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Example 5 . 16 

Orthogonal Diagonalizalion ot svmmetric Matrices 

We saw in Chapter 4 that a square matrix with real entries will not necessarily have real 

[ o - 1 ] eigenvalues. Indeed, the matrix 1 0 has complex eigenvalues i and - i. We also 

discovered that not all square matrices are diagonalizable. The situation changes 
dramatically if we restrict our attention to real symmetric matrices. As we will show 
in this section, all of the eigenvalues of a real symmetric matrix are real, and such a 
matrix is always diagonalizable. 

Recall that a symmetric matrix is one that equals its own transpose. Let's begin by 
studying the diagonalization process for a symmetric 2 X 2 matrix. 

If possible, diagonalize the matrix A = [ 1 2 ] . 2 - 2  

Solulion The characteristic polynomial of A is A 
2 + A - 6 = ( A  + 3 )(A - 2) , from 

which we see that A has eigenvalues A1 = - 3  and A2 = 2. Solving for the correspond
ing eigenvectors, we find 

v1 = [ _� ] and v2 = [ � ] 
respectively. So A is diagonalizable, and if we set P = [ v1 v2 ] , then we know that 

p- 1AP = [ - � � ] = D. 

However, we can do better. Observe that v1 and v2 are orthogonal. So, if we nor
malize them to get the unit eigenvectors 

and then take 

[ l /Vs] 
U1 = -2/Vs and u2 = [ 2/Vs] 

l /Vs 

[ l /Vs 2/Vs] 
Q = [ u1 Uz ] = -2/Vs l /Vs 

we have Q- 1AQ = D also. But now Q is an orthogonal matrix, since {u1, u2 } is an 
orthonormal set of vectors . Therefore, Q- 1 = QT, and we have QTAQ = D. (Note that 
checking is easy, since computing Q- 1 only involves taking a transpose ! )  

The situation in  Example 5 . 16  i s  the one that interests us. It i s  important enough 
to warrant a new definition. 

D efi n iii  0 n A square matrix A is orthogonally diagonalizable if there exists an 
orthogonal matrix Q and a diagonal matrix D such that QT AQ = D. 

We are interested in finding conditions under which a matrix is orthogonally 
diagonalizable. Theorem 5 . 1 7  shows us where to look. 



Theorem 5 . 1 1  

Theorem 5 . 1 8  

Section 5.4 Orthogonal Diagonalization of Symmetric Matrices 401  

If A is orthogonally diagonalizable, then A is symmetric. 

Proof If A is orthogonally diagonalizable, then there exists an orthogonal ma
trix Q and a diagonal matrix D such that QT AQ = D. Since Q- 1 = QT, we have QT Q = 
I =  QQT, so 

But then 

since every diagonal matrix is symmetric. Hence, A is symmetric. 

Remark Theorem 5 . 1 7  shows that the orthogonally diagonalizable matrices are 
all to be found among the symmetric matrices. It does not say that every symmetric 
matrix must be orthogonally diagonalizable. However, it is a remarkable fact that this 
indeed is true! Finding a proof for this amazing result will occupy us for much of the 
rest of this section. 

We next prove that we don't need to worry about complex eigenvalues when work
ing with symmetric matrices with real entries. 

If A is a real symmetric matrix, then the eigenvalues of A are real. 

Recall that the complex conjugate of a complex number z = a + bi is the number 
z = a - bi (see Appendix C) .  To show that z is real, we need to show that b = 0. One 
way to do this is to show that z = z, for then bi = - bi (or 2bi = O) , from which it 
follows that b = 0. 

We can also extend the notion of complex conjugate to vectors and matrices by, 
for example, defining A to be the matrix whose entries are the complex conjugates of 
the entries of A; that is, if A = [a;) , then A = [ au ] .  The rules for complex conjugation 
extend easily to matrices; in particular, we have AB = AB for compatible matrices 
A and B. 

Proof Suppose that A is an eigenvalue of A with corresponding eigenvector v. Then - -
Av = Av, and, taking complex conjugates, we have Av = Av. But then 

Av = Av = Av = Av = Av 

since A is real. Taking transposes and using the fact that A is symmetric, we have 

vTA = vTAT = (Avf = (Avf = Avr 

Therefore, 

A(vrv) = vr(Av) = vr(Av) = (vrA)v = (Avr)v = A(vrv) 

or (A - A) (vrv) = o . [ a , � b, i l _ _ [ a , � b , i l 
Now ifv = . , then v - . , so 

an + bni an - bni 
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Theorem 5 . 19 

Example 5 . 11 

since v * 0 (because it is an eigenvector) . We conclude that A - A = 0, or A = A. 
Hence, A is real. 

Theorem 4.20 showed that, for any square matrix, eigenvectors corresponding 
to distinct eigenvalues are linearly independent. For symmetric matrices, something 
stronger is true: Such eigenvectors are orthogonal. 

If A is a symmetric matrix, then any two eigenvectors corresponding to distinct 
eigenvalues of A are orthogonal. 

Proof Let v1 and v2 be eigenvectors corresponding to the distinct eigenvalues 
A 1 * A2 so that Av1 = A 1v1 and Av2 = A2v2 . Using AT = A and the fact that x · y = xTy 
for any two vectors x and y in !Rn, we have 

(vfAT)Vz 
= vi(A2v2) 

(vf A)v2 = vf(Av2) 

A2 (vfv2) = A2 (v1 • v2) 

Hence, (A1 - A2) (v1 • v2) = 0. But A1 - A2 * 0, so v1 • v2 = 0, as we wished to show. 

Verify the result of Theorem 5 . 1 9  for 

Solulion The characteristic polynomial of A is - A3 + 6A 2 - 9A + 4 = - (A - 4) · 

(A - 1 ) 2 , from which it follows that the eigenvalues of A are A1 = 4 and A2 = 1 .  The 
corresponding eigenspaces are 

� (Check this . )  We easily verify that 

from which it follows that every vector in £4 is orthogonal to every vector in £1 . 
(Why?) 

Roman Note thot [ - � ] • [ - i ] � ! . Thos, 'igenvedo;s conesponding to the 

same eigenvalue need not be orthogonal. 



Theorem 5 . 2 0  

Spectrum is a Latin word meaning 
"image:' When atoms vibrate, they 
emit light. And when light passes 
through a prism, it spreads out � 
into a spectrum -a band of 
rainbow colors. Vibration 
frequencies correspond to the 
eigenvalues of a certain operator 
and are visible as bright lines in the 
spectrum of light that is emitted 
from a prism. Thus, we can liter-
ally see the eigenvalues of the atom 
in its spectrum, and for this rea-
son, it is appropriate that the word 
spectrum has come to be applied 
to the set of all eigenvalues of a 
matrix (or operator). 
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We can now prove the main result of this section. It is called the Spectral Theo
rem, since the set of eigenvalues of a matrix is sometimes called the spectrum of the 
matrix. (Technically, we should call Theorem 5.20 the Real Spectral Theorem, since 
there is a corresponding result for matrices with complex entries . )  

The Spectral Theorem 

Let A be an n X n real matrix. Then A is symmetric if and only if it is orthogonally 
diagonalizable. 

Proof We have already proved the "if" part as Theorem 5 . 1 7. To prove the "only if" 
implication, we proceed by induction on n. For n = 1 ,  there is nothing to do, since a 
1 X 1 matrix is already in diagonal form. Now assume that every k X k real symmet
ric matrix with real eigenvalues is orthogonally diagonalizable. Let n = k + 1 and let 
A be an n X n real symmetric matrix with real eigenvalues. 

Let A 1 be one of the eigenvalues of A and let v1 be a corresponding eigenvector. 
Then v1 is a real vector (why?) and we can assume that v1 is a unit vector, since 
otherwise we can normalize it and we will still have an eigenvector corresponding 
to A1 . Using the Gram-Schmidt Process, we can extend v1 to an orthonormal basis 
{v1 , v2 , . . .  , vn} of !Rn. Now we form the matrix 

Then Q1 is orthogonal, and 

Ql = [v1 Vz . . .  vn J 

In a lecture he delivered at the University of Gottingen in 1905, the German mathematician 
David Hilbert ( 1 862- 1 943) considered linear operators acting on certain infinite-dimensional 
vector spaces. Out of this lecture arose the notion of a quadratic form in infinitely many 
variables, and it was in this context that Hilbert first used the term spectrum to mean a 
complete set of eigenvalues. The spaces in question are now called Hilbert spaces. 
Hilbert made major contributions to many areas of mathematics, among them integral 

equations, number theory, geometry, and the foundations of mathematics. In 1900, at the 
Second International Congress of Mathematicians in Paris, Hilbert gave an address entitled 
"The Problems of Mathematics:' In it, he challenged mathematicians to solve 23 problems 
of fundamental importance during the coming century. Many of the problems have been 
solved-some were proved true, others false-and some may never be solved. Nevertheless, 
Hilbert's speech energized the mathematical community and is often regarded as the most 
influential speech ever given about mathematics. 
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since vf(A1v1 ) = A1 (vfv1 ) = A1 (v1 · v1 ) = A1 and vf(A 1v1 ) = A1 (vfv1 ) = A1 (v; · v1 ) = 0 
for i of- 1 ,  because {v1 , v2 , • . .  , vn} is an orthonormal set. 

But 

so B is symmetric. Therefore, B has the block form 

� and A1 is symmetric. Furthermore, B is similar to A (why?) ,  so the characteristic poly
nomial of B is equal to the characteristic polynomial of A, by Theorem 4.22 .  By 
Exercise 39 in Section 4.3 ,  the characteristic polynomial of A 1 divides the character
istic polynomial of A. It follows that the eigenvalues of A 1 are also eigenvalues of A 

..-... and, hence, are real. We also see that A 1 has real entries. (Why?) Thus, A 1 is a k X k 
real symmetric matrix with real eigenvalues, so the induction hypothesis applies to it. 
Hence, there is an orthogonal matrix P2 such that PiA 1P2 is a diagonal matrix-say, 
D1 . Now let 

Example 5 . 18 

Then Q2 is an orthogonal (k + l )X (k + 1 ) matrix, and therefore so is Q = Q1 Q2 . 
Consequently, 

QrAQ = (Q1Q2fA(Q1Qz) = (QIQf)A(Q1Qz) = QI(QfAQ1 )Qz = QIBQ2 

which is a diagonal matrix. This completes the induction step, and we conclude that, 
for all n 2 1 ,  an n X n real symmetric matrix with real eigenvalues is orthogonally 
diagonalizable. 

Orthogonally diagonalize the matrix 

Solution This is the matrix from Example 5 . 1 7. We have already found that the 
eigenspaces of A are 
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We need three orthonormal eigenvectors . First, we apply the Gram-Schmidt Process to 

to obtain 

[ - � ] and r - i l 
nl and [! ] 

The new wctm, which h., been rnmtructed to be orthogoml to [ - � l ;, ''ill ;n E, 

,._... (why?) and '° ;, o,thogonal to [ : l Thu,, we haw th'" mutually mthogonal 

vectors, and all we need to do is normalize them and construct a matrix Q with these 
vectors as its columns. We find that [ 1 /v3 

Q = l /v3 
l/v3 

and it is straightforward to verify that 

- 1/v2 
0 

l /v2 

- 1 /v6] 
2/v6 

- 1 /v6 

Q'AQ � [ � � � ] 
The Spectral Theorem allows us to write a real symmetric matrix A in the form 

A = QDQT, where Q is orthogonal and D is diagonal. The diagonal entries of D 
are just the eigenvalues of A, and if the columns of Q are the orthonormal vectors 
q1 , . . .  , qn, then, using the column-row representation of the product, we have 

This is called the spectral decomposition of A .  Each of the terms A;q;qT is a rank 1 
matrix, by Exercise 62 in Section 3 .5 ,  and q;qT is actually the matrix of the projec
tion onto the subspace spanned by q; . (See Exercise 25 . )  For this reason, the spectral 
decomposition 

is sometimes referred to as the projection form of the Spectral Theorem. 
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Example 5 . 19 

Example 5 . 2 0  

Find the spectral decomposition of the matrix A from Example 5 . 1 8 . 

Solulion From Example 5 . 1 8, we have: [ l /VJ] 
qi = l /VJ , 

l /VJ 

Therefore, 

[ - 1 /\/6] 
q3 = 2/\/6 

- 1 /\/6 

[ 1 /3 
l /VJ] = 1 /3 

1 /3 

1 /3 
1 /3 
1 /3 

1 /3 ] 
1 /3 
1 /3 

so [ t t tl [ ! 0 
= 4 t t t + 0 0  t t t -! 0 

which can be easily verified. 

[ 1 /2 � - 1 �2 ] 
- 1 �2 0 1 /2 [ 1 /6 

- 1 /3 
1 /6 

- 1 /3 
2/3 

- 1 /3 

1 /6 ] 
- 1 /3 

1 /6 

In this example, ,\2 = ,\3, so we could combine the last two terms A2q2qi + ,\3q3qr 
to get 

The rank 2 matrix q2qi + q3qr is the matrix of a projection onto the two-dimensional 
subspace (i .e . ,  the plane) spanned by qi and q3 . (See Exercise 26. ) 4 

Observe that the spectral decomposition expresses a symmetric matrix A explic
itly in terms of its eigenvalues and eigenvectors. This gives us a way of constructing a 
matrix with given eigenvalues and (orthonormal) eigenvectors. 

Finda 2  X 2 matrixwith eigenvalues ,\1 = 3 and,\2 = -2 andcorresponding eigenvectors 
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Solution We begin by normalizing the vectors to obtain an orthonormal basis 
{q1 , q2 } ,  with 

Now, we compute the matrix A whose spectral decomposition is 

A = A1q1qf + A2qzqi 

= 3 [i] [ t � ] 
- 2 [ -i] [ -�  t l 

= 3 [!s !1] [ 
1 6  -�] 25 - 2 25 12 1 6  1 2 25 25 - 25 25 

= [-J �] 
� It is easy to check that A has the desired properties. (Do this . )  

I Exercises 5 . 4  

Orthogonally diagonalize the matrices in Exercises 1 - 1 0  
by finding a n  orthogonal matrix Q and a diagonal 
matrix D such that QT AQ = D. 

I . A = [ � :J 
[ 
1 V2] 3. A =  V2 O 

2. A =  [ -
1 3 ] 3 - 1 

4. A =  [ 
9 - 2 ] - 2 6 

5. A = [ � : : ] 6. A = [ � ! � ] 
7. A =  u : -� ] 8. A =  [ � � ; ] 
9. A = [ � � � ! ] I 0. A = [ � � � � : 

1 1 .  If b * 0 ,  orthogonally diagonalize A = [ab a
b ] . 

12 .  If b oF 0, orthogonally diogonolire A = [ � � n 
13 .  Let A and B be orthogonally diagonalizable n X n 

matrices and let c be a scalar. Use the Spectral 
Theorem to prove that the following matrices are 
orthogonally diagonalizable: 
(a) A +  B (b) cA (c) A2 

14. If A is an invertible matrix that is orthogonally diago
nalizable, show that A- 1 is orthogonally diagonalizable. 

15 .  If A and B are orthogonally diagonalizable and AB = 
BA, show that AB is orthogonally diagonalizable. 

16. If A is a symmetric matrix, show that every eigenvalue 
of A is nonnegative if and only if A = B2 for some 
symmetric matrix B. 

In Exercises 1 7-20, find a spectral decomposition of the 
matrix in the given exercise. 
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17. Exercise 1 
19. Exercise 5 

18. Exercise 2 
20. Exercise 8 

In Exercises 21 and 22, find a symmetric 2 X 2 matrix with 
eigenvalues A1 and A2 and corresponding orthogonal 
eigenvectors v1 and v2• 

2 1 . A 1 = - l , A2 = 2 , v1 = [ � ] , v2 = [ _ � ] 
22. A 1 = 3 , A2 = - 3, v1 = [ � ] , v2 = [ - � ] 
In Exercises 23 and 24, find a symmetric 3 X 3 matrix with 
eigenvalues A1 , A2 , and ,\3 and corresponding orthogonal 
eigenvectors v1 , v2 , and v3. 

23 A , �  1 , A, � 2 , A, � 3 , v, � [}, � [ - : ] . 

Appl ications 

Quadratic Forms 

25. Let q be a unit vector in !Rn and let W be the subspace 
spanned by q. Show that the orthogonal projection of a 
vector v onto W (as defined in Sections 1 .2 and 5 .2) is 
given by 

projw (v) = (qqT)v 
and that the matrix of this projection is thus qq T. 
[Hint: Remember that, for x and y in !Rn, x · y = xTy. ] 

26. Let {q1 , . . .  , qd be an orthonormal set of vectors in !Rn 
and let W be the subspace spanned by this set. 
(a) Show that the matrix of the orthogonal projection 

onto W is given by 

p = q1qf + . . .  + qkql 
(b) Show that the projection matrix P in part (a) is 

symmetric and satisfies P2 = P. 
(c) Let Q = [ q1 · · · qk ] be the n X k matrix whose 

columns are the orthonormal basis vectors of W. 
Show that P = QQT and deduce that rank(P) = k. 

27. Let A be an n X n real matrix, all of whose eigenvalues 
are real. Prove that there exist an orthogonal matrix Q 
and an upper triangular matrix T such that QT AQ = T. 
This very useful result is known as Schur's Triangular
ization Theorem. [Hint: Adapt the proof of the Spec
tral Theorem. ]  

28. Let A be a nilpotent matrix (see Exercise 56 in  Sec
tion 4.2) . Prove that there is an orthogonal matrix Q 
such that QT AQ is upper triangular with zeros on its 
diagonal. [Hint: Use Exercise 27 . ]  

An expression of the form 

ax2 + by2 + cxy 
is called a quadratic form in x and y. Similarly, 

ax2 + by 2 + cz2 + dxy + exz + fyz 
is a quadratic form in x, y, and z. In words, a quadratic form is a sum of terms, each of 
which has total degree two in the variables. Therefore, 5x 2 - 3y2 + 2xy is a quadratic 
form, but x2 + y 2 + x is not. 

We can represent quadratic forms using matrices as follows: 

ax2 + by 2 + cxy = [x  y ] [ c;2 c�2 J [;J 



and 
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ax2 + by2 + cz2 + dxy + exz + fyz = [ x  y z ]  [ d�2 
e/2 

d/2 e/2 ] [x ] b f/2 y 
f/2 c z 

� (Verify these.) Each has the form xT Ax, where the matrix A is symmetric. This obser
vation leads us to the following general definition. 

Example 5 . 2 1  

Example 5 . 2 2  

Defin it ion A quadratic form in  n variables i s  a function f :  !Rn ---+ IR of  the 
form 

where A is a symmetric n X n matrix and x is in !Rn. We refer to A as the matrix 
associated with f 

What is the quadratic form with associated matrix A = 

Solution If x = [ :J then 

[ 2 - 3 ] ? - 3  5 

Observe that the off-diagonal entries a12 = a2 1 = -3 of A are combined to give 
the coefficient -6  of x1x2 • This is true generally. We can expand a quadratic form in 
n variables xT Ax as follows: 

xTAx = a 1 1x� + a22x� + · · · + annx� + 2: 2a;jxixj i <j 

Thus, if i * j, the coefficient of X;Xj is 2aij . 

Find the matrix associated with the quadratic form 

f (x1 , x2, x3) = 2x� - xi + 5xf + 6x1x2 - 3x1x3 

Solution The coefficients of the squared terms x;2 go on the diagonal as a;;, and the 
coefficients of the cross-product terms x;xj are split between aij and aji· This gives 

3 
- 1  

0 

-�] 
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so f(x, . x,, x,) � [ x, x, x, J [ _� -! -�J [ :: l 
as you can easily check. 

In the case of a quadratic form f(x, y) in two variables, the graph of z = j(x, y) is 
a surface in IR3 . Some examples are shown in Figure 5 . 1 2 .  

Observe that the effect o f  holding x or  y constant i s  t o  take a cross section of 
the graph parallel to the yz or xz planes, respectively. For the graphs in Figure 5 . 1 2 , 
all of these cross sections are easy to identify. For example, in Figure 5 . 1 2 (a), the 
cross sections we get by holding x or y constant are all parabolas opening upward, 
so f(x, y) 2 0 for all values of x and y. In Figure 5 . 1 2 (c) , holding x constant gives 
parabolas opening downward and holdingy constant gives parabolas opening upward, 
producing a saddle point. 

z 

z 

x y 

y 
x 

(a) z = 2x2 + 3y2 (b) z = - 2x2 - 3y2 

z 
z 

y x 
(c) z = 2x2 - 3y2 (d) z = 2x2 

Figure 5 . 1 2  

Graphs of quadratic forms f (x, y) 
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What makes this type of analysis quite easy is the fact that these quadratic forms 
have no cross-product terms. The matrix associated with such a quadratic form is a 
diagonal matrix. For example, 

2x2 - 3y2 = [x y ] [ � -� J [;J 
In general, the matrix of a quadratic form is a symmetric matrix, and we saw in Sec
tion 5 .4 that such matrices can always be diagonalized. We will now use this fact to 
show that, for every quadratic form, we can eliminate the cross-product terms by 
means of a suitable change of variable. 

Let f(x) = xT Ax be a quadratic form in n variables, with A a symmetric n X n 
matrix. By the Spectral Theorem, there is an orthogonal matrix Q that diagonalizes A; 
that is ,  QT AQ = D, where D is a diagonal matrix displaying the eigenvalues of A. We 
now set 

X = Qy Or, equivalently, y = Q- 1X = QTX 

Substitution into the quadratic form yields 

xTAx = (QyfA(Qy) 
= yTQTAQy 
= yTDy 

which is a quadratic form without cross-product terms, since D is diagonal. Further
more, if the eigenvalues of A are A1 , . . .  , An, then Q can be chosen so that 

If y = [yl 
becomes 

Yn ] T, then, with respect to these new variables, the quadratic form 

yTDy = A1Y12 + · · . + Any; 

This process is called diagonalizing a quadratic form. We have just proved the fol
lowing theorem, known as the Principal Axes Theorem. (The reason for this name 
will become clear in the next subsection. )  

The Principal Axes Theorem 

Every quadratic form can be diagonalized. Specifically, if A is the n X n symmet
ric matrix associated with the quadratic form xT Ax and if Q is an orthogonal 
matrix such that QT AQ = D is a diagonal matrix, then the change of variable 
x = Qy transforms the quadratic form xT Ax into the quadratic form yTDy, 
which has no cross-product terms. If the eigenvalues of A are A1 , • . .  , An and 
y = [y1 Yn f, then 

xTAx = yTDy = A1y� + · · · + Any; 
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Example 5 . 2 3  Find a change o f  variable that transforms the quadratic form 
f (x1 , x2) = 5xf + 4x1x2 + 2x� 

into one with no cross-product terms. 

Solulion The matrix off is 

A = [ � � ] 

with eigenvalues A1 = 6 and A2 = 1 . Corresponding unit eigenvectors are 

q - [
2/Vs] and q2 = [ l

/Vs] I - l/Vs -2/Vs 
� (Check this . )  Ifwe set 

= [
2/Vs l/Vs] and D = [

6 o
1 ] Q 

l /Vs -2/Vs 0 
then QT AQ = D. The change of variable x = Qy, where 

x = [:: ] and y = [;: ] 

converts f into 

f(y) = f(y1 , yi} = [Y1 Y2 l [ � � ] [;: ] = 6yf + Yi 

The original quadratic form xT Ax and the new one yT Dy (referred to in the Princi
pal Axes Theorem) are equal in the following sense. In Example 5 .23 , suppose we want 

to evaluate f(x) = xT Ax at x = [ - � ] . We have 

j (- 1 , 3) = 5 (- 1 ) 2 + 4 (- 1 ) (3) + 2 ( 3)2 = 1 1  
In terms of the new variables, 

[Y1 ] = = TX = [
2/Vs l/Vs] [ -

1 ] = [ l
/Vs] y2 

y Q 
l /Vs -2/Vs 3 -7  /Vs 

so 
f(yl , yi} = 6y f + y� = 6( 1 /Vs)2 + ( - 7  /Vs)2 = 55/5 = 1 1 

exactly as before. 
The Principal Axes Theorem has some interesting and important consequences. 

We will consider two of these. The first relates to the possible values that a quadratic 
form can take on. 

Defin i t ion A quadratic form f(x) = xTAx is classified as one of the following: 

1. positive de.finite if f(x) > 0 for all x -=fa 0 
2. positive semidefinite if f(x) ::=:: 0 for all x 
3. negative de.finite if j(x) < 0 for all x -=fa 0 
4. negative semidefinite if f(x) :s 0 for all x 
5 . indefinite if j(x) takes on both positive and negative values 
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Example 5 . 2 4  

Section 5.5 Applications 413 

A symmetric matrix A is called positive definite, positive semidefinite, nega
tive definite, negative semidefinite, or indefinite if the associated quadratic form 
f(x) = xT Ax has the corresponding property. 

The quadratic forms in parts (a) , (b ) ,  (c) ,  and (d) of Figure 5 . 1 2  are positive definite, 
negative definite, indefinite, and positive semidefinite, respectively. The Principal Axes 
Theorem makes it easy to tell if a quadratic form has one of these properties . 

Let A be an n X n symmetric matrix. The quadratic form f(x) = xT Ax is 
a. positive definite if and only if all of the eigenvalues of A are positive. 
b. positive semidefinite if and only if all of the eigenvalues of A are nonnegative. 
c. negative definite if and only if all of the eigenvalues of A are negative. 
d. negative semidefinite if and only if all of the eigenvalues of A are non positive. 
e. indefinite if and only if A has both positive and negative eigenvalues. 

You are asked to prove Theorem 5 .22 in Exercise 27. 

Classify f(x, y, z) = 3.x2 + 3y2 + 3z2 - 2xy - 2xz - 2yz as positive definite, negative 
definite, indefinite, or none of these. 

Solution The matrix associated with f is 

[ - � 
- � = � ] 

- 1  - 1  3 
which has eigenvalues 1 ,  4, and 4. (Verify this . )  Since all of these eigenvalues are posi
tive,f is a positive definite quadratic form. 

If a quadratic form f(x) = xT Ax is positive definite, then, since f(O) = 0, the 
minimum value of f(x) is 0 and it occurs at the origin. Similarly, a negative definite 
quadratic form has a maximum at the origin. Thus, Theorem 5 .22 allows us to solve 
certain types of maxima/minima problems easily, without resorting to calculus. A type 
of problem that falls into this category is the constrained optimization problem. 

It is often important to know the maximum or minimum values of a quadratic 
form subject to certain constraints. (Such problems arise not only in mathematics 
but also in statistics, physics, engineering, and economics.) We will be interested in 
finding the extreme values of f(x) = xT Ax subject to the constraint that II x i i  = 1 .  
In the case of a quadratic form in two variables, we can visualize what the problem 
means . The graph of z = f(x, y) is a surface in IR3, and the constraint l l x l l  = 1 restricts 
the point (x, y) to the unit circle in the xy-plane. Thus, we are considering those 
points that lie simultaneously on the surface and on the unit cylinder perpendicular 
to the xy plane. These points form a curve lying on the surface, and we want the high
est and lowest points on this curve. Figure 5 . 1 3  shows this situation for the quadratic 
form and corresponding surface in Figure 5 . 1 2 (c) .  
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Theorem 5 . 2 3  

z 

Figure 5 . 1 3  

The intersection of z = 2x2 - 3y2 with the 
cylinder x2 + y2 = 1 

y 

In this case, the maximum and minimum values of f(x, y) = 2x2 - 3y2 (the high
est and lowest points on the curve of intersection) are 2 and - 3, respectively, which 
are just the eigenvalues of the associated matrix. Theorem 5 .23 shows that this is 
always the case. 

Let f(x) = xT Ax be a quadratic form with associated n X n symmetric matrix A.  
Let the eigenvalues of A be A1 :::::: A2 :::::: · · · :::::: Aw Then the following are true, subject 
to the constraint I I xi i = 1 :  

a .  Ai 2: f(x) 2: An 
b. The maximum value of f(x) is A 1 , and it occurs when x is a unit eigenvector 

corresponding to A1 . 
c. The minimum value of f(x) is An, and it occurs when x is a unit eigenvector 

corresponding to Aw 

Proof As usual, we begin by orthogonally diagonalizing A. Accordingly, let Q be an 
orthogonal matrix such that QT AQ is the diagonal matrix 

Then, by the Principal Axes Theorem, the change of variable x = Qy gives xT Ax = 
yTDy. Now note that y = QTx implies that 

since QT = Q- 1 . Hence, using x · x = xTx, we see that l l r l l = Wr = � = 
l l x l l  = 1 .  Thus, if x is a unit vector, so is the corresponding y, and the values of xT Ax 
and yTDy are the same. 
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(a) To prove property (a) , we observe that ify = [y1 · · · Yn] T, then 

f (x) = xTAx = yTD y 
= A1Yl + Azyi + · · · + Any; 
:::; A 1yf + A 1Yi + · · · + A1y; 
= A1 (yf + Yi + · · · + y;) 
= A1 l l r l l 2 

= A1 
Thus, f(x) s A1 for all x such that l l x l l  = 1 . The proof that f(x) 2: An is similar. 
(See Exercise 37 . )  
(b) If q1 is a unit eigenvector corresponding to A1 , then Aq1 = A1q1 and 

f (q1 ) = qfAq1 = qf A 1Q1 = A1 (qfq1 ) = A1 
This shows that the quadratic form actually takes on the value A1 , and so, by prop
erty (a) , it is the maximum value of f(x) and it occurs when x = q1 . 
(c) You are asked to prove this property in Exercise 38 .  

Find the maximum and minimum values of the quadratic form f(x1 , x2) = 5xi + 
4x1x2 + 2xi subject to the constraint xi + xi = 1 , and determine values of x1 and x2 
for which each of these occurs . 

Solution In Example 5 .23 ,  we found thatf has the associated eigenvalues A 1 = 6 and 
A2 = 1 , with corresponding unit eigenvectors 

_ [
2/Vs] and _ [ 

1 /Vs] Qi - 1/Vs Qz - -2/Vs 
Therefore, the maximum value off is 6 when x1 = 2/Vs and x2 = 1 /Vs. The mini
mum value off is 1 when x1 = 1 /Vs and x2 = -2/Vs. (Observe that these extreme 
values occur twice-in opposite directions-since -q1 and -q2 are also unit eigen
vectors for A1 and A2 , respectively. ) 

Graphing Quadratic Equations 

The general form of a quadratic equation in two variables x and y is 

ax2 + by2 + cxy + dx + ey + f = 0 

where at least one of a, b, and c is nonzero. The graphs of such quadratic equations are 
called conic sections (or conics) ,  since they can be obtained by taking cross sections 
of a (double) cone (i .e . ,  slicing it with a plane) . The most important of the conic sec
tions are the ellipses (with circles as a special case) , hyperbolas, and parabolas . These 
are called the nondegenerate conics . Figure 5 . 1 4  shows how they arise. 

It is also possible for a cross section of a cone to result in a single point, a straight 
line, or a pair of lines . These are called degenerate conics . (See Exercises 59-64.) 

The graph of a nondegenerate conic is said to be in standard position relative to 
the coordinate axes if its equation can be expressed in one of the forms in Figure 5 . 1 5 . 
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a > b  
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Figure 5 . 1 5  
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The nondegenerate conics 
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-
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Nondegenerate conics in standard position 

Hyperbola 
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x = ay
2, a <  0 
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If possible, write each of the following quadratic equations in the form of a conic in 
standard position and identify the resulting graph. 
(a) 4x2 + 9y2 = 36 (b) 4x2 - 9y2 + 1 = 0 (c) 4x2 - 9y = 0 

Solulion (a) The equation 4x2 + 9y2 = 36 can be written in the form 

x2 y z 
- + - = 1 9 4 

so its graph is an ellipse intersecting the x-axis at ( ± 3, 0) and the y-axis at (O , ± 2) .  
(b) The equation 4x2 - 9y2 + 1 = 0 can be  written in  the form 

y2 x 2 
1 - 1 = 1 
9 4 

so its graph is a hyperbola, opening up and down, intersecting the y-axis at (O , ±t) .  
(c) The equation 4x2 - 9y = 0 can be  written in  the form 

4 
y = -x2 

9 
so its graph is a parabola opening upward. 

If a quadratic equation contains too many terms to be written in one of the forms 
in Figure 5 . 1 5 , then its graph is not in standard position. When there are additional 
terms but no xy term, the graph of the conic has been translated out of standard 
position. 

Identify and graph the conic whose equation is 

x2 + 2y2 - 6x + Sy + 9 = 0 

Solulion We begin by grouping the x and y terms separately to get 
(x2 - 6x) + (2y2 + Sy) = - 9  

or 
(x2 - 6x) + 2 (y2 + 4y) = - 9  

Next, we complete the squares on the two expressions in parentheses to obtain 

(x 2 - 6x + 9) + 2 (y2 + 4y + 4) = -9  + 9 + S 

or 
(x - 3)2 + 2 (y + 2)2 = S 

We now make the substitutions x' = x - 3 and y' = y + 2, turning the above equa
tion into 

(x ' )2 + 2 (y ' )2 = S 
(x ' ) 2 (y ' )2 

or -- + -- = I  
s 4 



418 Chapter 5 Orthogonality 

Example 5 . 2 8  

This is the equation of an ellipse in standard position in the x '  y '  coordinate system, 
intersecting the x' -axis at ( ± 2 \/2, O) and the y ' -axis at (O, ± 2) .  The origin in the x'y' 
coordinate system is at x = 3, y = - 2, so the ellipse has been translated out of stan
dard position 3 units to the right and 2 units down. Its graph is shown in Figure 5 . 1 6 . 

y y ' 

2 

x 
- 2  

- 2  x ' 

-4 

Figure 5 . 1 6  

A translated ellipse 

If a quadratic equation contains a cross-product term, then it represents a conic 
that has been rotated. 

Identify and graph the conic whose equation is 

5x 2 + 4xy + 2y2 = 6 

Solulion The left-hand side of the equation is a quadratic form, so we can write it in 
matrix form as xT Ax = 6, where 

A = [ � � ] 
In Example 5 .23 ,  we found that the eigenvalues of A are 6 and 1 ,  and a matrix Q that 
orthogonally diagonalizes A is [ 2/Vs Q = l /Vs 

l /Vs] 
-2/Vs 

Observe that <let Q = - 1 . In this example, we will interchange the columns o f  this 
matrix to make the determinant equal to + 1 .  Then Q will be the matrix of a rotation, 
by Exercise 28 in Section 5 . 1 .  It is always possible to rearrange the columns of an 

........... orthogonal matrix Q to make its determinant equal to + 1 .  (Why?) We set 

instead, so that 

[ l /Vs 2/Vs] 
Q = 

-2/Vs l /Vs 



y 

3 

x' 

Figure 5 . 1 1  

A rotated ellipse 
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The change ofvariable x = Qx' converts the given equation into the form (x' ) TDx' = 6 

by means of a rotation. If x' = [; : ] , then this equation is just 

(x ' ) 2 + 6 (y ' ) 2 = 6 or 
(x ' ) 2 

+ (y ' ) 2 = 1 6 
which represents an ellipse in the x' y' coordinate system. 

To graph this ellipse, we need to know which vectors play the roles of e; = [ � ] 

and e� = [ � ] in the new coordinate system. (These two vectors locate the positions 

of the x' and y' axes.) But, from x = Qx' , we have 

Qe; = [ l
/Vs 2/Vs] [ l ] -2/Vs l/Vs 0 [ l

/Vs] 
-2/Vs 

and 
1 
[ l
/Vs 2/Vs] [Q ] [

2/Vs] Qez = -2/Vs l/Vs 1 = 
l /Vs 

These are just the columns q 1  and q2 o f  Q ,  which are the eigenvectors o f  A !  The fact 
that these are orthonormal vectors agrees perfectly with the fact that the change of 
variable is just a rotation. The graph is shown in Figure 5 . 1 7. 4 

You can now see why the Principal Axes Theorem is so named. If a real symmet
ric matrix A arises as the coefficient matrix of a quadratic equation, the eigenvectors 
of A give the directions of the principal axes of the corresponding graph. 

It is possible for the graph of a conic to be both rotated and translated out of stan
dard position, as illustrated in Example 5 .29 .  

Identify and graph the conic whose equation is 
2 2 28 4 5x + 4xy + 2y - -x - - y + 4 = 0 

Vs Vs 
Solution The strategy is to eliminate the cross-product term first. In matrix form, 
the equation is xTAx + Bx +  4 = 0, where 

A = [ � � ] and B = [ -� -�] 

The cross-product term comes from the quadratic form xT Ax, which we diagonalize 
as in Example 5 .28 by setting x = Qx' , where 

Then, as in Example 5 .28, 
[ l
/Vs 2/Vs] Q = -2/Vs l/Vs 

xTAx = (x'fDx'  = (x ' )2 + 6(y ' ) 2 

But now we also have 

I [ 
28 4 ] [ l

/Vs 2/Vs] [
x ' ] Bx = BQx = - Vs - Vs -2/Vs l/Vs y ' = -4x ' - 12y ' 
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Figure 5 . 1 8  

Thus, in terms of x' and y' , the given equation becomes 

(x ' ) 2 + 6(y ' ) 2 - 4x ' - 12y '  + 4 = 0 

To bring the conic represented by this equation into standard position, we need 
to translate the x'y' axes. We do so by completing the squares, as in Example 5 .27 . 
We have 

or 

( (x ' )2 - 4x ' + 4) + 6 ( (y ' ) 2 - 2y ' + 1 ) = -4  + 4 + 6 = 6 
(x '  - 2)2 + 6 (y '  - 1 )2 = 6 

This gives us the translation equations 

x" = x' - 2 and y " = y ' -

In the x"y" coordinate system, the equation is simply 

(x" )2 + 6 (y " )2 = 6 

which is the equation of an ellipse (as in Example 5 .28) . We can sketch this ellipse by 
first rotating and then translating. The resulting graph is shown in Figure 5 . 1 8 .  4 

The general form of a quadratic equation in three variables x, y, and z is 

ax 2 + by 2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0 

where at least one of a, b, . . .  , f  is nonzero. The graph of such a quadratic equation 
is called a quadric surface (or quadric) . Once again, to recognize a quadric we need 
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x2 y2 z2 
Hyperboloid of one sheet: --,, + b2 - :::2 = I 

a"' c 
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x2 y2 
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t o  put it into standard position. Some quadrics i n  standard position are shown in 
Figure 5 . 1 9; others are obtained by permuting the variables. 

Identify the quadric surface whose equation is 

5x2 + l ly 2 + 2z2 + 1 6xy + 20xz - 4yz = 36 
Solulion The equation can be written in matrix form as xT Ax = 36, where 

8 
1 1  

- 2  

1 0 ] 
-2  

2 

We find the eigenvalues of A to be 1 8, 9, and -9, with corresponding orthogonal 
eigenvectors 

respectively. We normalize them to obtain 

and form the orthogonal matrix 

[ ! - ! = ll 
Note that in order for Q to be the matrix of a rotation, we require <let Q = 1 ,  which 
is true in this case. (Otherwise, <let Q = - 1 , and swapping two columns changes the 
sign of the determinant. )  Therefore, 

and, with the change of variable x = Qx' ,  we get xTAx = (x' )Dx' = 36, so 

1 8 (x ' )2 + 9 (y ' )2 - 9(z ' ) 2 = 36 (x ' ) 2 (y ' ) 2 (z ' ) 2 or -- + -- - -- = 1 2 4 4 

From Figure 5 . 1 9 , we recognize this equation as the equation of a hyperboloid of one 
sheet. The x' , y' , and z' axes are in the directions of the eigenvectors q1 , q2 , and q3, 
respectively. The graph is shown in Figure 5 .20 . 
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Quadratic Forms 

F igure  5 .20 

A hyperboloid of one sheet in 
nonstandard position 
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z 

z ' 

We can also identify and graph quadrics that have been translated out of standard 
position using the "complete-the-squares method" of Examples 5 .27 and 5 .29 . You 
will be asked to do so in the exercises. 

In Exercises 1 -6, evaluate the quadratic form f(x) = xT Ax 
for the given A and x. 

In Exercises 7-12, find the symmetric matrix A associated 
with the given quadratic form. 
7. xl + 2xf + 6x1x2 

1 .  A =  

2. A = 

3. A = 

4. A = 

5. A = 

6. A = 

[ � !l x = [;] 
[ � - � l x = [:: ] 
[ _ � - !l x = [ ! ] 
u 0 -} � [�] 2 

u 0 -} � [ - : ] 2 

[ : 2 

:Jx� m 0 

8. X1X2 
9. 3x2 - 3xy - y2 

10. x� - x� + 8X1X2 - 6XzX3 
1 1 .  5xl - xi + 2x� + 2x1x2 - 4x1x3 + 4x2x3 
12 . 2x2 - 3y2 + z2 - 4xz 

Diagonalize the quadratic forms in Exercises 1 3- 18  by 
finding an orthogonal matrix Q such that the change of 
variable x = Qy transforms the given form into one with no 
cross-product terms. Give Q and the new quadratic form. 
13. 2xl + 5x� - 4x1x2 
14. x2 + 8xy + y2 
15 .  7xl + xi + xj + 8X1X2 + 8X1X3 - 1 6XzX3 
16. xl + xi + 3xj - 4x1x2 
17. x2 + z2 - 2xy + 2yz 
18. 2xy + 2xz + 2yz 
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Classify each of the quadratic forms in Exercises 1 9-26 as 
positive definite, positive semidefinite, negative definite, 
negative semidefinite, or indefinite. 
19. xf + 2x} 
2 1 .  - 2x2 - 2y2 + 2xy 

20. xf + xi - 2x,x2 
22. x2 + y2 + 4xy 

23. 2xf + 2xi + 2x� + 2x1x2 + 2x1x3 + 2x2x3 
24. xf + xi + x� + 2x1x3 25. x i + x� - x� + 4x1x2 
26. -x2 - y2 - z2 - 2xy - 2xz - 2yz 
27. Prove Theorem 5 .22 . 

28. Let A = [ � �] be a symmetric 2 X 2 matrix. Prove 

that A is positive definite if and only if a > 0 and 
<let A > 0. [Hint: ax2 + 2bxy + dy2 = 

a( x + �y y + ( d - �2)y2 . ]  

29. Let B be an invertible matrix. Show that A = BTB is 
positive definite. 

30. Let A be a positive definite symmetric matrix. Show 
that there exists an invertible matrix B such that A = 
BTB . [Hint: Use the Spectral Theorem to write A = 
QDQT. Then show that D can be factored as cT c for 
some invertible matrix C.] 

3 1 .  Let A and B be positive definite symmetric n X n 
matrices and let c be a positive scalar. Show that the 
following matrices are positive definite. 
(a) cA (b) A2 (c) A +  B 
(d) A_ , (First show that A is necessarily invertible . )  

32 . Let A be a positive definite symmetric matrix. Show 
that there is a positive definite symmetric matrix B 
such that A = B2 • (Such a matrix B is called a square 
root of A. )  

In Exercises 33-36, find the maximum and minimum val
ues of the quadratic form f(x) in the given exercise, subject 
to the constraint l l x l l  = 1, and determine the values of x for 
which these occur. 
33. Exercise 20 
35. Exercise 23 

34 . Exercise 22 
36. Exercise 24 

37. Finish the proof of Theorem 5 .23 (a) . 
38. Prove Theorem 5 .23 (c) . 

Graphing  Quadratic Equat ions 

In Exercises 39-44, identify the graph of the given equation. 
39. x 2 + 5y2 = 25 40. x2 - y2 - 4 = 0 
41 .  x 2 - y - 1 = 0 42. 2x 2 + y2 - 8 = 0 
43. 3x2 = y2 - 1 44. x = - 2y2 

In Exercises 45-50, use a translation of axes to put the conic 
in standard position. Identify the graph, give its equation in 
the translated coordinate system, and sketch the curve. 
45. x 2 + y2 - 4x - 4y + 4 = 0 
46. 4x2 + 2y2 - Sx + l 2y + 6 = 0 
47. 9x2 - 4y2 - 4y = 37 48. x2 + l Ox - 3y = - 1 3 
49. 2y2 + 4x + Sy = 0 
50. 2y2 - 3x2 - 1 8x - 20y + 1 1 = 0  

In Exercises 51 -54, use a rotation of axes to put the conic in 
standard position. Identify the graph, give its equation in the 
rotated coordinate system, and sketch the curve. 
5 1 .  x2 + xy + y2 = 6 52. 4x2 + l Oxy + 4y2 = 9 
53. 4x2 + 6xy - 4y2 = 5 54. 3x2 - 2xy + 3y2 = 8 

In Exercises 55-58, identify the conic with the given equa
tion and give its equation in standard form. 
55. 3x2 - 4xy + 3y2 - 28v'2x + 22Vly + 84 = 0 
56. 6x2 - 4xy + 9y2 - 20x - l Oy - 5 = 0 
57. 2xy + 2\/2x - 1 = 0 
58. x2 - 2xy + y2 + 4 V2x - 4 = 0 

Sometimes the graph of a quadratic equation is a straight 
line, a pair of straight lines, or a single point. We refer to 
such a graph as a degenerate conic. It is also possible that 
the equation is not satisfied for any values of the variables, 
in which case there is no graph at all and we refer to the 
conic as an imaginary conic. In Exercises 59-64, identify 
the conic with the given equation as either degenerate or 
imaginary and, where possible, sketch the graph. 
59. x 2 - y2 = 0 60. x2 + 2y2 + 2 = 0 
61 .  3x2 + y2 = 0 62. x 2 + 2xy + y2 = 0 
63. x 2 - 2xy + y2 + 2Vlx - 2Vly = 0 
64. 2x2 + 2xy + 2y2 + 2\/2x - 2Vly + 6 = 0 
65. Let A be a symmetric 2 X 2 matrix and let k be a 

scalar. Prove that the graph of the quadratic equation 
xTAx = k is 
(a) a hyperbola if k * 0 and <let A < 0 
(b) an ellipse, circle, or imaginary conic if k * 0 and 

det A > 0 
(c) a pair of straight lines or an imaginary conic if 

k * 0 and <let A = 0 
(d) a pair of straight lines or a single point if k = 0 

and det A * 0 
(e) a straight line if k = 0 and <let A = 0 

[Hint: Use the Principal Axes Theorem. ]  



In Exercises 66-73, identify the quadric with the given 
equation and give its equation in standard form. 
66. 4x2 + 4y2 + 4z2 + 4xy + 4xz + 4yz = 8 
67. x 2 + y2 + z2 - 4yz = 1 
68. -x2 - y2 - z2 + 4xy + 4xz + 4yz = 1 2  
69. 2xy + z = 0 
70. 1 6x2 + 1 00y2 + 9z2 - 24xz - 60x - 80z = 0 
71 .  x 2 + y2 - 2z2 + 4xy - 2xz + 2yz - x + y + z = 0 
72. 1 0x2 + 25y2 + 1 0z2 - 40xz + 20\/2x + soy + 

20\/2z = 1 5  
73. l lx2 + l ly 2 + 1 4z2 + 2xy + 8xz - 8yz - 12x + 

1 2y + 1 2z = 6 
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74. Let A be a real 2 X 2 matrix with complex eigenvalues 
A = a :±: bi such that b =F 0 and I A I = 1 .  Prove that 
every trajectory of the dynamical system xk+ i = Axk 
lies on an ellipse. [Hint: Theorem 4.43 shows that if v 
is an eigenvector corresponding to A = a - bi, then 
the matrix P = [ Re v Im v] is invertible and 

A =  P [: - � JP - 1 . Set B = (PPT) - 1 . Show that the 

quadratic xTBx = k defines an ellipse for all k > 0, 
and prove that if x lies on this ellipse, so does Ax. ] 

fundamental subspaces 
of a matrix, 380 

Gram-Schmidt Process, 389 
orthogonal basis, 370 
orthogonal complement 

orthogonal projection, 382 
orthogonal set of vectors, 369 
Orthogonal Decomposition 

orthonormal set of vectors, 372 
properties of orthogonal 

matrices, 374-376 
QR factorization, 393 
Rank Theorem, 386 

of a subspace, 378 
orthogonal matrix, 374 

Theorem, 384 
orthogonally diagonalizable 

matrix, 400 
orthonormal basis, 372 

spectral decomposition, 405 
Spectral Theorem, 403 

Review Questions 
1 .  Mark each of the following statements true or  false: 

(a) Every orthonormal set of vectors is linearly 
independent. 

(b) Every nonzero subspace of u;gn has an orthogonal 
basis. 

(c) If A is a square matrix with orthonormal rows, 
then A is an orthogonal matrix. 

(d) Every orthogonal matrix is invertible. 
(e) If A is a matrix with det A = 1 ,  then A is an 

orthogonal matrix. 
(f) If A is an m X n matrix such that (row(A) )_j_  = u;gn, 

then A must be the zero matrix. 
(g) If W is a subspace of u;gn and v is a vector in u;gn such 

that projw(v) = 0, then v must be the zero vector. 
(h) If A is a symmetric, orthogonal matrix, then A 2 = I. 
(i) Every orthogonally diagonalizable matrix is invertible. 

(j) Given any n real numbers A 1 , . • .  , An, there exists 
a symmetric n X n matrix with A 1 , . • .  , An as its 
eigenvalues. 

2. Find all values of a and b such that 

\ [H [ J [f l ) i< an mthogonal <et of vedm. 

3. Find the coordinate vector [ v ]  8 of v = [ - � ] with 
respect to the orthogonal basis 2 

B � ml [ J [ - � l )  or n' 
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4. The coordinate vector of a vector v with respect to an 

orthonormal basis B = {v1 , v2} of lR2 is [v ] 8 = [ - 3 ] 1/2 . 

[ 3/5 ] If v1 = 4/ 5 , find all possible vectors v. 

5. Show that [ - �j� 2�7 2�� ] is an 
4/7Vs - 1 5/7Vs 2/7Vs 

orthogonal matrix. 

6. If [ 1 �2 : ] is an orthogonal matrix, find all possible 

values of a, b, and c. 
7. If Q is an orthogonal n X n matrix and {v1 , • • •  , vk} is 

an orthonormal set in !Rn, prove that {Qv1 , . • .  , Qvk} 
is an orthonormal set. 

8. If Q is an n X n matrix such that the angles 
L (Q x, Qy) and L (x, y) are equal for all vectors x and 
y in IR", prove that Q is an orthogonal matrix. 

In Questions 9-12, find a basis for W _j_ . 
9. W is the line in IR2 with general equation 

2x - Sy = 0 

10. W is the line in IR3 with parametric equations 
x = t 
y = 2t 
z = - t  

13 .  Find bases for each of the four fundamental subspaces of [ - � -� -� � -� ] A = 2 1 4 8 9 
3 - 5  6 - 1  7 

14. Find the orthogonal decomposition of 

v - [ -� ] 

with respect to 

15 .  (a) Apply the Gram-Schmidt Process to 

� 

- [ ! J · � - [ i J · � - [ r J 
to find an orthogonal basis for W = span{x1 , x2, xJ . 
(b) Use the result of part (a) to find a QR factorization 

of A - [ ! � ] 
16. Find an orthogonal basis for IR4 that contains the 

vecto" m '"d [ J 
17. Find an orthogonal basis for the subspace 

w -ml· + x, + x, + x. - 0 } om' 

18. Let A = [ � 2 
- � l · 

- 1  1 2 
(a) Orthogonally diagonalize A. 
(b) Give the spectral decomposition of A. 

19. Find a symmetric matrix with eigenvalues ,\ 1 = ,\2 = 1 ,  
A3 = -2 and eigenspaces 

20. If {v1 , v2, • . •  , v"} is an orthonormal basis for !Rn and 

prove that A is a symmetric matrix with eigenval
ues c1 , c2 , • . •  , en and corresponding eigenvectors 


