
4 Chapter 1. Vector Spaces

Definition of Vector Space
Before defining what a vector space is, let’s look at two important

examples. The vector space R2, which you can think of as a plane,
consists of all ordered pairs of real numbers:

R2 = {(x,y) : x,y ∈ R}.

The vector space R3, which you can think of as ordinary space, consists
of all ordered triples of real numbers:

R3 = {(x,y, z) : x,y, z ∈ R}.

To generalize R2 and R3 to higher dimensions, we first need to dis-
cuss the concept of lists. Suppose n is a nonnegative integer. A list of
length n is an ordered collection of n objects (which might be num-
bers, other lists, or more abstract entities) separated by commas and
surrounded by parentheses. A list of length n looks like this:Many mathematicians

call a list of length n an
n-tuple. (x1, . . . , xn).

Thus a list of length 2 is an ordered pair and a list of length 3 is an
ordered triple. For j ∈ {1, . . . , n}, we say that xj is the jth coordinate
of the list above. Thus x1 is called the first coordinate, x2 is called the
second coordinate, and so on.

Sometimes we will use the word list without specifying its length.
Remember, however, that by definition each list has a finite length that
is a nonnegative integer, so that an object that looks like

(x1, x2, . . . ),

which might be said to have infinite length, is not a list. A list of length
0 looks like this: (). We consider such an object to be a list so that
some of our theorems will not have trivial exceptions.

Two lists are equal if and only if they have the same length and
the same coordinates in the same order. In other words, (x1, . . . , xm)
equals (y1, . . . , yn) if and only if m = n and x1 = y1, . . . , xm = ym.

Lists differ from sets in two ways: in lists, order matters and repeti-
tions are allowed, whereas in sets, order and repetitions are irrelevant.
For example, the lists (3,5) and (5,3) are not equal, but the sets {3,5}
and {5,3} are equal. The lists (4,4) and (4,4,4) are not equal (they



Definition of Vector Space 5

do not have the same length), though the sets {4,4} and {4,4,4} both
equal the set {4}.

To define the higher-dimensional analogues of R2 and R3, we will
simply replace R with F (which equals R or C) and replace the 2 or 3
with an arbitrary positive integer. Specifically, fix a positive integer n
for the rest of this section. We define Fn to be the set of all lists of
length n consisting of elements of F:

Fn = {(x1, . . . , xn) : xj ∈ F for j = 1, . . . , n}.

For example, if F = R and n equals 2 or 3, then this definition of Fn

agrees with our previous notions of R2 and R3. As another example,
C4 is the set of all lists of four complex numbers:

C4 = {(z1, z2, z3, z4) : z1, z2, z3, z4 ∈ C}.

Ifn ≥ 4, we cannot easily visualize Rn as a physical object. The same For an amusing
account of how R3

would be perceived by
a creature living in R2,
read Flatland: A
Romance of Many
Dimensions, by Edwin
A. Abbott. This novel,
published in 1884, can
help creatures living in
three-dimensional
space, such as
ourselves, imagine a
physical space of four
or more dimensions.

problem arises if we work with complex numbers: C1 can be thought
of as a plane, but for n ≥ 2, the human brain cannot provide geometric
models of Cn. However, even if n is large, we can perform algebraic
manipulations in Fn as easily as in R2 or R3. For example, addition is
defined on Fn by adding corresponding coordinates:

1.1 (x1, . . . , xn)+ (y1, . . . , yn) = (x1 +y1, . . . , xn +yn).

Often the mathematics of Fn becomes cleaner if we use a single
entity to denote an list of n numbers, without explicitly writing the
coordinates. Thus the commutative property of addition on Fn should
be expressed as

x +y = y + x

for all x,y ∈ Fn, rather than the more cumbersome

(x1, . . . , xn)+ (y1, . . . , yn) = (y1, . . . , yn)+ (x1, . . . , xn)

for all x1, . . . , xn,y1, . . . , yn ∈ F (even though the latter formulation
is needed to prove commutativity). If a single letter is used to denote
an element of Fn, then the same letter, with appropriate subscripts,
is often used when coordinates must be displayed. For example, if
x ∈ Fn, then letting x equal (x1, . . . , xn) is good notation. Even better,
work with just x and avoid explicit coordinates, if possible.
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We let 0 denote the list of length n all of whose coordinates are 0:

0 = (0, . . . ,0).

Note that we are using the symbol 0 in two different ways—on the
left side of the equation above, 0 denotes a list of length n, whereas
on the right side, each 0 denotes a number. This potentially confusing
practice actually causes no problems because the context always makes
clear what is intended. For example, consider the statement that 0 is
an additive identity for Fn:

x + 0 = x

for all x ∈ Fn. Here 0 must be a list because we have not defined the
sum of an element of Fn (namely, x) and the number 0.

A picture can often aid our intuition. We will draw pictures de-
picting R2 because we can easily sketch this space on two-dimensional
surfaces such as paper and blackboards. A typical element of R2 is a
point x = (x1, x2). Sometimes we think of x not as a point but as an
arrow starting at the origin and ending at (x1, x2), as in the picture
below. When we think of x as an arrow, we refer to it as a vector .

x -axis1

x -axis2

(x , x )
21

x

Elements of R2 can be thought of as points or as vectors.

The coordinate axes and the explicit coordinates unnecessarily clut-
ter the picture above, and often you will gain better understanding by
dispensing with them and just thinking of the vector, as in the next
picture.
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x

0
A vector

Whenever we use pictures in R2 or use the somewhat vague lan-
guage of points and vectors, remember that these are just aids to our
understanding, not substitutes for the actual mathematics that we will
develop. Though we cannot draw good pictures in high-dimensional
spaces, the elements of these spaces are as rigorously defined as ele-
ments of R2. For example, (2,−3,17,π ,

√
2) is an element of R5, and we

may casually refer to it as a point in R5 or a vector in R5 without wor-
rying about whether the geometry of R5 has any physical meaning.

Recall that we defined the sum of two elements of Fn to be the ele- Mathematical models
of the economy often
have thousands of
variables, say
x1, . . . , x5000, which
means that we must
operate in R5000. Such
a space cannot be dealt
with geometrically, but
the algebraic approach
works well. That’s why
our subject is called
linear algebra.

ment of Fn obtained by adding corresponding coordinates; see 1.1. In
the special case of R2, addition has a simple geometric interpretation.
Suppose we have two vectors x and y in R2 that we want to add, as in
the left side of the picture below. Move the vector y parallel to itself so
that its initial point coincides with the end point of the vector x. The
sum x + y then equals the vector whose initial point equals the ini-
tial point of x and whose end point equals the end point of the moved
vector y , as in the right side of the picture below.

y

x + y

y

x

0

x

0

The sum of two vectors

Our treatment of the vectory in the picture above illustrates a standard
philosophy when we think of vectors in R2 as arrows: we can move an
arrow parallel to itself (not changing its length or direction) and still
think of it as the same vector.
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Having dealt with addition in Fn, we now turn to multiplication. We
could define a multiplication on Fn in a similar fashion, starting with
two elements of Fn and getting another element of Fn by multiplying
corresponding coordinates. Experience shows that this definition is not
useful for our purposes. Another type of multiplication, called scalar
multiplication, will be central to our subject. Specifically, we need to
define what it means to multiply an element of Fn by an element of F.
We make the obvious definition, performing the multiplication in each
coordinate:

a(x1, . . . , xn) = (ax1, . . . , axn);

here a ∈ F and (x1, . . . , xn) ∈ Fn.
Scalar multiplication has a nice geometric interpretation in R2. IfIn scalar multiplication,

we multiply together a
scalar and a vector,

getting a vector. You
may be familiar with

the dot product in R2

or R3, in which we
multiply together two

vectors and obtain a
scalar. Generalizations
of the dot product will

become important
when we study inner

products in Chapter 6.
You may also be

familiar with the cross
product in R3, in which

we multiply together
two vectors and obtain

another vector. No
useful generalization of

this type of
multiplication exists in

higher dimensions.

a is a positive number and x is a vector in R2, then ax is the vector
that points in the same direction as x and whose length is a times the
length of x. In other words, to get ax, we shrink or stretch x by a
factor of a, depending upon whether a < 1 or a > 1. The next picture
illustrates this point.

x
(1/2)x

(3/2)x

Multiplication by positive scalars

If a is a negative number and x is a vector in R2, then ax is the vector
that points in the opposite direction as x and whose length is |a| times
the length of x, as illustrated in the next picture.

x

(−1/2)x

(−3/2)x

Multiplication by negative scalars
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The motivation for the definition of a vector space comes from the
important properties possessed by addition and scalar multiplication
on Fn. Specifically, addition on Fn is commutative and associative and
has an identity, namely, 0. Every element has an additive inverse. Scalar
multiplication on Fn is associative, and scalar multiplication by 1 acts
as a multiplicative identity should. Finally, addition and scalar multi-
plication on Fn are connected by distributive properties.

We will define a vector space to be a set V along with an addition
and a scalar multiplication on V that satisfy the properties discussed
in the previous paragraph. By an addition on V we mean a function
that assigns an element u + v ∈ V to each pair of elements u,v ∈ V .
By a scalar multiplication on V we mean a function that assigns an
element av ∈ V to each a ∈ F and each v ∈ V .

Now we are ready to give the formal definition of a vector space.
A vector space is a set V along with an addition on V and a scalar
multiplication on V such that the following properties hold:

commutativity
u+ v = v +u for all u,v ∈ V ;

associativity
(u+v)+w = u+ (v+w) and (ab)v = a(bv) for all u,v,w ∈ V
and all a,b ∈ F;

additive identity
there exists an element 0 ∈ V such that v + 0 = v for all v ∈ V ;

additive inverse
for every v ∈ V , there exists w ∈ V such that v +w = 0;

multiplicative identity
1v = v for all v ∈ V ;

distributive properties
a(u+v) = au+av and (a+ b)u = au+ bu for all a,b ∈ F and
all u,v ∈ V .

The scalar multiplication in a vector space depends upon F. Thus
when we need to be precise, we will say that V is a vector space over F
instead of saying simply that V is a vector space. For example, Rn is
a vector space over R , and Cn is a vector space over C. Frequently, a
vector space over R is called a real vector space and a vector space over
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C is called a complex vector space. Usually the choice of F is either
obvious from the context or irrelevant, and thus we often assume that
F is lurking in the background without specifically mentioning it.

Elements of a vector space are called vectors or points. This geo-
metric language sometimes aids our intuition.

Not surprisingly, Fn is a vector space over F, as you should verify.
Of course, this example motivated our definition of vector space.

For another example, consider F∞, which is defined to be the set ofThe simplest vector
space contains only
one point. In other

words, {0} is a vector
space, though not a

very interesting one.

all sequences of elements of F:

F∞ = {(x1, x2, . . . ) : xj ∈ F for j = 1,2, . . . }.
Addition and scalar multiplication on F∞ are defined as expected:

(x1, x2, . . . )+ (y1, y2, . . . ) = (x1 +y1, x2 +y2, . . . ),
a(x1, x2, . . . ) = (ax1, ax2, . . . ).

With these definitions, F∞ becomes a vector space over F, as you should
verify. The additive identity in this vector space is the sequence con-
sisting of all 0’s.

Our next example of a vector space involves polynomials. A function
p : F → F is called a polynomial with coefficients in F if there exist
a0, . . . , am ∈ F such that

p(z) = a0 + a1z + a2z2 + · · · + amzm

for all z ∈ F. We define P(F) to be the set of all polynomials withThough Fn is our
crucial example of a
vector space, not all

vector spaces consist
of lists. For example,
the elements of P(F)

consist of functions on
F, not lists. In general,

a vector space is an
abstract entity whose

elements might be lists,
functions, or weird

objects.

coefficients in F. Addition on P(F) is defined as you would expect: if
p,q ∈ P(F), then p + q is the polynomial defined by

(p + q)(z) = p(z)+ q(z)
for z ∈ F. For example, if p is the polynomial defined by p(z) = 2z+z3

and q is the polynomial defined by q(z) = 7 + 4z, then p + q is the
polynomial defined by (p + q)(z) = 7+ 6z + z3. Scalar multiplication
on P(F) also has the obvious definition: if a ∈ F and p ∈ P(F), then
ap is the polynomial defined by

(ap)(z) = ap(z)
for z ∈ F. With these definitions of addition and scalar multiplication,
P(F) is a vector space, as you should verify. The additive identity in
this vector space is the polynomial all of whose coefficients equal 0.

Soon we will see further examples of vector spaces, but first we need
to develop some of the elementary properties of vector spaces.
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Properties of Vector Spaces
The definition of a vector space requires that it have an additive

identity. The proposition below states that this identity is unique.

1.2 Proposition: A vector space has a unique additive identity.

Proof: Suppose 0 and 0′ are both additive identities for some vec-
tor space V . Then

0′ = 0′ + 0 = 0,

where the first equality holds because 0 is an additive identity and the
second equality holds because 0′ is an additive identity. Thus 0′ = 0,
proving that V has only one additive identity. The symbol means

“end of the proof”.

Each element v in a vector space has an additive inverse, an element
w in the vector space such that v+w = 0. The next proposition shows
that each element in a vector space has only one additive inverse.

1.3 Proposition: Every element in a vector space has a unique
additive inverse.

Proof: Suppose V is a vector space. Let v ∈ V . Suppose that w
and w′ are additive inverses of v . Then

w = w + 0 = w + (v +w′) = (w + v)+w′ = 0+w′ = w′.

Thus w = w′, as desired.

Because additive inverses are unique, we can let −v denote the ad-
ditive inverse of a vector v . We define w − v to mean w + (−v).

Almost all the results in this book will involve some vector space.
To avoid being distracted by having to restate frequently something
such as “Assume that V is a vector space”, we now make the necessary
declaration once and for all:

Let’s agree that for the rest of the book
V will denote a vector space over F.
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Because of associativity, we can dispense with parentheses when
dealing with additions involving more than two elements in a vector
space. For example, we can writeu+v+w without parentheses because
the two possible interpretations of that expression, namely, (u+v)+w
and u+ (v +w), are equal. We first use this familiar convention of not
using parentheses in the next proof. In the next proposition, 0 denotes
a scalar (the number 0 ∈ F) on the left side of the equation and a vector
(the additive identity of V ) on the right side of the equation.

1.4 Proposition: 0v = 0 for every v ∈ V .Note that 1.4 and 1.5
assert something about

scalar multiplication
and the additive

identity of V . The only
part of the definition of

a vector space that
connects scalar

multiplication and
vector addition is the
distributive property.
Thus the distributive

property must be used
in the proofs.

Proof: For v ∈ V , we have

0v = (0+ 0)v = 0v + 0v.

Adding the additive inverse of 0v to both sides of the equation above
gives 0 = 0v , as desired.

In the next proposition, 0 denotes the additive identity of V . Though
their proofs are similar, 1.4 and 1.5 are not identical. More precisely,
1.4 states that the product of the scalar 0 and any vector equals the
vector 0, whereas 1.5 states that the product of any scalar and the
vector 0 equals the vector 0.

1.5 Proposition: a0 = 0 for every a ∈ F.

Proof: For a ∈ F, we have

a0 = a(0+ 0) = a0+ a0.

Adding the additive inverse of a0 to both sides of the equation above
gives 0 = a0, as desired.

Now we show that if an element of V is multiplied by the scalar −1,
then the result is the additive inverse of the element of V .

1.6 Proposition: (−1)v = −v for every v ∈ V .

Proof: For v ∈ V , we have

v + (−1)v = 1v + (−1)v =
(
1+ (−1)

)
v = 0v = 0.

This equation says that (−1)v , when added to v , gives 0. Thus (−1)v
must be the additive inverse of v , as desired.
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Subspaces
A subset U of V is called a subspace of V if U is also a vector space Some mathematicians

use the term linear
subspace, which means
the same as subspace.

(using the same addition and scalar multiplication as on V ). For exam-
ple,

{(x1, x2,0) : x1, x2 ∈ F}
is a subspace of F3.

If U is a subset of V , then to check that U is a subspace of V we
need only check that U satisfies the following:

additive identity
0 ∈ U

closed under addition
u,v ∈ U implies u+ v ∈ U ;

closed under scalar multiplication
a ∈ F and u ∈ U implies au ∈ U .

The first condition insures that the additive identity of V is in U . The Clearly {0} is the
smallest subspace of V
and V itself is the
largest subspace of V .
The empty set is not a
subspace of V because
a subspace must be a
vector space and a
vector space must
contain at least one
element, namely, an
additive identity.

second condition insures that addition makes sense on U . The third
condition insures that scalar multiplication makes sense onU . To show
that U is a vector space, the other parts of the definition of a vector
space do not need to be checked because they are automatically satis-
fied. For example, the associative and commutative properties of addi-
tion automatically hold on U because they hold on the larger space V .
As another example, if the third condition above holds and u ∈ U , then
−u (which equals (−1)u by 1.6) is also in U , and hence every element
of U has an additive inverse in U .

The three conditions above usually enable us to determine quickly
whether a given subset of V is a subspace of V . For example, if b ∈ F,
then

{(x1, x2, x3, x4) ∈ F4 : x3 = 5x4 + b}
is a subspace of F4 if and only if b = 0, as you should verify. As another
example, you should verify that

{p ∈ P(F) : p(3) = 0}

is a subspace of P(F).
The subspaces of R2 are precisely {0}, R2, and all lines in R2 through

the origin. The subspaces of R3 are precisely {0}, R3, all lines in R3
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through the origin, and all planes in R3 through the origin. To prove
that all these objects are indeed subspaces is easy—the hard part is to
show that they are the only subspaces of R2 or R3. That task will be
easier after we introduce some additional tools in the next chapter.

Sums and Direct Sums
In later chapters, we will find that the notions of vector space sums

and direct sums are useful. We define these concepts here.
Suppose U1, . . . , Um are subspaces of V . The sum of U1, . . . , Um,When dealing with

vector spaces, we are
usually interested only

in subspaces, as
opposed to arbitrary

subsets. The union of
subspaces is rarely a

subspace (see
Exercise 9 in this

chapter), which is why
we usually work with

sums rather than
unions.

denoted U1 + · · · +Um, is defined to be the set of all possible sums of
elements of U1, . . . , Um. More precisely,

U1 + · · · +Um = {u1 + · · · +um : u1 ∈ U1, . . . , um ∈ Um}.

You should verify that if U1, . . . , Um are subspaces of V , then the sum
U1 + · · · +Um is a subspace of V .

Let’s look at some examples of sums of subspaces. Suppose U is the
set of all elements of F3 whose second and third coordinates equal 0,
and W is the set of all elements of F3 whose first and third coordinates
equal 0:

U = {(x,0,0) ∈ F3 : x ∈ F} and W = {(0, y,0) ∈ F3 : y ∈ F}.

Then

Sums of subspaces in
the theory of vector

spaces are analogous to
unions of subsets in set

theory. Given two
subspaces of a vector

space, the smallest
subspace containing

them is their sum.
Analogously, given two

subsets of a set, the
smallest subset

containing them is
their union.

1.7 U +W = {(x,y,0) : x,y ∈ F},

as you should verify.
As another example, suppose U is as above and W is the set of all

elements of F3 whose first and second coordinates equal each other
and whose third coordinate equals 0:

W = {(y,y,0) ∈ F3 : y ∈ F}.

Then U +W is also given by 1.7, as you should verify.
Suppose U1, . . . , Um are subspaces of V . Clearly U1, . . . , Um are all

contained in U1 + · · · + Um (to see this, consider sums u1 + · · · +um
where all except one of the u’s are 0). Conversely, any subspace of V
containing U1, . . . , Um must contain U1 + · · ·+Um (because subspaces
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must contain all finite sums of their elements). Thus U1 + · · · + Um is
the smallest subspace of V containing U1, . . . , Um.

Suppose U1, . . . , Um are subspaces of V such that V = U1+· · ·+Um.
Thus every element of V can be written in the form

u1 + · · · +um,

where each uj ∈ Uj . We will be especially interested in cases where
each vector in V can be uniquely represented in the form above. This
situation is so important that we give it a special name: direct sum.
Specifically, we say that V is the direct sum of subspaces U1, . . . , Um,
written V = U1⊕· · ·⊕Um, if each element of V can be written uniquely The symbol ⊕,

consisting of a plus
sign inside a circle, is
used to denote direct
sums as a reminder
that we are dealing with
a special type of sum of
subspaces—each
element in the direct
sum can be represented
only one way as a sum
of elements from the
specified subspaces.

as a sum u1 + · · · +um, where each uj ∈ Uj .
Let’s look at some examples of direct sums. Suppose U is the sub-

space of F3 consisting of those vectors whose last coordinate equals 0,
andW is the subspace of F3 consisting of those vectors whose first two
coordinates equal 0:

U = {(x,y,0) ∈ F3 : x,y ∈ F} and W = {(0,0, z) ∈ F3 : z ∈ F}.

Then F3 = U ⊕W , as you should verify.
As another example, suppose Uj is the subspace of Fn consisting

of those vectors whose coordinates are all 0, except possibly in the jth

slot (for example, U2 = {(0, x,0, . . . ,0) ∈ Fn : x ∈ F}). Then

Fn = U1 ⊕ · · ·⊕Un,

as you should verify.
As a final example, consider the vector spaceP(F) of all polynomials

with coefficients in F. Let Ue denote the subspace of P(F) consisting
of all polynomials p of the form

p(z) = a0 + a2z2 + · · · + a2mz2m,

and let Uo denote the subspace of P(F) consisting of all polynomials p
of the form

p(z) = a1z + a3z3 + · · · + a2m+1z2m+1;

here m is a nonnegative integer and a0, . . . , a2m+1 ∈ F (the notations
Ue andUo should remind you of even and odd powers of z). You should
verify that
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P(F) = Ue ⊕Uo.
Sometimes nonexamples add to our understanding as much as ex-

amples. Consider the following three subspaces of F3:

U1 = {(x,y,0) ∈ F3 : x,y ∈ F};
U2 = {(0,0, z) ∈ F3 : z ∈ F};
U3 = {(0, y,y) ∈ F3 : y ∈ F}.

Clearly F3 = U1+U2+U3 because an arbitrary vector (x,y, z) ∈ F3 can
be written as

(x,y, z) = (x,y,0)+ (0,0, z)+ (0,0,0),

where the first vector on the right side is in U1, the second vector is
in U2, and the third vector is in U3. However, F3 does not equal the
direct sum of U1, U2, U3 because the vector (0,0,0) can be written in
two different ways as a sumu1+u2+u3, with eachuj ∈ Uj . Specifically,
we have

(0,0,0) = (0,1,0)+ (0,0,1)+ (0,−1,−1)

and, of course,

(0,0,0) = (0,0,0)+ (0,0,0)+ (0,0,0),

where the first vector on the right side of each equation above is in U1,
the second vector is in U2, and the third vector is in U3.

In the example above, we showed that something is not a direct sum
by showing that 0 does not have a unique representation as a sum of
appropriate vectors. The definition of direct sum requires that every
vector in the space have a unique representation as an appropriate sum.
Suppose we have a collection of subspaces whose sum equals the whole
space. The next proposition shows that when deciding whether this
collection of subspaces is a direct sum, we need only consider whether
0 can be uniquely written as an appropriate sum.

1.8 Proposition: Suppose that U1, . . . , Un are subspaces of V . Then
V = U1 ⊕ · · ·⊕Un if and only if both the following conditions hold:

(a) V = U1 + · · · +Un;

(b) the only way to write 0 as a sum u1 + · · · + un, where each
uj ∈ Uj , is by taking all the uj ’s equal to 0.
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Proof: First suppose that V = U1 ⊕ · · · ⊕ Un. Clearly (a) holds
(because of how sum and direct sum are defined). To prove (b), suppose
that u1 ∈ U1, . . . , un ∈ Un and

0 = u1 + · · · +un.

Then each uj must be 0 (this follows from the uniqueness part of the
definition of direct sum because 0 = 0+· · ·+0 and 0 ∈ U1, . . . ,0 ∈ Un),
proving (b).

Now suppose that (a) and (b) hold. Let v ∈ V . By (a), we can write

v = u1 + · · · +un

for some u1 ∈ U1, . . . , un ∈ Un. To show that this representation is
unique, suppose that we also have

v = v1 + · · · + vn,

where v1 ∈ U1, . . . , vn ∈ Un. Subtracting these two equations, we have

0 = (u1 − v1)+ · · · + (un − vn).

Clearly u1 − v1 ∈ U1, . . . , un − vn ∈ Un, so the equation above and (b)
imply that each uj − vj = 0. Thus u1 = v1, . . . , un = vn, as desired.

The next proposition gives a simple condition for testing which pairs Sums of subspaces are
analogous to unions of
subsets. Similarly,
direct sums of
subspaces are
analogous to disjoint
unions of subsets. No
two subspaces of a
vector space can be
disjoint because both
must contain 0. So
disjointness is
replaced, at least in the
case of two subspaces,
with the requirement
that the intersection
equals {0}.

of subspaces give a direct sum. Note that this proposition deals only
with the case of two subspaces. When asking about a possible direct
sum with more than two subspaces, it is not enough to test that any
two of the subspaces intersect only at 0. To see this, consider the
nonexample presented just before 1.8. In that nonexample, we had
F3 = U1 + U2 + U3, but F3 did not equal the direct sum of U1, U2, U3.
However, in that nonexample, we haveU1∩U2 = U1∩U3 = U2∩U3 = {0}
(as you should verify). The next proposition shows that with just two
subspaces we get a nice necessary and sufficient condition for a direct
sum.

1.9 Proposition: Suppose that U and W are subspaces of V . Then
V = U ⊕W if and only if V = U +W and U ∩W = {0}.

Proof: First suppose that V = U ⊕ W . Then V = U + W (by the
definition of direct sum). Also, if v ∈ U ∩W , then 0 = v + (−v), where



18 Chapter 1. Vector Spaces

v ∈ U and −v ∈ W . By the unique representation of 0 as the sum of a
vector in U and a vector in W , we must have v = 0. Thus U ∩W = {0},
completing the proof in one direction.

To prove the other direction, now suppose that V = U + W and
U ∩W = {0}. To prove that V = U ⊕W , suppose that

0 = u+w,

where u ∈ U and w ∈ W . To complete the proof, we need only show
that u = w = 0 (by 1.8). The equation above implies that u = −w ∈ W .
Thus u ∈ U ∩W , and hence u = 0. This, along with equation above,
implies that w = 0, completing the proof.
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Exercises
1. Suppose a and b are real numbers, not both 0. Find real numbers

c and d such that
1/(a+ bi) = c + di.

2. Show that
−1+

√
3i

2

is a cube root of 1 (meaning that its cube equals 1).

3. Prove that −(−v) = v for every v ∈ V .

4. Prove that if a ∈ F, v ∈ V , and av = 0, then a = 0 or v = 0.

5. For each of the following subsets of F3, determine whether it is
a subspace of F3:

(a) {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 0};
(b) {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 4};
(c) {(x1, x2, x3) ∈ F3 : x1x2x3 = 0};
(d) {(x1, x2, x3) ∈ F3 : x1 = 5x3}.

6. Give an example of a nonempty subset U of R2 such that U is
closed under addition and under taking additive inverses (mean-
ing −u ∈ U whenever u ∈ U ), but U is not a subspace of R2.

7. Give an example of a nonempty subset U of R2 such that U is
closed under scalar multiplication, but U is not a subspace of R2.

8. Prove that the intersection of any collection of subspaces of V is
a subspace of V .

9. Prove that the union of two subspaces of V is a subspace of V if
and only if one of the subspaces is contained in the other.

10. Suppose that U is a subspace of V . What is U +U?

11. Is the operation of addition on the subspaces of V commutative?
Associative? (In other words, if U1, U2, U3 are subspaces of V , is
U1 +U2 = U2 +U1? Is (U1 +U2)+U3 = U1 + (U2 +U3)?)
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12. Does the operation of addition on the subspaces of V have an
additive identity? Which subspaces have additive inverses?

13. Prove or give a counterexample: if U1, U2,W are subspaces of V
such that

U1 +W = U2 +W,

then U1 = U2.

14. Suppose U is the subspace of P(F) consisting of all polynomials
p of the form

p(z) = az2 + bz5,

where a,b ∈ F. Find a subspace W of P(F) such that P(F) =
U ⊕W .

15. Prove or give a counterexample: if U1, U2,W are subspaces of V
such that

V = U1 ⊕W and V = U2 ⊕W,

then U1 = U2.



Chapter 2

Finite-Dimensional
Vector Spaces

In the last chapter we learned about vector spaces. Linear algebra
focuses not on arbitrary vector spaces, but on finite-dimensional vector
spaces, which we introduce in this chapter. Here we will deal with the
key concepts associated with these spaces: span, linear independence,
basis, and dimension.

Let’s review our standing assumptions:

Recall that F denotes R or C.
Recall also that V is a vector space over F.

✽ ✽
21
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Span and Linear Independence
A linear combination of a list (v1, . . . , vm) of vectors in V is a vector

of the form

2.1 a1v1 + · · · + amvm,

where a1, . . . , am ∈ F. The set of all linear combinations of (v1, . . . , vm)
is called the span of (v1, . . . , vm), denoted span(v1, . . . , vm). In otherSome mathematicians

use the term linear
span, which means the

same as span.

words,

span(v1, . . . , vm) = {a1v1 + · · · + amvm : a1, . . . , am ∈ F}.

As an example of these concepts, suppose V = F3. The vector
(7,2,9) is a linear combination of

(
(2,1,3), (1,0,1)

)
because

(7,2,9) = 2(2,1,3)+ 3(1,0,1).

Thus (7,2,9) ∈ span
(
(2,1,3), (1,0,1)

)
.

You should verify that the span of any list of vectors in V is a sub-
space of V . To be consistent, we declare that the span of the empty list
() equals {0} (recall that the empty set is not a subspace of V ).

If (v1, . . . , vm) is a list of vectors in V , then each vj is a linear com-
bination of (v1, . . . , vm) (to show this, set aj = 1 and let the other a’s
in 2.1 equal 0). Thus span(v1, . . . , vm) contains each vj . Conversely,
because subspaces are closed under scalar multiplication and addition,
every subspace of V containing each vj must contain span(v1, . . . , vm).
Thus the span of a list of vectors in V is the smallest subspace of V
containing all the vectors in the list.

If span(v1, . . . , vm) equals V , we say that (v1, . . . , vm) spans V . A
vector space is called finite dimensional if some list of vectors in itRecall that by

definition every list has
finite length.

spans the space. For example, Fn is finite dimensional because
(
(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)

)

spans Fn, as you should verify.
Before giving the next example of a finite-dimensional vector space,

we need to define the degree of a polynomial. A polynomial p ∈ P(F)
is said to have degree m if there exist scalars a0, a1, . . . , am ∈ F with
am ̸= 0 such that

2.2 p(z) = a0 + a1z + · · · + amzm
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for all z ∈ F. The polynomial that is identically 0 is said to have de-
gree −∞.

For m a nonnegative integer, let Pm(F) denote the set of all poly-
nomials with coefficients in F and degree at most m. You should ver-
ify that Pm(F) is a subspace of P(F); hence Pm(F) is a vector space.
This vector space is finite dimensional because it is spanned by the list
(1, z, . . . , zm); here we are slightly abusing notation by letting zk denote
a function (so z is a dummy variable).

A vector space that is not finite dimensional is called infinite di- Infinite-dimensional
vector spaces, which
we will not mention
much anymore, are the
center of attention in
the branch of
mathematics called
functional analysis.
Functional analysis
uses tools from both
analysis and algebra.

mensional . For example, P(F) is infinite dimensional. To prove this,
consider any list of elements of P(F). Letm denote the highest degree
of any of the polynomials in the list under consideration (recall that by
definition a list has finite length). Then every polynomial in the span of
this list must have degree at most m. Thus our list cannot span P(F).
Because no list spans P(F), this vector space is infinite dimensional.

The vector space F∞, consisting of all sequences of elements of F,
is also infinite dimensional, though this is a bit harder to prove. You
should be able to give a proof by using some of the tools we will soon
develop.

Suppose v1, . . . , vm ∈ V and v ∈ span(v1, . . . , vm). By the definition
of span, there exist a1, . . . , am ∈ F such that

v = a1v1 + · · · + amvm.

Consider the question of whether the choice of a’s in the equation
above is unique. Suppose â1, . . . , âm is another set of scalars such that

v = â1v1 + · · · + âmvm.

Subtracting the last two equations, we have

0 = (a1 − â1)v1 + · · · + (am − âm)vm.

Thus we have written 0 as a linear combination of (v1, . . . , vm). If the
only way to do this is the obvious way (using 0 for all scalars), then
each aj − âj equals 0, which means that each aj equals âj (and thus
the choice of a’s was indeed unique). This situation is so important
that we give it a special name—linear independence—which we now
define.

A list (v1, . . . , vm) of vectors in V is called linearly independent if
the only choice of a1, . . . , am ∈ F that makes a1v1+· · ·+amvm equal
0 is a1 = · · · = am = 0. For example,
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(
(1,0,0,0), (0,1,0,0), (0,0,1,0)

)

is linearly independent in F4, as you should verify. The reasoning in the
previous paragraph shows that (v1, . . . , vm) is linearly independent if
and only if each vector in span(v1, . . . , vm) has only one representation
as a linear combination of (v1, . . . , vm).

For another example of a linearly independent list, fix a nonnegativeMost linear algebra
texts define linearly

independent sets
instead of linearly

independent lists. With
that definition, the set
{(0,1), (0,1), (1,0)} is

linearly independent in
F2 because it equals the
set {(0,1), (1,0)}. With

our definition, the list(
(0,1), (0,1), (1,0)

)
is

not linearly
independent (because 1

times the first vector
plus −1 times the

second vector plus 0
times the third vector
equals 0). By dealing
with lists instead of

sets, we will avoid
some problems

associated with the
usual approach.

integerm. Then (1, z, . . . , zm) is linearly independent inP(F). To verify
this, suppose that a0, a1, . . . , am ∈ F are such that

2.3 a0 + a1z + · · · + amzm = 0

for every z ∈ F. If at least one of the coefficients a0, a1, . . . , am were
nonzero, then 2.3 could be satisfied by at mostm distinct values of z (if
you are unfamiliar with this fact, just believe it for now; we will prove
it in Chapter 4); this contradiction shows that all the coefficients in 2.3
equal 0. Hence (1, z, . . . , zm) is linearly independent, as claimed.

A list of vectors in V is called linearly dependent if it is not lin-
early independent. In other words, a list (v1, . . . , vm) of vectors in V
is linearly dependent if there exist a1, . . . , am ∈ F, not all 0, such that
a1v1 + · · · + amvm = 0. For example,

(
(2,3,1), (1,−1,2), (7,3,8)

)
is

linearly dependent in F3 because

2(2,3,1)+ 3(1,−1,2)+ (−1)(7,3,8) = (0,0,0).

As another example, any list of vectors containing the 0 vector is lin-
early dependent (why?).

You should verify that a list (v) of length 1 is linearly independent if
and only if v ̸= 0. You should also verify that a list of length 2 is linearly
independent if and only if neither vector is a scalar multiple of the
other. Caution: a list of length three or more may be linearly dependent
even though no vector in the list is a scalar multiple of any other vector
in the list, as shown by the example in the previous paragraph.

If some vectors are removed from a linearly independent list, the
remaining list is also linearly independent, as you should verify. To
allow this to remain true even if we remove all the vectors, we declare
the empty list () to be linearly independent.

The lemma below will often be useful. It states that given a linearly
dependent list of vectors, with the first vector not zero, one of the
vectors is in the span of the previous ones and furthermore we can
throw out that vector without changing the span of the original list.
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2.4 Linear Dependence Lemma: If (v1, . . . , vm) is linearly depen-
dent in V and v1 ̸= 0, then there exists j ∈ {2, . . . ,m} such that the
following hold:

(a) vj ∈ span(v1, . . . , vj−1);

(b) if the jth term is removed from (v1, . . . , vm), the span of the
remaining list equals span(v1, . . . , vm).

Proof: Suppose (v1, . . . , vm) is linearly dependent in V and v1 ̸= 0.
Then there exist a1, . . . , am ∈ F, not all 0, such that

a1v1 + · · · + amvm = 0.

Not all of a2, a3, . . . , am can be 0 (because v1 ̸= 0). Let j be the largest
element of {2, . . . ,m} such that aj ̸= 0. Then

2.5 vj = −
a1

aj
v1 − · · ·−

aj−1

aj
vj−1,

proving (a).
To prove (b), suppose that u ∈ span(v1, . . . , vm). Then there exist

c1, . . . , cm ∈ F such that

u = c1v1 + · · · + cmvm.

In the equation above, we can replace vj with the right side of 2.5,
which shows that u is in the span of the list obtained by removing the
jth term from (v1, . . . , vm). Thus (b) holds.

Now we come to a key result. It says that linearly independent lists
are never longer than spanning lists.

2.6 Theorem: In a finite-dimensional vector space, the length of Suppose that for each
positive integer m,
there exists a linearly
independent list of m
vectors in V . Then this
theorem implies that V
is infinite dimensional.

every linearly independent list of vectors is less than or equal to the
length of every spanning list of vectors.

Proof: Suppose that (u1, . . . , um) is linearly independent in V and
that (w1, . . . ,wn) spans V . We need to prove that m ≤ n. We do so
through the multistep process described below; note that in each step
we add one of the u’s and remove one of the w’s.
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Step 1
The list (w1, . . . ,wn) spans V , and thus adjoining any vector to it
produces a linearly dependent list. In particular, the list

(u1,w1, . . . ,wn)

is linearly dependent. Thus by the linear dependence lemma (2.4),
we can remove one of the w’s so that the list B (of length n)
consisting of u1 and the remaining w’s spans V .

Step j
The list B (of lengthn) from step j−1 spans V , and thus adjoining
any vector to it produces a linearly dependent list. In particular,
the list of length (n+ 1) obtained by adjoining uj to B, placing it
just after u1, . . . , uj−1, is linearly dependent. By the linear depen-
dence lemma (2.4), one of the vectors in this list is in the span of
the previous ones, and because (u1, . . . , uj) is linearly indepen-
dent, this vector must be one of the w’s, not one of the u’s. We
can remove that w from B so that the new list B (of length n)
consisting of u1, . . . , uj and the remaining w’s spans V .

After step m, we have added all the u’s and the process stops. If at
any step we added a u and had no more w’s to remove, then we would
have a contradiction. Thus there must be at least as manyw’s as u’s.

Our intuition tells us that any vector space contained in a finite-
dimensional vector space should also be finite dimensional. We now
prove that this intuition is correct.

2.7 Proposition: Every subspace of a finite-dimensional vector
space is finite dimensional.

Proof: Suppose V is finite dimensional and U is a subspace of V .
We need to prove that U is finite dimensional. We do this through the
following multistep construction.

Step 1
If U = {0}, then U is finite dimensional and we are done. If U ̸=
{0}, then choose a nonzero vector v1 ∈ U .

Step j
If U = span(v1, . . . , vj−1), then U is finite dimensional and we are
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done. If U ̸= span(v1, . . . , vj−1), then choose a vector vj ∈ U such
that

vj ∉ span(v1, . . . , vj−1).

After each step, as long as the process continues, we have constructed
a list of vectors such that no vector in this list is in the span of the
previous vectors. Thus after each step we have constructed a linearly
independent list, by the linear dependence lemma (2.4). This linearly
independent list cannot be longer than any spanning list of V (by 2.6),
and thus the process must eventually terminate, which means that U
is finite dimensional.

Bases
A basis of V is a list of vectors in V that is linearly independent and

spans V . For example,

(
(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)

)

is a basis of Fn, called the standard basis of Fn. In addition to the
standard basis, Fn has many other bases. For example,

(
(1,2), (3,5)

)

is a basis of F2. The list
(
(1,2)

)
is linearly independent but is not a

basis of F2 because it does not span F2. The list
(
(1,2), (3,5), (4,7)

)

spans F2 but is not a basis because it is not linearly independent. As
another example, (1, z, . . . , zm) is a basis of Pm(F).

The next proposition helps explain why bases are useful.

2.8 Proposition: A list (v1, . . . , vn) of vectors in V is a basis of V
if and only if every v ∈ V can be written uniquely in the form

2.9 v = a1v1 + · · · + anvn,

where a1, . . . , an ∈ F.

Proof: First suppose that (v1, . . . , vn) is a basis of V . Let v ∈ V . This proof is
essentially a repetition
of the ideas that led us
to the definition of
linear independence.

Because (v1, . . . , vn) spans V , there exist a1, . . . , an ∈ F such that 2.9
holds. To show that the representation in 2.9 is unique, suppose that
b1, . . . , bn are scalars so that we also have

v = b1v1 + · · · + bnvn.
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Subtracting the last equation from 2.9, we get

0 = (a1 − b1)v1 + · · · + (an − bn)vn.

This implies that each aj−bj = 0 (because (v1, . . . , vn) is linearly inde-
pendent) and hence a1 = b1, . . . , an = bn. We have the desired unique-
ness, completing the proof in one direction.

For the other direction, suppose that every v ∈ V can be written
uniquely in the form given by 2.9. Clearly this implies that (v1, . . . , vn)
spans V . To show that (v1, . . . , vn) is linearly independent, suppose
that a1, . . . , an ∈ F are such that

0 = a1v1 + · · · + anvn.

The uniqueness of the representation 2.9 (with v = 0) implies that
a1 = · · · = an = 0. Thus (v1, . . . , vn) is linearly independent and
hence is a basis of V .

A spanning list in a vector space may not be a basis because it is not
linearly independent. Our next result says that given any spanning list,
some of the vectors in it can be discarded so that the remaining list is
linearly independent and still spans the vector space.

2.10 Theorem: Every spanning list in a vector space can be reduced
to a basis of the vector space.

Proof: Suppose (v1, . . . , vn) spans V . We want to remove some
of the vectors from (v1, . . . , vn) so that the remaining vectors form a
basis of V . We do this through the multistep process described below.
Start with B = (v1, . . . , vn).

Step 1
If v1 = 0, delete v1 from B. If v1 ̸= 0, leave B unchanged.

Step j
If vj is in span(v1, . . . , vj−1), delete vj from B. If vj is not in
span(v1, . . . , vj−1), leave B unchanged.

Stop the process after step n, getting a list B. This list B spans V
because our original list spanned B and we have discarded only vectors
that were already in the span of the previous vectors. The process
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insures that no vector in B is in the span of the previous ones. Thus B
is linearly independent, by the linear dependence lemma (2.4). Hence
B is a basis of V .

Consider the list
(
(1,2), (3,6), (4,7), (5,9)

)
,

which spans F2. To make sure that you understand the last proof, you
should verify that the process in the proof produces

(
(1,2), (4,7)

)
, a

basis of F2, when applied to the list above.
Our next result, an easy corollary of the last theorem, tells us that

every finite-dimensional vector space has a basis.

2.11 Corollary: Every finite-dimensional vector space has a basis.

Proof: By definition, a finite-dimensional vector space has a span-
ning list. The previous theorem tells us that any spanning list can be
reduced to a basis.

We have crafted our definitions so that the finite-dimensional vector
space {0} is not a counterexample to the corollary above. In particular,
the empty list () is a basis of the vector space {0} because this list has
been defined to be linearly independent and to have span {0}.

Our next theorem is in some sense a dual of 2.10, which said that
every spanning list can be reduced to a basis. Now we show that given
any linearly independent list, we can adjoin some additional vectors so
that the extended list is still linearly independent but also spans the
space.

2.12 Theorem: Every linearly independent list of vectors in a finite- This theorem can be
used to give another
proof of the previous
corollary. Specifically,
suppose V is finite
dimensional. This
theorem implies that
the empty list () can be
extended to a basis
of V . In particular, V
has a basis.

dimensional vector space can be extended to a basis of the vector space.

Proof: Suppose V is finite dimensional and (v1, . . . , vm) is linearly
independent in V . We want to extend (v1, . . . , vm) to a basis of V . We
do this through the multistep process described below. First we let
(w1, . . . ,wn) be any list of vectors in V that spans V .

Step 1
If w1 is in the span of (v1, . . . , vm), let B = (v1, . . . , vm). If w1 is
not in the span of (v1, . . . , vm), let B = (v1, . . . , vm,w1).
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Step j
If wj is in the span of B, leave B unchanged. If wj is not in the
span of B, extend B by adjoining wj to it.

After each step, B is still linearly independent because otherwise the
linear dependence lemma (2.4) would give a contradiction (recall that
(v1, . . . , vm) is linearly independent and anywj that is adjoined to B is
not in the span of the previous vectors in B). After step n, the span of
B includes all the w’s. Thus the B obtained after step n spans V and
hence is a basis of V .

As a nice application of the theorem above, we now show that ev-
ery subspace of a finite-dimensional vector space can be paired with
another subspace to form a direct sum of the whole space.

2.13 Proposition: Suppose V is finite dimensional and U is a sub-Using the same basic
ideas but considerably
more advanced tools,

this proposition can be
proved without the

hypothesis that V is
finite dimensional.

space of V . Then there is a subspace W of V such that V = U ⊕W .

Proof: Because V is finite dimensional, so is U (see 2.7). Thus
there is a basis (u1, . . . , um) of U (see 2.11). Of course (u1, . . . , um)
is a linearly independent list of vectors in V , and thus it can be ex-
tended to a basis (u1, . . . , um,w1, . . . ,wn) of V (see 2.12). Let W =
span(w1, . . . ,wn).

To prove that V = U ⊕W , we need to show that

V = U +W and U ∩W = {0};

see 1.9. To prove the first equation, suppose that v ∈ V . Then,
because the list (u1, . . . , um,w1, . . . ,wn) spans V , there exist scalars
a1, . . . , am,b1, . . . , bn ∈ F such that

v = a1u1 + · · · + amum︸ ︷︷ ︸
u

+b1w1 + · · · + bnwn︸ ︷︷ ︸
w

.

In other words, we have v = u+w, whereu ∈ U andw ∈ W are defined
as above. Thus v ∈ U +W , completing the proof that V = U +W .

To show that U ∩W = {0}, suppose v ∈ U ∩W . Then there exist
scalars a1, . . . , am,b1, . . . , bn ∈ F such that

v = a1u1 + · · · + amum = b1w1 + · · · + bnwn.

Thus



Dimension 31

a1u1 + · · · + amum − b1w1 − · · ·− bnwn = 0.

Because (u1, . . . , um,w1, . . . ,wn) is linearly independent, this implies
that a1 = · · · = am = b1 = · · · = bn = 0. Thus v = 0, completing the
proof that U ∩W = {0}.

Dimension
Though we have been discussing finite-dimensional vector spaces,

we have not yet defined the dimension of such an object. How should
dimension be defined? A reasonable definition should force the dimen-
sion of Fn to equal n. Notice that the basis

(
(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)

)

has length n. Thus we are tempted to define the dimension as the
length of a basis. However, a finite-dimensional vector space in general
has many different bases, and our attempted definition makes sense
only if all bases in a given vector space have the same length. Fortu-
nately that turns out to be the case, as we now show.

2.14 Theorem: Any two bases of a finite-dimensional vector space
have the same length.

Proof: Suppose V is finite dimensional. Let B1 and B2 be any two
bases of V . Then B1 is linearly independent in V and B2 spans V , so the
length of B1 is at most the length of B2 (by 2.6). Interchanging the roles
of B1 and B2, we also see that the length of B2 is at most the length
of B1. Thus the length of B1 must equal the length of B2, as desired.

Now that we know that any two bases of a finite-dimensional vector
space have the same length, we can formally define the dimension of
such spaces. The dimension of a finite-dimensional vector space is
defined to be the length of any basis of the vector space. The dimension
of V (if V is finite dimensional) is denoted by dimV . As examples, note
that dim Fn = n and dimPm(F) =m+ 1.

Every subspace of a finite-dimensional vector space is finite dimen-
sional (by 2.7) and so has a dimension. The next result gives the ex-
pected inequality about the dimension of a subspace.
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2.15 Proposition: If V is finite dimensional and U is a subspace
of V , then dimU ≤ dimV .

Proof: Suppose that V is finite dimensional and U is a subspace
of V . Any basis of U is a linearly independent list of vectors in V and
thus can be extended to a basis of V (by 2.12). Hence the length of a
basis of U is less than or equal to the length of a basis of V .

To check that a list of vectors in V is a basis of V , we must, accordingThe real vector space
R2 has dimension 2;
the complex vector

space C has
dimension 1. As sets,

R2 can be identified
with C (and addition is

the same on both
spaces, as is scalar

multiplication by real
numbers). Thus when

we talk about the
dimension of a vector
space, the role played

by the choice of F
cannot be neglected.

to the definition, show that the list in question satisfies two properties:
it must be linearly independent and it must span V . The next two
results show that if the list in question has the right length, then we
need only check that it satisfies one of the required two properties.
We begin by proving that every spanning list with the right length is a
basis.

2.16 Proposition: If V is finite dimensional, then every spanning
list of vectors in V with length dimV is a basis of V .

Proof: Suppose dimV = n and (v1, . . . , vn) spans V . The list
(v1, . . . , vn) can be reduced to a basis of V (by 2.10). However, every
basis of V has length n, so in this case the reduction must be the trivial
one, meaning that no elements are deleted from (v1, . . . , vn). In other
words, (v1, . . . , vn) is a basis of V , as desired.

Now we prove that linear independence alone is enough to ensure
that a list with the right length is a basis.

2.17 Proposition: If V is finite dimensional, then every linearly
independent list of vectors in V with length dimV is a basis of V .

Proof: Suppose dimV = n and (v1, . . . , vn) is linearly independent
inV . The list (v1, . . . , vn) can be extended to a basis ofV (by 2.12). How-
ever, every basis of V has lengthn, so in this case the extension must be
the trivial one, meaning that no elements are adjoined to (v1, . . . , vn).
In other words, (v1, . . . , vn) is a basis of V , as desired.

As an example of how the last proposition can be applied, consider
the list

(
(5,7), (4,3)

)
. This list of two vectors in F2 is obviously linearly

independent (because neither vector is a scalar multiple of the other).
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Because F2 has dimension 2, the last proposition implies that this lin-
early independent list of length 2 is a basis of F2 (we do not need to
bother checking that it spans F2).

The next theorem gives a formula for the dimension of the sum of
two subspaces of a finite-dimensional vector space.

2.18 Theorem: If U1 and U2 are subspaces of a finite-dimensional This formula for the
dimension of the sum
of two subspaces is
analogous to a familiar
counting formula: the
number of elements in
the union of two finite
sets equals the number
of elements in the first
set, plus the number of
elements in the second
set, minus the number
of elements in the
intersection of the two
sets.

vector space, then

dim(U1 +U2) = dimU1 + dimU2 − dim(U1 ∩U2).

Proof: Let (u1, . . . , um) be a basis of U1∩U2; thus dim(U1∩U2) =
m. Because (u1, . . . , um) is a basis of U1∩U2, it is linearly independent
inU1 and hence can be extended to a basis (u1, . . . , um,v1, . . . , vj) ofU1

(by 2.12). Thus dimU1 = m + j. Also extend (u1, . . . , um) to a basis
(u1, . . . , um,w1, . . . ,wk) of U2; thus dimU2 =m+ k.

We will show that (u1, . . . , um,v1, . . . , vj,w1, . . . ,wk) is a basis of
U1 +U2. This will complete the proof because then we will have

dim(U1 +U2) =m+ j + k
= (m+ j)+ (m+ k)−m
= dimU1 + dimU2 − dim(U1 ∩U2).

Clearly span(u1, . . . , um,v1, . . . , vj,w1, . . . ,wk) contains U1 and U2

and hence contains U1 + U2. So to show that this list is a basis of
U1 + U2 we need only show that it is linearly independent. To prove
this, suppose

a1u1 + · · · + amum + b1v1 + · · · + bjvj + c1w1 + · · · + ckwk = 0,

where all the a’s, b’s, and c’s are scalars. We need to prove that all the
a’s, b’s, and c’s equal 0. The equation above can be rewritten as

c1w1 + · · · + ckwk = −a1u1 − · · ·− amum − b1v1 − · · ·− bjvj,

which shows that c1w1+· · ·+ckwk ∈ U1. All thew’s are in U2, so this
implies that c1w1 + · · · + ckwk ∈ U1 ∩ U2. Because (u1, . . . , um) is a
basis of U1 ∩U2, we can write

c1w1 + · · · + ckwk = d1u1 + · · · + dmum
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for some choice of scalars d1, . . . , dm. But (u1, . . . , um,w1, . . . ,wk)
is linearly independent, so the last equation implies that all the c’s
(and d’s) equal 0. Thus our original equation involving the a’s, b’s, and
c’s becomes

a1u1 + · · · + amum + b1v1 + · · · + bjvj = 0.

This equation implies that all the a’s and b’s are 0 because the list
(u1, . . . , um,v1, . . . , vj) is linearly independent. We now know that all
the a’s, b’s, and c’s equal 0, as desired.

The next proposition shows that dimension meshes well with direct
sums. This result will be useful in later chapters.

2.19 Proposition: Suppose V is finite dimensional and U1, . . . , UmRecall that direct sum
is analogous to disjoint

union. Thus 2.19 is
analogous to the

statement that if a
finite set B is written as
A1 ∪ · · ·∪Am and the
sum of the number of

elements in the A’s
equals the number of

elements in B, then the
union is a disjoint

union.

are subspaces of V such that

2.20 V = U1 + · · · +Um

and

2.21 dimV = dimU1 + · · · + dimUm.

Then V = U1 ⊕ · · ·⊕Um.

Proof: Choose a basis for each Uj . Put these bases together in
one list, forming a list that spans V (by 2.20) and has length dimV
(by 2.21). Thus this list is a basis of V (by 2.16), and in particular it is
linearly independent.

Now suppose that u1 ∈ U1, . . . , um ∈ Um are such that

0 = u1 + · · · +um.

We can write each uj as a linear combination of the basis vectors (cho-
sen above) of Uj . Substituting these linear combinations into the ex-
pression above, we have written 0 as a linear combination of the basis
ofV constructed above. Thus all the scalars used in this linear combina-
tion must be 0. Thus each uj = 0, which proves that V = U1⊕· · ·⊕Um
(by 1.8).
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Exercises
1. Prove that if (v1, . . . , vn) spans V , then so does the list

(v1 − v2, v2 − v3, . . . , vn−1 − vn,vn)

obtained by subtracting from each vector (except the last one)
the following vector.

2. Prove that if (v1, . . . , vn) is linearly independent in V , then so is
the list

(v1 − v2, v2 − v3, . . . , vn−1 − vn,vn)
obtained by subtracting from each vector (except the last one)
the following vector.

3. Suppose (v1, . . . , vn) is linearly independent in V and w ∈ V .
Prove that if (v1 + w, . . . , vn + w) is linearly dependent, then
w ∈ span(v1, . . . , vn).

4. Supposem is a positive integer. Is the set consisting of 0 and all
polynomials with coefficients in F and with degree equal to m a
subspace of P(F)?

5. Prove that F∞ is infinite dimensional.

6. Prove that the real vector space consisting of all continuous real-
valued functions on the interval [0,1] is infinite dimensional.

7. Prove that V is infinite dimensional if and only if there is a se-
quence v1, v2, . . . of vectors in V such that (v1, . . . , vn) is linearly
independent for every positive integer n.

8. Let U be the subspace of R5 defined by

U = {(x1, x2, x3, x4, x5) ∈ R5 : x1 = 3x2 and x3 = 7x4}.

Find a basis of U .

9. Prove or disprove: there exists a basis (p0, p1, p2, p3) of P3(F)
such that none of the polynomials p0, p1, p2, p3 has degree 2.

10. Suppose that V is finite dimensional, with dimV = n. Prove that
there exist one-dimensional subspaces U1, . . . , Un of V such that

V = U1 ⊕ · · ·⊕Un.
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11. Suppose that V is finite dimensional and U is a subspace of V
such that dimU = dimV . Prove that U = V .

12. Suppose that p0, p1, . . . , pm are polynomials in Pm(F) such that
pj(2) = 0 for each j. Prove that (p0, p1, . . . , pm) is not linearly
independent in Pm(F).

13. Suppose U and W are subspaces of R8 such that dimU = 3,
dimW = 5, and U +W = R8. Prove that U ∩W = {0}.

14. Suppose thatU andW are both five-dimensional subspaces of R9.
Prove that U ∩W ̸= {0}.

15. You might guess, by analogy with the formula for the number
of elements in the union of three subsets of a finite set, that
if U1, U2, U3 are subspaces of a finite-dimensional vector space,
then

dim(U1 +U2 +U3)
=dimU1 + dimU2 + dimU3

− dim(U1 ∩U2)− dim(U1 ∩U3)− dim(U2 ∩U3)
+ dim(U1 ∩U2 ∩U3).

Prove this or give a counterexample.

16. Prove that if V is finite dimensional andU1, . . . , Um are subspaces
of V , then

dim(U1 + · · · +Um) ≤ dimU1 + · · · + dimUm.

17. Suppose V is finite dimensional. Prove that if U1, . . . , Um are
subspaces of V such that V = U1 ⊕ · · ·⊕Um, then

dimV = dimU1 + · · · + dimUm.

This exercise deepens the analogy between direct sums of sub-
spaces and disjoint unions of subsets. Specifically, compare this
exercise to the following obvious statement: if a finite set is writ-
ten as a disjoint union of subsets, then the number of elements in
the set equals the sum of the number of elements in the disjoint
subsets.


