
On the performance of real-time DSP on Android devices

André Jucovsky Bianchi
Computer Science Department

University of São Paulo
ajb@ime.usp.br

Marcelo Queiroz
Computer Science Department

University of São Paulo
mqz@ime.usp.br

ABSTRACT

With the increasing availability of mobile devices comes
the possibility of using (relatively) cheap, wireless hard-
ware embedded with plenty of sensors to perform real-time
Digital Signal Processing on live artistic performances. The
Android Operating System represents a milestone for mo-
bile devices due to its lightweight Java Virtual Machine
and API that makes it easier to develop applications that
run on any (supported) device. With an appropriate DSP
model implementation, it is possible to use the values of
sensors as input for algorithms that modify streams of au-
dio to generate rich output signals. Because of memory,
CPU and battery limitations, it is interesting to study the
performance of each device under real-time DSP condi-
tions, and also to provide feedback about resources con-
sumption as basis for (user or automated) decision making
related to the devices’ use. This work presents an object
oriented model for performing DSP on Android devices,
and focuses on measuring the time taken to perform com-
mon real-time DSP tasks (such as input/output, FIR/IIR
filtering and computing FFTs of varying sizes) and esti-
mating the maximum order of FIR filters that can be run
on different combinations of software and hardware. We
obtain and discuss statistics of some specific combinations
of device model and operating system version, and our ap-
proach can be used on any Android device to provide the
user with important information that can aid aesthetic and
algorithmic decisions regarding real-time DSP feasibility.

1. INTRODUCTION

Modern mobile devices provide input and output of au-
dio and video signals, various sensors to measure accel-
eration, orientation, position and luminosity (among many
others) and wireless communication standards, thus be-
coming a handy tool for artistic and scientific use. Despite
that, the actual computational power of mobile devices lies
often below users’ expectations, and a systematic measure-
ment of devices’ performance for Digital Signal Process-
ing (DSP) under real-time constraints brings some enlight-
enment on the actual capabilities of such devices.

Copyright: c©2012 André Jucovsky Bianchi et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

With a market share of around 50%, Android OS – and
its fully free software counterparts – allow for easy devel-
opment and deploying of applications that can make use of
an extensive API to access and control devices’ functional-
ities. This article describes an implementation of an object-
oriented real-time DSP model using the Android API and
the use of this model to generate reports about devices’
performance.

The main interest of our research is to get a feel of de-
vices’ computational intensity, i.e. the amount of compu-
tation that can be done in a certain amount of time. To de-
termine devices’ performance, we devised two strategies.
In the first one we focus on time measurement for common
real-time DSP tasks such as reading samples from an au-
dio signal, writing them for playback, and running specific
DSP algorithms over blocks of samples. With this, we are
able to determine the amount of (concurrent) computation
time the device has available to perform a DSP cycle over
a block of samples, and also the percentage of the DSP
cycle that specific algorithms occupy in different combi-
nations of hardware (device) and software (Android API).
In the second strategy, the device is stressed as a means
to estimate the maximum amount of computation feasible
in each DSP cycle. We ran stress-tests for different DSP
block sizes using random FIR filters with an increasing
number of coefficients, and so could determine the max-
imum order of filters that can be run on each device setup.

1.1 Related work

Optimizations on the audio signal routing on the media lay-
ers of the Android operating system have been proposed to
diminish power use and save batteries [1]. By creating a
signal route manager and using (software and hardware)
compressed audio capabilities, the authors were able to re-
duce in 20% the power consumption for some specific au-
dio processing tasks, when comparing to the standard An-
droid 2.3 audio routing design. The descent onto the inter-
nals of the system is different from our approach to obtain
device performance indicators on the application level. De-
spite that, it would be possible to use their contributions to
the audio framework in our application, and with this we
could find out if their model also allows for more compu-
tational intensity on the application level.

Recent efforts have been mixing the Android platform
with traditional real-time DSP software, such as Csound
[2] and Pure Data [3]. Both of these approaches make use
of the JNI 1 to mix C/C++ code with Java code to wrap li-

1 https://developer.android.com/sdk/ndk/overview.html

mailto:ajb@ime.usp.br
mailto:mqz@ime.usp.br
http://creativecommons.org/licenses/by/3.0/


braries and allow these environments to run on the Android
OS. Our approach, on the other hand, uses pure Java code
to implement a minimal GUI and real-time DSP model,
and the use of native code represents a further step for de-
velopment and performance measurement.

The use of native code does not automatically imply bet-
ter performance because it increases application complex-
ity and also has a cost associated with calls to non-Java
code. There are works that aim to find performance differ-
ences between Java and native code on different scenarios,
and conclude that native code is indeed worse for some ap-
plications [4]. Nevertheless, for real-time signal process-
ing an implementation and comparison with native code is
needed and will be considered on the last section of this
text as future work.

1.2 Text organization

On Section 2, we describe an implementation that per-
mits the live use of a small DSP framework as well as de-
vice stressing and report generation. The tool allows for
the variation of some DSP parameters (block size, sound
source, DSP algorithm and scalar input parameters) while
providing numeric and visual feedback about the device’s
performance (tasks mean time, CPU usage and busy frac-
tion of DSP cycle). With this kind of feedback, it is pos-
sible for the user to take the device’s performance into ac-
count during live performances, and so to derive aesthetic
and algorithmic decisions based on the available computa-
tional power.

On Section 3 we describe the results obtained, and on
Section 4 we make a discussion of the results and comment
on some steps for future work.

2. METHODS

To get a feel of what it is like to use Android devices for
real-time DSP, we have set up an environment to run arbi-
trary algorithms over an audio stream divided into blocks
of N samples, allowing for the variation of algorithm pa-
rameters during execution. The software is an Android ap-
plication 2 (using API level 7 3 ) that consists of a GUI and
a DSP object model that keeps track of timing of specific
tasks as they are carried out. The GUI allows for live use
of the processing facilities and also for automated testing
of DSP performance. Sound samples can be obtained di-
rectly from the microphone or from WAV files, and the
DSP block size can be configured to be N = 2i with
0 ≤ i ≤ 13 4 .

The main goal of this investigation is to measure the per-
formance of the device for real-time DSP, which we split
into (1) the amount of concurrent computation time avail-
able for signal processing, and (2) the amount of computa-
tion time required for performing common DSP tasks. In
order to achieve this, the program keeps track of sample
read and write times, DSP algorithm execution times and
DSP callback periods. With this information, it is possible

2 http://www.ime.usp.br/ ajb/DspBenchmarking.apk
3 API level 7 is compatible with Android OS version 2.1 and higher.
4 This upper limit is configurable; N = 213 under a 44.1 KHz sam-

pling rate produces a latency of 186 ms, which is very noticeable.

Figure 1. Class diagrams for the main parts of our ob-
ject model: (a) the program has two GUIs, one for live use
and the other for device testing; (b) concurrent threads take
care of signal processing and system information gather-
ing; (c) audio signals can be obtained either from the mi-
crophone or from raw WAV files; (d) audio streams are
modified by DSP algorithms that extend from one common
abstract class.

to have a picture of the device’s performance by comparing
the time taken to perform various tasks with the theoreti-
cal time available for DSP computation over a block of N
samples (NR s, if R is the sample rate in Hz).

To investigate devices’ performance on common DSP tasks,
we devised three processing scenarios. In the first scenario,
no signal modification is performed, only input/output loop-
back time is measured; in the second one, we compute
a simple reverb effect using an all-pass filter; and in the
third scenario a one way FFT of the whole sample block
is computed, without modifying the input signal. In each
scenario the program keeps track of the full DSP callback
period (including conversion between PCM and floating
point representation, timekeeping code and sample enqueue-
ing for playback), and also the actual DSP algorithm exe-
cution time.

Following, we present the object-oriented model devel-
oped for the performance measurement of generic real-
time DSP algorithms running on an Android environment.
After that, we describe the parameter data flow and finally
the system statistics we gathered for the analysis.

2.1 DSP object model

Class diagrams for the main parts of the object-oriented
model we devised can be seen in Figure 1. The applica-
tion is composed of two (Android) activities: one for live
performance and one for automated benchmarking. The



Figure 2. The GUI controlling a live DSP process. The
user is able to choose the DSP block size, the audio source
(microphone or predefined WAV files) and the DSP algo-
rithm that will be run. Also, slider widgets can provide
explicit parameter input, while visual and numerical statis-
tics give feedback about the state of the system.

LiveActivity class allows the user to choose the au-
dio signal source as well as alter DSP configuration such
as block size, DSP algorithm and processing parameters
(see Figure 2). Alternatively, the TestActivity class
performs a set of automated tests and generates a report
file with results that can be further analyzed. Both activi-
ties extend a more general class called DspActivity.

In our model, DSP activities are responsible for various
tasks, one of them being to keep the GUI up to date with in-
formation about the device’s performance. An instance of
SystemWatch thread gathers information from the sys-
tem and delivers it to the DspActivity, which in turn
alters the GUI to reflect the system state. Also, the activity
can combine these values with parameters acquired from
the user through sliders, buttons and other visual widgets
on the GUI, feeding them to the DSP thread, described be-
low.

Running concurrently with the main activity and the Sys-
temWatch thread, an instance of the class DspThread
schedules a callback method to be executed at every DSP
cycle (see Figure 3). The actual signal modification rou-
tine is defined by subclasses of the DspAlgorithm class.
The callback method reads from an audio signal input buffer
and writes the result of the processing back to an output
buffer when it is finished. The DSP cycle period ∆N (in
seconds) is given by the relation of the sample rate R (in
Hz) and the configured DSP block size N (in samples),
by ∆N = N

R . This is also the maximum amount of time
that the scheduled callback method can take to write new

Figure 3. Sequence diagram of the main part of the DSP
object model at work. The activity starts a DSP thread,
which then instantiates subclasses of DspAlgorithm
and AudioStream. The DSP thread then schedules a
perform method that will be called at every DSP cycle, and
then starts reading samples from the input buffer. Subse-
quent asynchronous periodic calls to the algorithm’s per-
form method modify the input signal and write the results
to the output buffer.

samples to the hardware queue under real-time constraints.
Every class that extends DspAlgorithm has to imple-

ment a perform-routine that acts on a buffer to generate the
desired effect. The DspThread running instance is re-
sponsible for instantiating the user selected algorithm and
schedules it in such a way that it is called at every DSP
cycle to modify data lying on the buffer.

Algorithms can access and produce several parameters.
Sliders on the GUI and values of sensors (camera, accelerom-
eter, proximity, etc) can be used as input by calling specific
querying methods. User-defined parameters, such as FFT
coefficients derived from the analysis of audio blocks, can
be periodically output as strings of values over Wi-Fi or
bluetooth as well as written to a file.

Regarding input signal sources, it is fairly straightfor-
ward to use the Android API to read samples from the
device’s microphone by instantiating the AudioRecord
class. On the other hand, API classes for handling media
can only be used to play entire files (using Android API’s
MediaPlayer class) or adding sound effects to the over-
all audio output chain (using Android API’s AudioEffect
class), and cannot be used to access (read and modify) the
digital signal on the application level. Because of these
constraints, we implemented a WAV parser based on the



standard WAV header specification 5 and specific bit depth
and sample rate configurations for our test files (PCM 16-
bit samples and 44.100 Hz sample rate).

The following list summarizes the functionality of the
main classes of the DSP model:

• Activities (LiveActivity, TestActivity): GUI
and threads management.

• DSP thread (DspThread): signal input/output, call-
back scheduling and time accounting. Some high-
lights of this class are:

– Use of MicStream to record from the mi-
crophone and WavStream to obtain samples
from a WAV file (these are blocking operations).

– Use of AudioTrack to write to the audio buffer
after processing (this is a non-blocking opera-
tion).

– Conversion of 16-bit short type samples with
PCM audio representation to double floating
point numbers and back. Some DSP algorithms
can be implemented over the integers, but for
many applications floating points are needed,
and so we consider this as a common task that
needs to be taken into account for performance
measurement on arbitrary environments.

– Scheduling of a DspAlgorithm’s perform method
to run at every DSP cycle using AudioStream’s
scheduling mechanism.

– Parameter passing from the GUI to the DSP al-
gorithm and back.

• System watch thread (SystemWatch): acquires
information about the system (CPU usage and sensor
values) and feeds the GUI and the DSP algorithms.

• Algorithms (subclasses of DspAlgorithm): in-
terface for DSP algorithms. Forces a method signa-
ture for performing block computations during DSP
cycles.

As all this was implemented on top of the Android soft-
ware stack (i.e. as a Java Android application), usual con-
cerns regarding memory management had to be addressed.
Objects are never created unless they are really needed: it
is possible, for example, to suspend the DSP processing
for changing its characteristics (block size, algorithm, etc)
without killing the DSP thread, and then to resume it by re-
scheduling the DSP callback. The garbage collector also
has to be wisely used in order to guarantee that memory
will not leak while not interfering with the DSP callback
time.

Using the described DSP model, we devised two ways
of measuring the performance of each device, which are
described on the following sections.

5 http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html

2.2 Algorithm benchmarking

At each DSP cycle, a scheduled callback is run to pro-
cess the current block of audio samples. This callback
includes the execution of routines for time measurement,
conversion between WAV PCM shorts representation to
doubles and back, the actual algorithm’s perform()
routine and sample writing for playback (i.e. writing to the
hardware queue). For the purposes of this work, we call
the time taken to perform this set of operations the call-
back time. The callback time is thus the time required by a
minimal set of (time-measured) DSP operations to perform
any desired algorithm, and thus can be compared with the
DSP cycle period to determine feasibility of DSP opera-
tions.

If the DSP callback time eventually exceeds the DSP cy-
cle period, then the system is unable to generate samples
in real-time, i.e. to deliver them for playback before the
DSP cycle ends. As in mobile devices there are, in gen-
eral, strong constraints related to computational power, the
first question that arises is if our DSP model (which is Java-
based, includes timekeeping code, converts samples back
and forth, relies on the API scheduling and operates in the
same priority level as common applications) is indeed us-
able.

To answer this question, we first ran 3 simple DSP algo-
rithms and took the mean times for a series of DSP call-
backs with different block sizes. These algorithms are:

• Loopback: actually an empty perform method that
returns immediately. This takes only the time of
a method call and is used to establish the intrinsic
overhead of the DSP model.

• Reverb: a two-coefficient IIR filter that outputs y(n) =
−gx(n) + x(n−m) + gy(n−m) [5].

• One-way FFT: A Java implementation of the FFT
(which takes O(n log n) steps, where n is the block
size) [6].

These three implementations can give us a feel on what
it is like to do real-time DSP on different combinations of
Android hardware and software, as we’ll see in Section 3.

2.3 Stress tests

Supposing that the mean callback times obtained indeed
leave room for more computation, then the next natural
question is how much (concurrent) DSP algorithmic com-
putation can actually be performed inside the callback while
maintaining real-time generation of output samples. To an-
swer this question we stress-tested the devices using FIR
filters with increasing number of coefficients. By compar-
ing the callback time for different sizes of filter with the
DSP cycle period, we are able to estimate the maximum
number of coefficients for a filter that can be applied to the
input (using our DSP model) while maintaining real-time
feasibility.

The search for the maximum number of coefficients hap-
pens in two phases. During the first phase, the number of
coefficients is raised exponentially until the mean callback



Device model Manufacturer Commercial name CPU model CPU speed RAM (MB) Android API

a853 Motorola Milestone ARM Cortex A8 550 MHz 256 7 and 8
gti5500b Samsung Galaxy Europa ARM11 600 MHz 140 7
gti9000 Samsung Galaxy S ARM Cortex A8 1 GHz 512 10
gti9100 Samsung Galaxy S II ARM Cortex A9 1.2 GHz (dual) 1000 10
gtp1000l Samsung Galaxy Tab ARM Cortex A8 1 GHz 512 8
mz604 Motorola Xoom with Wi-Fi NVIDIA Tegra 2 1 GHz (dual) 1024 13
r800i Sony Ericsson Xperia PLAY Qualcomm Snapdragon 1 GHz 512 10
tf101 Asus Eee Pad Transformer NVIDIA Tegra 2 1 GHz (dual) 1024 15
x10i Sony Ericsson Xperia X10 Qualcomm Snapdragon 1 GHz 384 10
xoom Motorola Xoom 4G LTE NVIDIA Tegra 2 1 GHz (dual) 1024 15

Table 1. Table of tested devices. Note that we tested two Motorola Milestone devices with different API levels (both are
represented in one line of the table). In the graphics, the Milestone device using Android API version 7 is named “a853 1”
and the one using API version 8 is named “a853 2”.

time exceeds the DSP cycle period. At this point we can
establish two invariants: (1) that the device is capable of
performing FIR filtering with m coefficients, and (2) that
the device is not able to perform FIR filtering withM coef-
ficients (M = 2m on the first run). Once this is achieved,
then a recursive binary search is performed over the value
k = m + (M −m)/2, going up and down depending on
the performance of the device for each k, to finally con-
verge on a number K which is the maximum number of
coefficients that the device is able to compute during one
DSP cycle.

Note that the filter equation indeed gives us an upper
bound on the number of arithmetic operations that can be
performed on a DSP cycle: if y(n) =

∑K−1
i=0 αix(n − i),

then the calculation of y(n) requires at least K multipli-
cations, K vector accesses and K − 1 additions. Other
algorithms can be implemented as extensions of DspAl-
gorithms to obtain statistics and estimate the feasibility
of arbitrary operations.

2.4 Experiment design

As discussed above, all performance measurements and
stress tests are made by an application started by the user.
User interactive assistance is kept at a bare minimum, by
starting the experiment and pressing a button to e-mail the
results to the authors. As we had only one Android device
fully available for development and testing, we decided to
launch a call for participation and so could gather test re-
sults from 10 devices belonging to students and teachers
(making a total of 11 devices). Instructions were sent to
stop all applications and turn off all communication to im-
pose an “idle” scenario on every device.

As most of the devices available for our experiment were
of strict personal use, we had to keep the experiment un-
der a reasonable time limit. The time required to esti-
mate the maximum size of the filter for a given block size
is bounded by the logarithm of K because of the binary
search. Despite that, the number of repeated measurements
(for which the mean is taken) has to be carefully chosen,
in order to keep a reasonable experiment length. To re-
duce test length, we limited the number of DSP cycles for
different block sizes, as can be seen in the following table:

Block sizes Max # of cycles Max time (s)

64− 512 1000 11.60
1024− 2048 500 23.21
4096− 8192 100 18.57

Besides that, every stress test with a certain filter size is
interrupted after 100 DSP cycles if the device performance
has already shown to be poor for this filter size. The result
of imposing these constraints is an overall experiment that
automatically cycles through all benchmarking algorithms
and stress tests, runs for about 25 minutes, and then sends
an e-mail report with its results back to the authors. The
list of devices that contributed to this research can be seen
in Table 1.

3. RESULTS

3.1 Algorithm benchmarking

In Figures 4, 5 and 6 we can see the results of, respectively,
the loopback, reverb and FFT algorithms running on differ-
ent devices with different API versions. In every figure we
also plot the DSP cycle period, which corresponds to the
maximum amount of time the DSP callback method can
take to write new samples to the hardware queue, under
real-time constraints.

Since loopback and reverb take linear time with respect
to the block size, the patterns of the first two graphs are
expected. Even so, these graphs are useful for ranking the
devices with respect to computational power, and also for
giving a precise account of the time slack available for ex-
tra computation. The FFT takes O(n log n) time, which
does explain the upward tilt seen in Figure 6 on some of the
devices. It should be expected that for larger block sizes
real-time FFTs would become infeasible on every device.

On faster devices the callback mechanism leaves plenty
of room for DSP algorithms such as the reverb filter, and
even real-time FFT is feasible for every device except the
gti5500b. As for this latter device, the DSP model alone
occupies more than half the period of the DSP cycle, even
though the real-time reverb filter is feasible; on the other
hand, FFT calculation is prohibitive for all block sizes.

Regarding differences between API levels, we can ob-
serve that, for the a853 model (the only model with two
different API levels among the tested devices) there is a



 0

 2

 4

 6

 8

 10

 12

64 128 256 512

D
u
ra

ti
o
n
 (

m
s
)

Block size

Callback times for loopback on each device (1/2)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1024 2048 4096 8192

D
u
ra

ti
o
n
 (

m
s
)

Block size

Callback times for loopback on each device (2/2)

cycle period
a853 v7
a853 v8
gti5500b
gti9000
gti9100

gtp1000l
mz604

r800i
tf101
x10i

xoom

Figure 4. Times for the DSP callback with an empty loop-
back algorithm for each device.

significant difference of performance regarding the FFT al-
gorithm. While for the device with API level 7 the FFT is
prohibitive for blocks with 512 samples or more, for the
device with API level 8 we were able to carry the FFT for
blocks up to 8192 samples. To draw more general conclu-
sions on API level differences we need more devices of the
same model with different API levels.

3.2 Stress tests

The results of running the stress tests on different devices
can be seen in Figure 7. Each line gives the maximum
number of filter coefficients a device is able to process in
real-time, as a function of block size. The nearly hori-
zontal pattern is noticeable and might seem surprising at
first glance, but it is actually expected, because of the na-
ture of the stress tests. Even though large DSP blocks

 0

 2

 4

 6

 8

 10

 12

64 128 256 512

D
u
ra

ti
o
n
 (

m
s
)

Block size

Callback times for reverb on each device (1/2)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1024 2048 4096 8192

D
u
ra

ti
o
n
 (

m
s
)

Block size

Callback times for reverb on each device (2/2)

cycle period
a853 v7
a853 v8
gti5500b
gti9000
gti9100

gtp1000l
mz604

r800i
tf101
x10i

xoom

Figure 5. Times for the reverb algorithm (IIR filter with 2
coefficients) on each device.

have more time available between callbacks, they also have
more samples to be processed, so these two factors cancel
each other out for any linear time DSP algorithm.

If we consider an ideal sample-wise stream processing
DSP algorithm, we expect that the time available for com-
putation between adjacent samples is simply the reciprocal
of the sampling rate, and so the maximum number of op-
erations should be O(1). The actual scenario is a lot more
complicated due to the multitasking nature of the operat-
ing system, its priority rules for scheduling tasks, and also
due to concurrent activities which are not controllable by
a regular user. It is conceivable that the variations that ap-
pear on very small and very large blocks are due to priority
issues: a process that uses less CPU during a single call-
back might get a relatively bigger share of CPU time than a
process that eats up a lot of CPU time in a single callback.



 0

 2

 4

 6

 8

 10

 12

64 128 256 512

D
u
ra

ti
o
n
 (

m
s
)

Block size

Callback times for FFT on each device (1/2)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1024 2048 4096 8192

D
u
ra

ti
o
n
 (

m
s
)

Block size

Callback times for FFT on each device (2/2)

cycle period
a853 v7
a853 v8
gti5500b
gti9000
gti9100

gtp1000l
mz604

r800i
tf101
x10i

xoom

Figure 6. Times for the FFT algorithm on each device.

If this is indeed the case, the larger K values for smaller
blocks and the smaller K values for larger blocks would
have been expected.

It is interesting to notice that the ranking of devices given
by the stress tests is only partially preserved with respect
to the ranking of callback times for the loopback algorithm
(as seen in Figure 4). The exceptions are the tf101 and
xoom device models, which are the only models that pro-
vide dual-core CPUs in our experiment. This might ex-
plain the different positions of these devices on the two
tests. For single-core devices, the thread that runs the DSP
callback has to share processor time with every other run-
ning task. For dual-core devices, the operating system
scheduler can decide which task to run on each core, and
the DSP thread might be allocated to the least occupied
core, which increases the amount of computation allowed
between callbacks.

 0

 50

 100

 150

 200

 250

 300

 350

 400

64 128 256 512

M
a

x
im

u
m

 #
 o

f 
F

IR
 c

o
e

ff
ic

ie
n

ts

Block size

Maximum filter size (1/2)

 0

 50

 100

 150

 200

 250

 300

 350

 400

1024 2048 4096 8192

M
a

x
im

u
m

 #
 o

f 
F

IR
 c

o
e

ff
ic

ie
n

ts

Block size

Maximum filter size (2/2)

a853 v7 
a853 v8 
gti5500b 
gti9000 
gti9100 

gtp1000l 

mz604 
r800i 
tf101 
x10i 

xoom 

Figure 7. Result of maximum FIR filter size on each de-
vice.

4. DISCUSSION

We have devised a Java DSP model for Android devices
and performance tests that can be carried on any device
running Android API 7 or newer. With this application, we
obtain time statistics about usual DSP computations and
also stress devices to measure the feasibility of other DSP
tasks under real-time constraints. All this provides us with
upper limits for computations using our DSP model, but
results could be optimized since our model runs with no
special privileges on the system, no native (C/C++) code
and very few code optimizations.

We could find few documentation on real-time DSP us-
ing the Android API on the application level, so we hope
that this work can fill part of this gap by providing the
source code (published under a free software license) and
the model documentation (which is conveyed, in part, by



this text). Also, this work has been developed with the
hope that it would be useful for computer music researchers
and artists to obtain important information that can aid the
choice of hardware to use on real-time applications and
also the algorithmic decisions that have to be made during
the real-time performance. By providing a systematic way
to obtain performance measures related to usual DSP tasks
and upper limits on FIR filters (which may be regarded as
a fairly general DSP model as far as computational com-
plexity is concerned), we hope to have achieved our goals.

4.1 Future work

Some ideas for future work are briefly discussed below:

• libpd 6 is a port of Pure Data’s core engine which
make possible to run Pd patches as C native code
over Android’s Dalvik Java VM. Comparisons of our
Java DSP model with libpd’s model can greatly im-
prove the understanding of performance differences
between Java and native C code.

• The Android API provides the AudioEffect class,
which allows for native C/C++ code to be run over
the system’s streams of audio. A comparison of our
model with native implementations using the An-
droid’s Native Development Kit (NDK) 7 could give
us important insights about performance differences
of different software stack levels running with dif-
ferent priorities.

• By allowing the DSP model to iterate through over-
lapped input signal blocks, we can estimate the max-
imum overlap factor for which it is feasible to pro-
cess entire blocks with specific algorithms and then
overlap-add them to generate the output signal [7].

• Other algorithms such as a complete FFT/IFFT pro-
cedure or a full Phase Vocoder implementation (with
phase estimation and sinesum resynthesis) can be
run to determine the feasibility of other kinds of ba-
sic DSP building blocks.

5. ACKNOWLEDGEMENTS

We would like to thank the members of the Computer Mu-
sic Group 8 of the Computer Science Department of the
Institute of Mathematics and Statistics of the University of
São Paulo. This work has been supported by the funding
agencies CAPES and FAPESP (grant 2008/08632-8).

6. REFERENCES

[1] K. Pathak, “Efficient audio processing in android 2.3,”
Journal of Global Research in Computer Science,
vol. 2, no. 7, pp. 79–82, 2011.

[2] S. YI and V. LAZZARINI, “Csound for android,” To
appear in: Linux Audio Conference 2012.

6 http://puredata.info/downloads/libpd/
7 https://developer.android.com/sdk/ndk/overview.html
8 http://compmus.ime.usp.br/en/

[3] P. Brinkmann, Making Musical Apps. O’Reilly Me-
dia, 2012.

[4] C.-M. Lin, J.-H. Lin, C.-R. Dow, and C.-M. Wen,
“Benchmark dalvik and native code for android sys-
tem,” in Innovations in Bio-inspired Computing and
Applications (IBICA), 2011 Second International Con-
ference on, dec. 2011, pp. 320 –323.

[5] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,
Discrete-time signal processing (2nd ed.). Upper Sad-
dle River, NJ, USA: Prentice-Hall, Inc., 1999.

[6] J. Cooley and J. Tukey, “An algorithm for the machine
calculation of complex fourier series,” Mathematics of
Computation, vol. 19, no. 90, pp. 297–301, 1965.

[7] T. G. Stockham, Jr., “High-speed convolution and
correlation,” in Proceedings of the April 26-28, 1966,
Spring joint computer conference, ser. AFIPS ’66
(Spring). New York, NY, USA: ACM, 1966, pp.
229–233. [Online]. Available: http://doi.acm.org/10.
1145/1464182.1464209

[8] B. A. Shenoi, Introduction to Digital Signal Processing
and Filter Design. John Wiley & Sons, 2006, vol.
chipselect.

http://doi.acm.org/10.1145/1464182.1464209
http://doi.acm.org/10.1145/1464182.1464209

	 1. Introduction
	1.1 Related work
	1.2 Text organization

	 2. Methods
	2.1 DSP object model
	2.2 Algorithm benchmarking
	2.3 Stress tests
	2.4 Experiment design

	 3. Results
	3.1 Algorithm benchmarking
	3.2 Stress tests

	 4. Discussion
	4.1 Future work

	 5. Acknowledgements
	 6. References

