Real time digital audio processing using Arduino

André Jucovsky Bianchi
Computer Science Department
University of Sao Paulo
ajb@ime.usp.br

ABSTRACT

In the search for low-cost, highly available devices for
real time audio processing for scientific or artistic purposes,
the Arduino platform comes in as a handy alternative for a
chordless, versatile audio processor. Despite the fact that
Arduinos are generally used for controlling and interfacing
with other devices, its built-in ADC/DAC allows for cap-
turing and emitting raw audio signals with very specific
constraints. In this work we dive into the microcontroller’s
structure to understand what can be done and what are the
limits of the platform when working with real time digi-
tal signal processing. We evaluate the behaviour of some
common DSP algorithms and expose limitations and pos-
sibilities of using the platform in this context.

1. INTRODUCTION

Arduino is the name of a hardware and software project
started in 2005 which aims to simplify the interface of
electric-electronic devices with a microcontroller [1]. It
evolved from the Processing software IDE! (2001) and
the Wiring software and hardware prototyping platform >
(2003). Hardware, software and documentation designs
are published under free licenses (Creative Commons BY-
SA 2.5, GPL/LGPL and CC BY-SA 3.0, respectively) and
a large community has grown to provide code and support
for newcomers. Nowadays, many Arduino hardware de-
signs are available and range from more limited 8-bit mi-
crocontrollers to fully featured 32-bit ARM CPUs. Be-
sides, other advantages of Arduino for academic and artis-
tic use are its mobility (because of its low power needs and
possibility of running on batteries for hours, if not days
depending on the use), expandability (because of its stan-
dardized interface for attaching so called hardware shields)
and price (selling for under 20 US dollars online).

Despite all these advantages, the Arduino platform has
a somewhat limited processing power when compared to
standard processors available in the market, as for example
DSP chips such as Analog Device’s Blackfin 32-bit RISC

! http://www.processing.org/
2 http://wiring.org.co/

Copyright: ©2012 André Jucovsky Bianchi et al. This
is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which ermits unre-
/4 14

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Marcelo Queiroz
Computer Science Department
University of Sdo Paulo
mgz@ime.usp.br

processors > and FPGA-based processors such as Xilinx
Virtex-7 family*. Research and industry advances have
led to optimized computational performance and power con-
sumption for these platforms [2], but we could not find a
thorough examination of the use of a low-tech device such
as the Arduino.

In this work, we aim to systematically expose the micro-
controller-based Arduino platforms’ possibilities for car-
rying real time digital audio processing tasks so there can
be more accurate elements to be taken into account when
making the choice for a platform. Code examples can be
downloaded from the IME/USP Computer Music Group
webpage > .

1.1 Related work

Arduino has been experimentally used as a real time au-
dio processor for sampling audio and control signals with
an effective rate of 15.125 KHz [3], which provided the
base for our investigation. Also, an ALSA audio driver was
implemented to use the Arduino Duemilanove [4] as a full-
duplex, mono, 8-bit 44.1 KHz sound card under GNU/Linux.

2. METHODS

In order to meet the needs for real time audio processing,
the microcontroller has to be tweaked so we can capture,
process and output analog audio. Each of these tasks can
be performed in a variety of ways, and for this examina-
tion we chose to go with the basic functionalities of the
platform.

In this investigation, we used an Arduino Duemilanove
with an ATmega328P microcontroller from Atmel, a very
modest version of the platform. It has an 8-bit RISC central
processor, operates with a base frequency of 16 MHz, and
has memory capacity of 32 KB for program storage and
2 KB for random access [5]. From now on, whenever we
refer to the microcontroller, we are in fact talking about
this specific model from this specific manufacturer.

2.1 Microcontroller’s elements

To be able to know how to configure the platform to suit
our needs, a general understanding of the inner workings of
a microcontroller is needed. The Atmel megaAVR series

3 http://www.analog.com/en/processors-
dsp/blackfin/products/index.html

4 http://www.xilinx.com/products/silicon-devices/fpga/virtex-
7/index.htm

3 http://compmus.ime.usp.br/en/arduino

mailto:ajb@ime.usp.br
mailto:mqz@ime.usp.br
http://creativecommons.org/licenses/by/3.0/

microcontroller is comprised of several components, some
of which are fundamental for our investigation and so will
be briefly covered in this section.

2.1.1 Clocks

Many clocks provide the frequencies in which the different
parts of the microcontroller work. They are basically either
emitters or dividers of square wave signals that provide the
frequency of operation of the CPU, the ADC, the memory
access and other components of the microcontroller. Pos-
sible sources of clock frequencies are crystal and RC os-
cillators.

A useful concept associated with clocks is the one of a
prescaler. Prescalers are dividers for clock frequencies
that either actually lower the frequency of a clock or at
least trigger specific interrupts on a (power of two) frac-
tion of a clock’s frequency.

The system clock provides the system’s base frequency
of operation. Other important clocks are the I/O clock and
the ADC clock used for feeding a frequency to most of the
input/output mechanisms. It is possible to choose which
clock will feed a frequency to some parts of the system,
as well as select prescaler values independently. In our
study, we make use of the timer clock prescaler to control
the PWM frequency that drives our DSP mechanism, as we
will see in Section 2.3.

2.1.2 Registers and interrupts

The microcontroller’s CPU is comprised of an arithmetic
logic unit that works with 32 registers — portions of me-
mory that provide data for computation as well as deter-
mine the execution flow of the program. An interrupt is an
attempt of deviation from the current execution flow that
can be triggered by a variety of events in the system, usu-
ally by setting reference values on specific registers.

In our case, interrupts are of extreme value as they are
the low level structures that allow us to execute code with
a somewhat fixed frequency (at least if we assume that the
clock frequencies are indeed constant in relation with real
time).

2.1.3 Timers/counters

A timer, or counter, is a register whose value is automat-
ically incremented according to a specific clock. When
a counter hits its maximum value it is reset to zero and
signals an overflow interrupt, which may cause a certain
function to be called.

Timers are important in the context of DSP because they
provide a natural way to perform many of the DSP chain
tasks, as for example to periodically launch the input signal
sampling function (that fills the input buffer) and to emit a
PWM square wave which, after analog low-pass filtering
(through an integrator), corresponds to a smooth analog
signal. The ATmega328P has two 8 bit counters and one
16 bit counter, each having different sets of features but all
being capable of doing PWM.

2.1.4 Input and output pins

Microcontrollers can receive and emit digital signal through
I/0 pins, which in the case of the Arduino board are con-
veniently mounted in such a way that it is easy to plug
other components and boards. These pins are read from
and written to according to frequencies governed by dif-
ferent clocks (I/0, ADC and others).

In principle, the microcontroller pins are designed to work
with binary signals represented by two different voltages
(0 V and 5 V with a threshold value to account for small de-
viations). Despite that, I/O pins come equipped with handy
mechanisms for sampling band limited input signals whose
voltages vary between the reference extremes, and also
for generating waveforms that, after being filtered, output
varying signals of the same nature. These mechanisms are,
respectively, the analog-to-digital converter (ADC) and the
pulse-width modulation (PWM), which will be seen in the
next sections.

2.1.5 Memory

The microcontroller has 3 manageable memory spaces for
storing the program and working data, and the following
table summarizes the different characteristics and purposes
for each type of memory:

. . . Endurance
Size Data per- Write time .

Type (KB) sistency (clock ticks) g‘;g:;’)erase
Flash 32 yes 1 10,000
SRAM 2 no 2 n/a

EEPROM 1 yes 30 100,000

Usually, the Flash memory stores the program, the SRAM
memory stores volatile data used along the computation,
and the EEPROM is used for longer-term storage between
working sessions. Notice that the amount of SRAM me-
mory represents a hard limit for many DSP algorithms. A
512 point lookup table filled with precalculated sinewave
bytes, for example, represents 25% of all available work-
ing space. Thus, it might be interesting to store hardcoded
data in the program memory whenever possible if memory
working space is lacking.

2.2 Audio in: ADC

Data can flow into the microcontroller in a variety of ways,
the most basic being embedded mechanisms for digital se-
rial communication and analog-to-digital conversion using
the input pins. The former mechanism can feed digital data
directly into memory, while the latter can either read 1 bit
from an input pin (as explained in the last section) or sam-
ple an analog value between the reference voltages using 8
or 10 bits resolution.

Rather than providing the microcontroller with digital data,
our setup uses the embedded analog-to-digital conversion
to sample an audio signal using the microcontroller pins’
ADC mechanism. This choice was made so the signal can
be directly connected to the microcontroller (i.e. no exter-
nal device has to be used for sampling) and we can study

the device’s performance taking into account this crucial
step in the digital audio processing chain.

The ADC uses a Sample and Hold circuit that holds the
input voltage at a constant level until the end of the con-
version. This fixed voltage is then successively compared
with reference voltages to obtain a 10 bit approximation.
If a faster conversion is desired, precision can be sacrificed
and the first 8 bits can be read before the last 2 are com-
puted. Conversion time takes between 13 and 250 us, de-
pending on several configuration parameters that influence
the precision of the result.

As noted before, the ADC mechanism has a dedicated
clock to ensure conversion can occur independently of other
microcontroller parts. Also, the mechanism can be trig-
gered manually (on demand) or automatically (a new con-
version starts as soon as the last one has finished).

2.3 Audio out: PWM

Once the input signal has been sampled and processed, one
way to convert it back to analog is to use the embedded
pulse-width modulation (PWM) mechanism that is avail-
able in some of the output pins of the microcontroller, fol-
lowed by an analog filtering stage. A PWM wave encodes
a determined value in the width of a square pulse. In or-
der to do this, it defines a duty cycle as the percentage of
time that the square wave has its maximum value in rela-
tion to the total time between square pulses (see Figure 1).
The encoding of a value x ranging from X; to X5 is just

the enforcement of a duty cycle with a percentage equal to
z—X
pem ol

0% Duty Cycle
5V

oV

25% Duty Cycle

JU L L T T

50% Duty Cycle

5V,

(Y

75% Duty Cycle

JoUoU U u L

100% Duty Cycle

5V

oV

Figure 1. Examples of PWM waves with different duty
cycles. The left alignment of the waves corresponds to the
Fast PWM mode.

The final analog filtering stage is needed to remove high
frequency components present in the square wave spec-
trum to reconstruct a band limited signal. In our case, this
filtering is made from a simple RC integrator circuit that
stands between the output pin and a normal speaker.

The PWM mechanism can operate in different modes which

vary according to how the reference value to be encoded

relates with a counter’s signal to generate the output val-
ues of the modulated wave. In Fast PWM mode, the output
signal is set to 1 in the beginning of the cycle and becomes
0 whenever the reference value becomes smaller than the
counter value (see Figure 2). This mode has the disadvan-
tage of outputting the square pulses aligned to the left of
the PWM cycle, and so the Phase correct mode is avail-
able to solve this problem at the expense of cutting the sig-
nal generation frequency in half. It works by making the
counter count back to zero instead of being reset when it
hits its maximum value.

OCRnx Interrupt Flag Set

OCRnx Update and
TOVn Interrupt Flag Set

i

TCNTn

oCnx L (COMnx1:0 = 2)
OCnx (COMnx1:0 = 3)

s | s oo

Figure 2. Time evolution of register values in the PWM
mechanism. TCNTn is the value of the counter and OCnx
is the value of the output pin. Note how changes in the
reference value determine the duty cycle on each wave pe-
riod.

The output frequency of the PWM signal is a function
of the clock selected to be used as input for the counter,
the counter prescaler value, the size of the counter (in bits)
and the PWM mode. For a b bits counter with input clock
of feiock Hz and prescaler value of p, an output pin con-
figured to operate in fast PWM mode overflows with a

frequency of gcioc;b

output the processed signal while using the same infras-
tructure to schedule periodic actions, such as querying for
ADC values and signaling that blocks of samples are ready
to be processed.

Also notice that the counter size determines the output
signal resolution, as the duty cycles of the square waves
correspond to the ratio between the current counter value
and its maximum possible value. We will see more about
parameters choice for PWM on section 2.5.2.

Hz. This provides us with a way to

2.4 Real time processing

The main constraint in real time DSP is, of course, the
amount of time available for the computation of output
samples: they must be ready to be consumed by the play-
back hardware or else glitches and other unwanted arti-
facts will possibly be introduced in the signal. One round
of sample analysis, processing and calculation of a new
sample is called a DSP sample cycle. Many algorithms,
though, operate in blocks of samples, consuming and pro-
ducing a whole block of samples in each round. If the DSP

block has IV samples and the sample rate is R Hz, then the
DSP block cycle period is given by Tpsp = % seconds.

In order to implement this behaviour in the microcon-
troller, we have to find a way to (1) accumulate input sam-
ples in a buffer, (2) schedule a periodic call to a function
that will process the samples in this buffer, and (3) out-
put modified samples in a timely fashion. Components are
at hand: ADC for reading the input signal, counters and
their interrupts for running periodic tasks, and PWM for
outputting the resulting signal. In addition, the Arduino li-
brary provides a Loop () function that is called repeatedly
which we can use to process the block of samples when it
becomes available.

As we saw in section 2.3, the PWM mechanism provides
an overflow interrupt frequency that may be used to sched-
ule a function for periodic execution. In our setup we use
this mechanism to periodically read samples from the ADC
mechanism and accumulate them in an input buffer, while
also writing the computed samples from the last DSP cycle
to the PWM output buffer. In this same function, whenever
the buffer is full and ready to be processed, a flag is set and
the 1oop () function is released to work on the samples.

Note that for some critical applications, the term “real
time execution” might mean that the application should be
interrupted whenever its time for computation is up. In the
case of real time digital audio, if no output sample could be
computed before the output hardware tries to read it, audi-
ble artifacts may be unavoidable had the computation been
interrupted or not. Thus, our approach concentrates on
measuring the time taken by certain algorithms and com-
paring it with the DSP cycle period, and does not account
for what happens should the time not be sufficient.

2.5 Implementation

Putting all the elements together is a matter of choosing
the right parameters for configuring different parts of the
microcontroller.

2.5.1 ADC parameters

ADC conversion takes about 14.5 ADC clock ticks, includ-
ing sample-and-hold time. If the CPU clock frequency is
16 MHz and the ADC prescaler has a value of p, then the
ADC clock period is p/16 and the conversion period is
then Tiony = (14.5 X p)/16. Below we can see a table
with the theoretical values for the conversion period 7oy
for all prescaler values available and also the results Teony
of measured conversion times using each prescaler value.
Also depicted in the table are the measured conversion fre-
quencies fconv = 1/ionv-

ADC prescaler Teony (1s) Teonv (115) feony (RKHzZ)
2 1.8125 12.61 79.302

4 3.625 16.06 62.266

8 7.25 19.76 50.607

16 14.5 20.52 48.732

32 29 34.80 28.735

64 58 67.89 14.729

128 116 114.85 8.707

These measurements were made using the micros ()
function of the Arduino library API, which has a resolution
of about 4 ps. This might explain part of the deviation of
measured values from the expected values for lower values
of prescaler. 8 bit approximation was used, and for obtain-
ing a 10 bit approximation we can expect an overhead of
about 25% in conversion time.

It is important to note that the choice for ADC prescaler
value limits the sampling rate of the input signal. As our
setup uses a counter’s overflow interrupt to obtain samples
from the ADC mechanism, the ADC conversion period
must be smaller than the the PWM’s cycle period. Any
prescaler choice that leads to a frequency higher than the
PWM’s overflow interrupt frequency is valid, but the lower
the prescaler value the lower the quality of the conversion.

2.5.2 PWM

From Section 2.3 we can see that in a 16 MHz CPU, an 8
bit counter with prescaler value of p has an overflow inter-
rupt frequency of foveriow = 109/(p x 2*) Hz. Below we
can see a table with the overflow interrupt frequency for all
possible values of prescaler:

PWM prescaler finer (KHz) foverfiow (HZ)
1 16.000 62500

8 2.000 7812

32 500 1953

64 250 976

128 125 488

256 62,5 244
1024 15,625 61

The choice of PWM and ADC prescaler values determine
directly the sampling rate of our DSP system. If we set the
ADC prescaler in a way that the ADC conversion period is
smaller than the PWM overflow interrupt period and syn-
chronize reads from the input with writes to the output,
then the PWM overflow interrupt frequency becomes the
DSP system’s sample rate. We will see this with more de-
tails in the next section.

For the PWM mechanism, we chose to use Fast PWM
mode on an 8-bit counter with prescaler value of 1. That
would give us a sample rate of 62500 Hz, which is enough
for representing the audible spectrum. Nevertheless, if we
need more time to compute we may artificially lower the
frequency by only executing the sampling/outputting bit in
a fraction of the interrupts. For our tests, we chose to cut
the sample rate in half using the rationale that the payoff
of having more time to compute is larger than the one of
ensuring we can represent the upper fifth part of the audi-
ble spectrum. Therefore, our final choice of sample rate is
31250 Hz, with a sample period of 32 us.

2.5.3 Putting it all together

Having chosen a value for the PWM counter size and PWM
prescaler, we are left with the choice for ADC parame-
ters. As noted, it suffices to choose a value that ensures
ADC conversion period is smaller than the desired sam-
ple period. We chose to use 8 bit conversion to match

the PWM resolution and to provide for a faster conversion
time. Also, we chose an ADC prescaler value of 8, with a
measured conversion time of 19.76 ps which, when com-
pared with the a sample period of 32 s ensures that con-
version will be finished before the input ADC is queried
for the sample.

Below we can see the code for the interrupt service rou-
tine (ISR) DSP controller function. Variable x is the input
buffer, ADCH maps to the ADC register holding the input
sample, OCR2A maps to the PWM output register and y is
the output buffer. Some of the code is index wizardry and
the rest we comment below.

// Timer2 Interrupt Service at 62.5 KHz
ISR(TIMER2_OVF_vect) {
static boolean div = false;
div = !div; // divide frequency to 31.25 KHz
if (div) {
// 1. read from ADC input
x[ind] = ADCH;
// 2. write to PWM output
OCR2A = y[(ind-MIN_DELAY) & (BUFFER_SIZE-1)1];
// 3. signal availability of new sample block
if ((ind & (BLOCK_SIZE - 1)) == 0)
rind = (ind-BLOCK_SIZE) & (BUFFER_SIZE-1);
dsp_block = true;

}

// 4. increment read/write buffer index
ind++;

ind &= BUFFER_SIZE - 1;

// 5. start new ADC conversion

sbi (ADCSRA,ADSC) ;

2.6.1 Additive synthesis

An additive synthesis is the process of constructing a com-
plex waveform by adding together several basic waveforms
(see Figure 3). This technique has been widely used for
synthesizing new sounds as well as resynthesizing signals
after they have been processed (e.g. via spectral methods).

y(n)

Figure 3. Additive synthesis: many basic oscillators gov-
erned by independent phase (f;) and amplitude (r;) func-
tions are combined to form a complex signal.

The high level code for a simple additive synthesis can be
seen below:

Note that in step 3 we test if the input index is a multiple
of the block size and, if it is, we set a read index rind and
signal that there is a new DSP block available for calcu-
lation. Meanwhile, the 1oop () function is running con-
currently and will eventually catch that signal and start to
work on samples. Finally, we increment buffer indexes and
perform the call to start a new ADC conversion by calling
the sbi () function.

2.6 Benchmarking

We are interested in evaluating the performance of the Ar-
duino board on some common sound processing tasks, in
order to gain insight on its real time stream processing ca-
pabilities. Note that our interest lies in high-level DSP op-
erations; for instance, we’d prefer to know how many si-
multaneous sinusoids can be synthesized in real time rather
than how many multiplications and additions fit between
successive DSP blocks (even though the former follows
from the latter).
Some questions arise immediately from the real time con-
straint:
e What is the maximum amount of DSP operations
that can be carried in real time?
e Which implementation details make a difference?
We try to answer these questions by running 3 differ-
ent DSP algorithms in the microcontroller environment de-
scribed in the last section. The chosen tasks are additive
synthesis, time-domain convolution and FFT computation,
and are discussed in the following sections.

for (n = 0; n < N; n++)

yln] = 0.0;

for (k = 0; k < numFreqgs; k++)
y[n] += rl[klxsin(f[k] % angle);

t += 1.0 / SR;

2.6.2 Time-domain convolution

Frequency-domain multiplication of spectra correspond to
time-domain convolution of signals, and such an operation
allows for some techniques of frequency filtering. The
time-domain implementation of convolution is a widely
used technique in many computer music algorithms, be-
ing particularly efficient when the filter order N is small.
The general scheme can be seen in Figure 4.

x[n] Z—l Z—l Z—l

Figure 4. Time-domain convolution: the input signal z[n]
is convolved with the filter’s impulse response defined by
the coefficients b; to generate the output signal y[n]. This
is the general scheme for FIR filtering.

The high-level code for a time-domain convolution with
a FIR filter of order NV is:

for (k = 0; k < N; k++)
y[n] += bl[k]lxx[n-k];

2.6.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) is a clever implemen-
tation of the traditional Fourier Transform that brings its
complexity down from O(n?) to O(nlog(n)), where n
is the number of time-domain digital samples or, equiva-
lently, the number of frequency bins that describe the fre-
quency spectrum of the signal after the Transform compu-
tation [6]. The FFT algorithm takes advantage of redun-
dancy and symmetry on intermediary steps of the calcula-
tion and is used in many signal processing algorithms. The
general scheme of the FFT can be seen in Figure 5.

x[0]o——]

2]o— .
X2l N/2- point
x[4]o——| DFT
x[6]o——|
x[1]Jo—p—!

B> N/2- point

X[5]o—»—| DFT

x[7]o——

Figure 5. The FFT uses a divide-and-conquer approach
and saves intermediate results to accelerate the calcula-
tion of a signal spectrum. The figure shows one step of
an 8-point FFT calculation and how the results map to fre-
quency bins.

2.6.4 Benchmarking

Each of the algorithms mentioned in the last sections have
different computational costs in terms of number of integer
and floating-point operations, and quantity/size of memory
reads and writes.

In the context of real time audio processing in Arduino,
these algorithms bring natural questions regarding feasibil-
ity of processing:

e Additive synthesis: what is the maximum number of
oscillators that can be used to compute a new wave-
form in real time?

e Time-domain convolution: what is the maximum length

of a filter that can be applied to an audio signal in
real time?

e FFT: what is the maximum length of an FFT that can
be computed in real time?

3. RESULTS

3.1 Additive synthesis

The first experiment tries to answer the question of how
many oscillators can be used when performing real time

additive synthesis inside the platform. In the beginning of
the DSP cycle, an additive synthesis algorithm is run using
a determined number of oscillators and the mean of the
synth time is taken over ten million measurements. Block
sizes used had 32, 64 and 128 samples (more showed to be
unfeasible in real time) and the number of oscillators was
increased until the DSP cycle period was exceeded.

The first result has to do with the use of loop structures.
Because looping usually requires incrementing and testing
a variable in each iteration, the use of one loop structure
may have strong influence in the amount of oscillators that
can be used in real time for additive synthesis inside the
Arduino.

In any DSP algorithm that works over a block of samples
there is at least one loop structure, that loops over all sam-
ples of the block. This loop could be eliminated at the cost
of having to recompile the code every time the length of
the block is changed, which is highly inconvenient. Usu-
ally more loops will be used, for instance in additive syn-
thesis for summing the result of several oscillators. We
investigate the alternative of removing this inner loop, by
explicitly writing the sum of oscillators. Figure 6 shows
the maximum amount of oscillators feasible in real time
by making use of a loop and by making use of inline code.
By removing the inner loop we were able to increase from
8 oscillators to 13 or 14 depending on the block size.

Additive Synthesis on Arduino (using a loop)

Synth time (ms)

AT T N T T T N N A
4 56 7 8 9101112131415
Number of oscilators

o
-
N =
w

Additive Synthesis on Arduino (using inline code)

Synth time (ms)

0
01234567 8 9101112131415
Number of oscilators

bl. size 32 —e— rt per. 64 -------
rt per. 32 ------- bl. size 128 —e—
bl. size 64 —— rt per. 128 -------

Figure 6. Additive synthesis results using loops (above)
and inline code (below).

While implementing this experiment, a first attempt was
made using the standard API sin () function. As that
proved to be unfeasible in real time, we focused on table
lookup implementations. At this point we noticed that even
the smallest implementation difference can have large im-
pact on the results. Therefore, we decided to test and plot
the results for slightly different implementations.

Two parameters are used to calculate the value of each
oscillator: phase and amplitude. Phase is handled by up-
dating the index for sine table reads, and then the amplitude
has to be multiplied by the value obtained by the lookup.
Floating point operations are also extremely expensive in
the platform we are using, so we implemented 3 differ-
ent ways of multiplying the amplitude: (1) by using one
integer multiplication and one integer division (2 integer
operations), (2) by using only one integer division (1 in-
teger operation), and (3) by using variable bit padding for
performing bitwise power of 2 divisions or multiplications.
Figure 7 shows the time used by the additive synthesis al-
gorithm using these variants. By making use of lower level
operations (that achieve less precise results) and inline cod-
ing we were able to raise the number of oscillators from
3 (when using 2 integer operations and a for loop) to 15
(when using a variable pad and inline code).

Operations in additive synth (R=31250/N=128)

Synth time (ms)

A T T A A T T N R
34567 8 9101112131415
Number of oscilators

i
012

mult/div —e—

div —e—

varpad ——
rt period -------

Figure 7. Time taken for additive synthesis algorithm with
block size of 128 samples, using different number and
kinds of operations and variable number of oscillators.

3.2 Time-domain convolution

Our second experiment tries to clarify what is the maxi-
mum size of a FIR filter that can be applied in real time
to an input signal by use of time-domain convolution algo-
rithms. Following lessons learned on the first experiment,
we implemented the filtering loop using different types of
operations for multiplying each coefficient by the sample
values: (1) using one integer multiplication and one integer
division, (2) using variable pad, and (3) using a constant
hardcoded pad. The results for each of these implemen-
tations can be seen in Figure 8. This experiment was run
with a sample rate of 31250 Hz and block sizes of 32, 64,
128 and 256 samples.

Results again show that small implementation differences
make a big difference on computing power. When using
integer division, the maximum order obtained for the filter
was 1, while by using a variable pad the order raised to 7
and with constant padding we could achieve an order of 13
or 14 depending on the block size.

Time-domain convolution on Arduino (mult/div)

9

8
> 7
E 6
g
= 4
ey
c 3
>
w 2

0 I T N T N AN NN T B

| | | |
01234567 8 9101112131415
Order of the filter

Time-domain convolution on Arduino (variable pad)

S L A B I
8

> 7

E 6

[0)

E °

= 4

ey

€ 3

>

o 2
1 fmnd
0 Lo

01234567 8 9101112131415
Order of the filter

Time-domain convolution on Arduino (constant pad)

Synth time (ms)
O = NDNWPH o1 N O

01234567 8 9101112131415
Order of the filter

bl. size 32 —— bl. size 128 ——

rt per. 32 ------- rtper. 128 -------
bl. size 64 —— bl. size 256 ——
rt per. 64 ------- rt per. 256 -------

Figure 8. Time-domain convolution using 2 integer op-
erations (top), variable padding (middle) and constant
padding (bottom).

3.3 FFT

The third experiment is concerned with the maximum length
of an FFT that can be computed in real time inside an Ar-
duino. In this case we chose to evaluate a standard imple-

mentation of the FFT without further modifications.

It turned out that calculating an FFT using the same sam-
ple rate we used in the other experiments (31250 Hz) was
unfeasible, so we had to tweak the microcontroller’s pa-
rameters to reach a state where we had a longer DSP cy-
cle period for the same amount of samples and the FFT
was indeed feasible. By measuring the amount of time
taken to compute the FFT given the number of samples,
we could determine that the maximum FFT frequency for
a 256 samples block is of about 2335 Hz. So by raising the
PWM prescaler value to 32, we could reach a sample rate
of about 1953 Hz.

Figure 9 shows the FFT analysis time at a sample rate
of 1953 Hz for different block sizes and two implementa-
tions: using the API sin () function and using a lookup
table. In this scenario the maximum block size for which
an FFT can be computed in real time in our DSP setup in
the Arduino is 256 samples. This was expected because we
actually forced a sample rate small enough so that the 256
samples FFT was feasible. Note that, even though we can
actually perform the FFT for block sizes smaller or equal
to 256, there’s not much time left for doing anything else
with these results. An additive synthesis for reconstruct-
ing the signal, for example, is unfeasible as the maximum
number of oscillators we could use was 14 (by restricting
the type and number of operations), while here we would
need the same number of oscillators as the number of sam-
ples in the block size.

FFT on Arduino (at 1953 Hz)

300 Tt T A
250
200 |-
150 |-
100 |-
50

Analysis time (ms)

...64 128 256 512
Block size

fft sin() —e—
fft table ---e---

rt period -------

Figure 9. Time taken to compute the Fast Fourier Trans-
form on the Arduino for different block sizes. The red line
depicts the implementation using the sin () library func-
tion and the blue line shows a lookup-table implementation

4. DISCUSSION AND CONCLUSION

From the results of our experiments, it becomes clear that
implementation details, such as choice of data type and
number and type of operations, make a big difference in
the amount and quality of computation, as described in
Sections 3.1 and 3.2. Integer multiplication and division,
for example, take double the time than integer sum. The
amount of loops also proved to make a big difference. In

Section 3.1, we nearly doubled the amount of oscillators
that can be used in additive synthesis by only substituting
one loop with inline code. The mere use of variables also
showed to influence performance.

These experiments may serve as illustrations of the type
of concern that must be kept in mind when implement-
ing sound processing tasks in Arduino, and also serve as
general guidelines for the limitations on the complexity of
those tasks when real time functioning is required.

4.1 Future work

There are many possibilities of investigation in the realm
of microprocessors like Arduino for real time sound pro-
cessing, such as:

e Use of 10-bit ADC input and adapting tests for per-
forming 2 byte operations. We should expect each
operation to cost much more time because of the 8
bit nature of the processor.

e Determine of the amount of noise introduced in the
signal by the ADC sampling/PWM synthesis pro-
cess.

5. ACKNOWLEDGEMENTS

We would like to thank the members of the Computer Mu-
sic Group® of the University of Sdo Paulo for valuable
discussions and contributions. This work has been sup-
ported by the funding agencies CAPES and FAPESP (grant
2008/08632-8).

6. REFERENCES

[1] “Arduino homepage,” http://www.arduino.cc/, [Online;
accessed 12-Jun-2013].

[2] R. Oshana, DSP for Embedded and Real-Time Systems.
Newnes, 2012.

[3] M. Nawrath, “Arduino realtime audio processing,’
http://interface.khm.de/index.php/lab/experiments/
arduino-realtime-audio-processing/, [Online; accessed
12-Jun-2013].

[4] S. Dimitrov and S. Serafin, “Audio Arduino — an
ALSA (Advanced Linux Sound Architecture) audio
driver for FTDI-based Arduinos,” in Proceedings
of the International Conference on New Interfaces
for Musical Expression, A. R. Jensenius, A. Tveit,
R. I. Godgy, and D. Overholt, Eds., Oslo, Norway,
2011, pp. 211-216. [Online]. Available: http://www.
nime201 1.org/proceedings/papers/G01-Dimitrov.pdf

[5] “Atmel ATmega48A/48PA/88A/88PA/168A/328/328P
datasheet,” http://www.atmel.com/devices/
ATMEGA328P.aspx?tab=documents, [Online; ac-
cessed 12-Jun-2013].

[6] W.H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, “Numerical recipes in C: The art of scientific
computing. second edition,” 1992.

6 http://compmus.ime.usp.br/en/

http://www.arduino.cc/
http://interface.khm.de/index.php/lab/experiments/arduino-realtime-audio-processing/
http://interface.khm.de/index.php/lab/experiments/arduino-realtime-audio-processing/
http://www.nime2011.org/proceedings/papers/G01-Dimitrov.pdf
http://www.nime2011.org/proceedings/papers/G01-Dimitrov.pdf
http://www.atmel.com/devices/ATMEGA328P.aspx?tab=documents
http://www.atmel.com/devices/ATMEGA328P.aspx?tab=documents

	 1. Introduction
	1.1 Related work

	 2. Methods
	2.1 Microcontroller's elements
	2.1.1 Clocks
	2.1.2 Registers and interrupts
	2.1.3 Timers/counters
	2.1.4 Input and output pins
	2.1.5 Memory

	2.2 Audio in: ADC
	2.3 Audio out: PWM
	2.4 Real time processing
	2.5 Implementation
	2.5.1 ADC parameters
	2.5.2 PWM
	2.5.3 Putting it all together

	2.6 Benchmarking
	2.6.1 Additive synthesis
	2.6.2 Time-domain convolution
	2.6.3 Fast Fourier Transform
	2.6.4 Benchmarking

	 3. Results
	3.1 Additive synthesis
	3.2 Time-domain convolution
	3.3 FFT

	 4. Discussion and Conclusion
	4.1 Future work

	 5. Acknowledgements
	 6. References

