called a direct matching if it has only direct matches and any two of them
are parallel. Furthermore, M is called an inverted matching if it has only
inverted matches and any two of them cross each other. The restriction of M
to a block B = (s[i′ . . i], t[j ′ . . j]) is the submatching of all edges of M with
vertices in s[i′ . . i] and t[j ′ . . j]). Finally, M is called a blockwise inverted
matching, or simply a bimatching, if, considering words in V ∗,

• there is l ≥ 1;

• there are l blocks Bi = (ui, vi) such that s = s1s2 . . . sk = u1u2 . . . ul

and t = t1t2 . . . tk′ = v1v2 . . . vl;

September 26, 2003 4:51 (7)

• for any i ∈ {1, . . . , l}, the restriction Mi of M to the block Bi is either
a direct matching or an inverted matching;

• M = ∪l
i=1Mi.

Given a bimatching M , the number of blocks l is not unique since any direct
submatching Mi can also be split as a union of smaller direct submatchings.
However, the number of blocks such that the corresponding restriction Mi is
an inverted matching does not change. This is the number of inversions of
M , ι(M). Given a bimatching M , the smallest possible value for l is called
the number of blocks of M .

One can notice that in Figure 5 we have a bimatching M with four blocks
which are those associated with the blocks of Figure 4. There are ι(M) = 2
maximal inverted submatchings.

t1 t2 t4 t5 t6 t8 t9 t10t7t3

s2 s4 s5 s6 s8 s9s3 s7

t11

s1 s10

Figure 5: Example of a bimatching with four blocks

3 Two Algorithms for Optimal Bimatching

Given a bimatching M , one can easily deduce an alignment with non-overlapping
inversions associated with it. One could naturally define the weight of a
matching in a matching graph to be the sum of the weights of its edges.
However, it is quite common for alignments the establishment of penalties
for biological events like mutations, insertions or deletions. In order to be
more general, we attribute a inversion penalty I ≥ 0 for every inverted sub-
matching Mi. Hence, we define the weight of a bimatching M as

ω(M) =
∑

e∈M

ω(e)− ι(M)I.

Hence, the following problem is the optimization problem we are interested
in solving.

September 26, 2003 4:51 (8)

Problem 1 Given a matching graph G = G(s, t, ω,), we want to compute
the maximal weight ω(M) for all possible bimatchings M . As usual, we may
also be interested in a bimatching of maximal weight.

Such a bimatching M ∗ of maximal weight is called an optimal bimatching
of s and t and its weight ω(M∗) is denoted by BIM(s, t). The weight of an
optimal direct matching is denoted by DM(s, t).

Next lemma leads us to the dynamic programming algorithm given by
Algorithm 1.

Lemma 2 Let A be an alphabet, let a, b ∈ A be any letters, let u, v ∈ A∗

be any words on A, let us give an inversion operation on on A∗ and a
weight function ω and let I be an inversion penalty. Hence, the following
affirmatives are true:

1. BIM(1, v) = BIM(u, 1) = 0;

2. BIM(ua, vb) = max

BIM(u, v) + ω(a, b)
BIM(ua, v)
BIM(u, vb)
B − I

where B = max{BIM(u1, v1)+DM(u2, v2) | ua = u1u2, vb = v1v2, u2v2 6=
1}.

(All the proofs are omitted in this paper due to space constraints.)
Algorithm 1 computes the maximal weight of a bimatching BIM(s, t) with

time complexity |s|2|t|2 and space complexity |s||t|. As usual, by tracking
any maximality choice, one can obtain also an optimal bimatching. The
numbers present in positions (si, tj) of the incidence matrix of Figure 6 show
the corresponding value B[i, j] computed in Algorithm 1 if all matches have
weight 1. Hence, one can obtain the bimatching of Figure 5 as the optimal
bimatching for the matching graph of Figure 3.

In Algorithm 2, we improve the computational resources usage required by
Algorithm 1 when there are o(n2) matches. We use techniques that appeared
in works by Hunt and Szymanski [15] in 1977 for the computation of the
length of the longest common subsequence (LCS) (A good survey can be
found in [16]). The name Sparse Dynamic Programming was adopted by
Eppstein et al. [17, 18] in a well known work published in 1992. The main
idea behind these techniques is that only cells associated with a match are
“visited”, and this is done here.

September 26, 2003 4:51 (9)

Algorithm 1 A O(n4)-time and O(n2)-space algorithm for BIM

BIM(s, t)

1 . Compute the table B[i, j] = BIM(s[1 . . i], t[1 . . j])
2 Let B[i, j] be 0 for i = 0 or j = 0
3 for i from 1 to |s| do

4 for j from |t| downto 1 do

5 B[i, j]← −∞
6 for j from 1 to |t| do

7 B[i, j]← max(B[i, j], B[i− 1, j], B[i, j − 1])
8 B[i, j]← max(B[i, j], B[i− 1, j − 1] + ω(s[i], t[j]))

9 . Compute L[i′, j′] = DM(s[i′ . . i], t[j..j ′]) and set B[i, j ′]
10 Let L[i′, j′] be 0 for i′ = i + 1 or j ′ = j − 1
11 for j ′ from j to |t| do

12 for i′ from i downto 1 do

13 L[i′, j′]← max(L[i′, j′ − 1], L[i′ + 1, j ′])

14 L[i′, j′]← max(L[i′ + 1, j ′ − 1] + ω(s[i′], t[j ′]), L[i′, j′])
15 B[i, j ′]← max(B[i, j ′], L[i′, j′] + B[i′ − 1, j − 1]− I)
16 return B

Before we proceed, we need some few more definitions. We say that
a rectangle ([i . . j] × [k . . l]) dominates the rectangle ([i′ . . j ′] × [k′ . . l′]) if
j ≤ j′ and l ≤ l′. The pair (j, l) is called the right upper corner of ([i . . j]×
[k . . l]) and the domination relation depends only on the right upper corners.
We will give directions signals for rectangles according to whether we admit
a direct or an inverted matching as the restriction of a bimatching to the
corresponding block. We define the rank of a signed rectangle ([i . . j]×[k . . l])
to be the maximal weight of bimatchings that are restricted to the block
(s[a . . j], t[c . . l]) and admit a block decomposition where the last block is
(s[i . . j], t[k . . l]) and the restriction to it has the right direction. We say that
a signed rectangle is dominant if any other signed rectangle that dominates
it has either a smaller rank or the same right upper corner. The dominancy
relation is a partial quasi-order where the equivalence classes have always the
same rank and the same right upper corner.

The only considered signed rectangles in Algorithm 2 are all direct rect-
angles ([i . . i]× [j . . j]) such that (i, j) is a direct match and all inverted rect-
angles ([i . . j]× [k . . l]) such that both (j, k) and (i, l) are inverted matches.

September 26, 2003 4:51 (10)

We store only dominant signed rectangles (one for every equivalence class).
This naturally gives us the rank of their right upper corner positions. (See
function Update in Algorithm 3.) The ranks of other positions are “auto-
matically propagated” from dominant positions. (See function Rank in
Algorithm 3.)

Figure 6 shows dominant rectangles with their corresponding ranks in
the right upper corners as computed in Algorithm 2 (all matches have weight
1). Figure 7 shows an example of possible data that have been applied to
the algorithm BIM. The DNA sequences correspond to two syntenic regions
from two bacteria. These sequences were splitten in fragments of length 100 in
order to form the alphabet. A match between two fragments is assumed if
the alignment score is above an adequately chosen threshold.

Figure 6: Dominant rectangles and their ranks

0

0

5

5

10

10

0 0

5 5

10 10

15 15

11 11

s

t

4 Conclusion and open problems

We gave new algorithms for the alignment with non-overlapping inversions
problem, improving the time complexity of an exact solution from O(n6)
to O(n4) in Algorithm 1. In Algorithm 2, we also gave a sparse dynamic
programming implementation that gives the exact solution and can speed up

September 26, 2003 4:51 (11)

Algorithm 2 A O(m log k+(m′)2(log k′+log2 k)+n)-time and O(m+m′+
n+k+k′)-space algorithm for BIM, where m = O(n2) is the number of direct
matches, m′ = O(n2) is the number of inverted matches, k = O(n2) is the
number of dominant rectangles and k′ = O(m′) is the number of dominant
direct (former inverted) matches in the computation of DM(t, s)

BIM(s[a . . b], t[c . . d],M, ω)

1 . Compute R, an AVL-tree of AVL-trees Rr of dominant rectangles
2 . Any AVL-tree R[r] = Rr has only rectangles of rank r, for r ∈ R

3 . In R[r], rectangles ([i′ . . i]× [j . . j ′]) are ordered by i
4 . In R, AVL-trees R[r] are ordered by the rank r
5 . Rank(R, i, j) = BIM(s[a . . i], t[c . . j])
6 . M : list of matches with signals (i, j, d) ∈ [a . . b]× [c . . d]× {+1,−1}
7 . M is ordered by i, then by j, then by d
8 δ ← the reflection-rotation defined by δ(i, j, d) = (j, |s|+ 1− i,−d)
9 M ′ ← δ(M ∩ Z× Z× {−1}) . All inverted matches, mapped by a δ

10 Sort all (i, j, d) ∈M ′ by i, then by j
11 R← ∅
12 R[0]← R0 ← ([0 . . 0]× [0 . . 0])
13 R[−∞]← ∅
14 R[+∞]← ∅
15 for (i, j, d) ∈M do

16 if d = +1 then

17 r ← ω(s[i], t[j]) + Rank(R, i− 1, j − 1)
18 if r ≥ Rank(R, i, j) then

19 Update(R, r, ([i . . i]× [j . . j]),+1)
20 else M ′′ ←M ′ ∩ [j . . d]× [|s|+ 1− i . . |s|+ 1− a]× {+1}
21 . [j . . d]× [|s|+ 1− i . . |s|+ 1− a]× {+1} = δ([a . . i]× [j . . d]× {−1})
22 ϕ← function defined by ϕ(f, g) = ω(g, f)
23 B ← BIM(t[j . . d], s[|s|+ 1− i . . |s|+ 1− a],M ′′, ϕ)
24 for δ(i′, j′,−1) ∈M ′′ do

25 . DM(s[i′ . . i], t[j..j ′]) + BIM(s[a . . i′ − 1], t[c . . j − 1])− I
26 r ← Rank(B, j ′, |s|+ 1− i′) + Rank(R, i′ − 1, j − 1)− I
27 if r ≥ Rank(R, i, j ′) then

28 Update(R, r, ([i′ . . i]× [j . . j ′]),−1)
29 return R

September 26, 2003 4:51 (12)

Algorithm 3 Functions Rank and Update used in Algorithm 2

Rank(R, i, j)

1 . Return the rank of position (i, j)
2 a← −∞
3 b← +∞
4 m← the rank of the root of R
5 while m 6= a and m 6= b do

6 if ∃([x . . y]× [u . . v]) ∈ R[m] that dominates ([i . . i]× [j . . j]) then

7 a← m
8 m← right child of m
9 else b← m

10 m← left child of m
11 return a

Update(R, r, ([i . . i′]× [j . . j ′]), d)

1 . Insert the rectangle ([i . . i′]× [j . . j ′]) of rank r in R
2 r′ ← r
3 do for each ([x . . y]× [u . . v]) ∈ R[r′] dominated by ([i . . i′]× [j . . j ′]) do

4 Remove ([x . . y]× [u . . v]) from R[r′]
5 r′ ← rank that is predecessor of r′ in R
6 while some rectangle ([x . . y]× [u . . v]) was removed from R[r′]
7 Insert ([i . . i′]× [j . . j ′]) in R[r] . We had r ≥ Rank(R, i′, j′)

September 26, 2003 4:51 (13)

Figure 7: Some real data for BIM

September 26, 2003 4:51 (14)

even further if we have o(n2) matches. This is quite common for applications
with large alphabets. We can also modify the algorithms in order to deal
with gap penalties or local alignments with non-overlapping inversions.

Let LCS(u, v) denote the length of the longest common subsequence of
u and v. Motivated by these algorithms, one of the authors recently [20]
proposed the following open problem: given two words s and t of length
n, one can pre-process both words in such a way that any query LCS(u, v)
can be answered in time O(1), for u a factor of s and v a factor of t. This
pre-processing can be done in O(n4). Can we do it in O(n2)? In O(n3)?
Although a little stronger, one can think of a version with DM(u, v) queries
instead of LCS(u, v) queries.

As far as we know, alignment with non-restricted inversions is open.

References

[1] Wagner, R.: On the complexity of the extended string-to-string correc-
tion problem. In: Seventh ACM Symposium on the Theory of Compu-
tation, Association for Computing Machinery (1975)

[2] Schöniger, M., Waterman, M.S.: A local algorithm for DNA sequence
alignment with inversions. Bulletin of Mathematical Biology 54 (1992)
521–536

[3] Waterman, Eggert: A new algorithm for best subsequence alignments
with application to tRNA-rRNA comparisons. Journal of Molecular
Biology 197 (1987) 723–728

[4] Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for
sorting by reversals, with application to genome rearrangement. Algo-
rithmica 13 (1995) 180–210

[5] Christie, D.A.: A 3/2-approximation algorithm for sorting by reversals.
In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (San Francisco, CA, 1998), New York, ACM (1998)
244–252

[6] Caprara, A.: Sorting permutations by reversals and Eulerian cycle de-
compositions. SIAM J. Discrete Math. 12 (1999) 91–110 (electronic)

September 26, 2003 4:51 (15)

[7] Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: poly-
nomial algorithm for sorting signed permutations by reversals. In: ACM
Symposium on Theory of Computing, Association for Computing Ma-
chinery (1995) 178–189

[8] Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: poly-
nomial algorithm for sorting signed permutations by reversals. J. ACM
46 (1999) 1–27

[9] Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for
sorting signed permutations by reversals. In: Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans,
LA, 1997), New York, ACM (1997) 344–351

[10] Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler algorithm for
sorting signed permutations by reversals. SIAM J. Comput. 29 (2000)
880–892 (electronic)

[11] Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for
computing inversion distance between signed permutations with an ex-
perimental study. In: Algorithms and data structures (Providence, RI,
2001). Volume 2125 of Lecture Notes in Comput. Sci. Springer, Berlin
(2001) 365–376

[12] El-Mabrouk, N.: Genome rearrangement by reversals and inser-
tions/deletions of contiguous segments. In: Combinatorial pattern
matching (Montreal, QC, 2000). Volume 1848 of Lecture Notes in Com-
put. Sci. Springer, Berlin (2000) 222–234

[13] El-Mabrouk, N.: Sorting signed permutations by reversals and inser-
tions/deletions of contiguous segments. J. Discrete Algorithms 1 (2000)
105–121

[14] El-Mabrouk, N.: Reconstructing an ancestral genome using minimum
segments duplications and reversals. J. Comput. System Sci. 65 (2002)
442–464 Special issue on computational biology 2002.

[15] Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest
common subsequences. Comm. ACM 20 (1977) 350–353

September 26, 2003 4:51 (16)

[16] Simon, I.: Sequence comparison: some theory and some practice. In
Gross, M., Perrin, D., eds.: Electronic Dictionaries and Automata in
Computational Linguistics, Berlin, Springer-Verlag (1989) 79–92 Lecture
Notes in Computer Science, 377.

[17] Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic
programming. I. Linear cost functions. J. Assoc. Comput. Mach. 39

(1992) 519–545

[18] Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic
programming. II. Convex and concave cost functions. J. Assoc. Comput.
Mach. 39 (1992) 546–567

[19] Muchnik, I., do Lago, A.P., Llaca, V., Linton, E., Kulikowski, C.A.,
Messing, J.: Assignment-like optimization on bipartite graphs with or-
dered nodes as an approach to the analysis of comparative genomic data.
DIMACS Workshop on Whole Genome Comparison (2001) http://-
dimacs.rutgers.edu/Workshops/WholeGenome/.

[20] do Lago, A.P.: A sparse dynamic programming algorithm for alignment
with inversions. Workshop on Combinatorics, Algorithms, and Applica-
tions (2003)

September 26, 2003 4:51 (17)

	Introduction
	Basic Definitions
	Two Algorithms for Optimal Bimatching
	Conclusion and open problems

