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Abstract

These notes present a new antialiasing pre-�ltering technique which enables high

quality rendering of curves for generic output discrete devices such as Cathode Ray

Tube and Liquid Crystal Displays, Laser-printers, etc. It is also provided the correct

handling of complex geometries including for example self intersections, small loops,

cusps, curves with high and small radius of curvature. Moreover, the technique allow

for rendering curves of arbitrary thickness and can be optimally tuned to the bits

used for image quantization.

Keywords: Point Containment Methods, Discrete Geometry, Computer Graphics,

Antialiasing.

1 Introduction

Aliasing artifacts are a consequence of the errors introduced by attempting to repre-

sent a continuous model on a discrete device. For instance, a scene containing sharp

changes in colour intensity can exhibit serious defects when represented by discrete

samples such as dots on the screen. The error of this sampling process was originally

called aliasing in Signal Processing Theory and this terminology has been adopted

in the �eld of Computer Graphics. Since Crow [8] identi�ed the aliasing problem

in Computer Graphics, there have been a considerable number of published papers

on the subject. Most of them include antialiasing as part of the general process

of rendering using an antialiasing technique developed elsewhere. A small number



are dedicated to speci�cally developing an antialiasing technique. Among them, we

distinguish two main approaches to the aliasing problem in Computer Graphics:

pre- and post-�ltering methods [11].

In post-�ltering the ideal image is point sampled at a higher rate than can be

displayed, with multiple samples per pixel, and the samples are then numerically

�ltered by a discrete digital �lter. The advantages of post-�ltering lie largely in

the simplicity of the process. In some applications, such as ray tracing, super-

sampling followed by post-�ltering is the only reasonable solution to aliasing. The

disadvantages are the greatly increased costs of computation and the failure to

eliminate aliasing completely.

If a precise geometric description of the ideal image is available, say analytic

or piecewise analytic descriptions, then it is theoretically possible to �lter the ideal

image analytically to remove high frequency spatial components before sampling and

then to sample the bandwidth limited ideal image to produce alias-free images. For

example, for simple geometries such as straight lines, we can pre-�lter the geometry

by a box �lter by deriving expressions for pixel area coverage: sampling is then

reduced to substitution of pixel coordinates in the expressions. The advantages

of pre-�ltering are that once the ideal image has been analytically pre-�ltered, a

single sample per pixel suÆces. The expectation is that if we can properly pre-�lter

the ideal image, then we will generate high quality displayed images. The main

disadvantages heretofore have been the restricted range of geometries that can be

pre-�ltered and the restricted range of �lters which could be employed. Pre-�ltering

will however remain a technique more appropriate to high quality two-dimensional

images containing lines, regions and text rather than images of three-dimensional

scenes [11].

2 Previous Pre-Filtering Techniques

Gupta and Sproull [19] developed an antialiased version of the Bresenham line al-

gorithm in which, at least notionally, the ideal line is convolved with a circularly

symmetric �lter. In their implementation a lookup table is constructed which con-

tains the fractions of the volume of the conical �lter intercepted by the ideal line,

indexed by the perpendicular distance of the pixel center from the centre of the line.

This table can be generated from a simply derived analytic expression. The circular

symmetry enables a single one-dimensional table to cover lines at all possible angles.

Analytic expressions for line ends, however, are diÆcult to derive and Gupta-Sproull

resort to less precise two-dimensional tables. Whilst circular symmetry leads to a

fast incremental algorithm, the conical �lter does not give rise to a at constant
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signal for constant sample values, thus exhibiting what Mitchell and Netravali call

sample-frequency ripple. Forrest gives examples of this for various �lter radii in

[17]. Pitteway and Watkinson [27] describe the incorporation of area sampling in

the Bresenham line algorithm, but do not handle line ends properly.

Feibush, Levoy and Cook [15] describe antialiasing of polygons in which polygons

are split into triangles and the volume of the �lter, conical for example, intersected

by each triangle is used as a weight. In e�ect this amounts to a discrete approxima-

tion to the convolution integral applied to polygon fragments. A two-dimensional

lookup table is used to store triangle-cone intersections for ef�ciency reasons. If

the chosen �lter is not circularly symmetric, then the lookup table is considerably

more complex, being four-dimensional. Abram, Westover and Whitted [1] develop a

more complex approach in which polygon-�lter convolution is classi�ed into several

di�erent cases, each of which employs a discrete approximation to the convolution

integral.

No algorithms appear to guarantee that the numerical approximations expressed

as a lookup tables are good enough to avoid unwanted aliasing artifacts. For in-

stance, small objects of a scene whose data fall between the quantization steps of

the look up tables will disappear completely. In this sense, table look up methods

behave similarly to the post-�ltering methods. According to Du� [9], exploring this

fact, it is possible to make images for which methods using look up tables fail miser-

ably. Du�s polygon scan conversion by exact convolution [9] numerically integrates

the convolution integral to antialias simple polygons. Filters are more general than

in other methods but are limited to bivariate polynomials which can be used to

approximate sinc and other �lters.

McCool [24] describes a method whereby an image consisting of Gourad-shaded

triangles can be represented by simplex splines; these can then be convolved with a

box spline �lter to form a set of prism splines representing the �ltered image. This

permits analytic �ltering by �lters which can be constructed from box spline basis

functions, a special case being tensor product B-splines. Any further �ltering for

reconstruction is performed by digital post-processing.

Aliased scan conversion of curves is still a topic for further research: whilst there

exist eÆcient algorithms for circles and ellipses (although long thin ellipses still need

special care), more general parametric, explicit or implicit curves generally require

careful attention to both geometric and numerical detail in order to provide robust

and eÆcient algorithms. In many cases the approach taken is to reduce the curve to

a piecewise linear approximation which can then be antialiased; avoiding any visual

evidence of polygonisation requires care.

Lien, Shantz and Pratt [23] develop an adaptive forward di�erence method for
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rendering curves and briey mention a simple adaptation to their algorithm which

enables an admittedly rough approximation to area sampling to be made. In e�ect

the curve is approximated by short straight line segments. Klassen [22] remarks

on the geometric problems found in rendering curves, particularly loops, cusps, and

crossings, and goes on to develop a more robust approach than [23]. A curve is split

into monotonic sections (with respect to the x or y axes) then adaptive forward

di�erencing is used to divide the curve into short straight line segments which may

then be antialiased by the Gupta Sproull algorithm [19] or by any other �lter which

can be accessed from a lookup table in a similar manner. The transitions from x

major to y-major line segments (and vice versa) need special attention to avoid nicks

in the output. Klassen pays particular attention to numerical detail.

Field [16] describes a fast incremental method for antialiasing circles and ellipses

based on a predictor- corrector method to compute �lter values. The �lter employed

is an approximation to area sampling. Pitteway and Banissi [26] describe an integer

algorithm for rendering antialiased ellipses which employs an approximation to area

sampling suÆcient for a two bit per pixel system, this giving a marked improvement

in the rendering of fonts composed of conic segments.

Prior methods are seen to be restricted in terms of �lters, employing either

box or conical �lters which are known to be poor. Curves, apart from circles and

ellipses, are approximated by line segments, and geometric special cases need careful

treatment.

3 Discrete B�ezier Curves

Discrete curves can be described by an ordered sequence of points with integer

coordinates whose distance between consecutive points is less or equal to 1. A �nite

sequence of points is a function L : [0::n] ! Z
2 called list of length n. We will

denote L(i) by Li, the length of L by #L and the set of all lists by �.

Discrete B�ezier curves are the discrete counterparts of the well-known continuous

B�ezier curves. Note that a list can represent a discrete curve as well as the control

points of the continuous B�ezier curve. One essential operation that can be de�ned

on B�ezier curves is subdivision. Subdivision of a B�ezier curve will result in two

B�ezier curves called the left and the right part, Figure 1. More precisely, let L be a

list of length n, we de�ne L : �! � and R : �! � by

L(L)i 7!
1

2i

iX
j=0

�
i

j

�
Lj (1)
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R(L)i 7!
1

2n�i

nX
j=i

�
n� i

j

�
Lj : (2)

L(L) is the left part and R(L) is the right part of L.

L0

L1

L2
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R3
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L1

L2
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Figure 1: Left and Right B�ezier Curves.

In order to implement subdivision in an integer-only algorithm, we have to map

L(L)i and R(L)i given by (1) and (2) to the set of integers. This is done by a so-

called snapping function. Familiar examples of these functions are truncation and

rounding functions.

Using a generic snapping function, we can produce discrete versions of the left

and the right parts putting

L
0(L)i = snap(L(L)i)

R
0(L)j = snap(R(L)j):

This process enables the construction of a recursive algorithm to generate the outline

of a discrete polynomial B�ezier curve. For this, we consider a list L of length n and

the 8{connected diameter of L, d = maxi;jfjLj�LijV 8g, where j:jV 8 represents the 8-

distance in Z2. Then, de�ne the curve{to{polygonal conversion operator C : �! �

by:

d � 1) C(L) = hL0; Lni

d > 1) C(L) = C(L0(L)) ] C(R0(L));

where ] is the concatenation between lists. In [7], Corthout and Pol prove that the

operator C(L) is well{de�ned, that is, the stopping criterion can always be reached

in a �nite number of subdivisions and the discrete left and right parts can always

be concatenated.

The conversion operator C(L) produces an 8-connected list. Using this fact, we

can consider the discrete space Z2 as always 8{connected and this con�guration will

enable a simpli�cation of our algorithm.
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4 Antialiasing of Continuous Curves

This section presents a new technique for antialiasing two-dimensional continuous

curves. Basically, the technique point-samples a pre-�ltered colour intensity function

of a continuous curve with an arbitrary width. Pre-�ltering is carried out by using

a generic class of �lters and the sampling process is based on the point containment

detection.

Stroked Region

Circular Brush

Line

Figure 2: Stroking with a circular brush.

First we de�ne the colour intensity function of a continuous curve in R2 . Lines

and curves may be generated by continuous sweep of a brush along the mathematical

center of the line or curve (see Figure 2). Guibas et al. [18] refers to this process as

convolving the curve with a brush, but in this paper we shall use the term dilation to

denote the e�ect of brushing in order to avoid confusion with convolving a geometric

object with a �lter. The notion of dilation is used in the PostScript imaging model

which is based on the notion of painting with a opaque paint on a plane [2]. In

PostScript, the paint is applied by a pen or brush of user-speci�ed width. Dilation

will also be used later in this section to de�ne the discrete image of a curve in Z2.

For this reason we will consider an arbitrary module over a ring K = Z or K = R.

Let A and B be sub-sets of a module V over a ring K.

For each v 2 V , the translation operator tv : V �! V is de�ned by tv(w) = v+w.

The dilation of A by B is de�ned by the Minkowsky addition

A�B =
[
b2B

tb(A) :

Let � : [0; 1] �! R
2 be a given continuous curve. For each w 2 R, w � 0, denote

Dw=2 = D(w=2)��([0; 1]) where D(w=2) is the disk in R2 with centre at the origin
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Figure 3: Discrete curve dilated by a disk.

and radius w=2. The colour intensity function of the w-pixel wide curve � is de�ned

by

Iw(x) =

(
1 if x 2 Dw=2

0 if x 2 R2 �Dw=2

As we have remarked earlier, the conventional approach to rendering would be

to scan convert the convolved version of the curve but this is known to lead to nu-

merical and geometric problems [11]. Instead we chose to use the point containment

algorithm developed by Corthout et al. to implement a pre-�ltering antialiasing

algorithm. In [4], Corthout and Jonkers describe an algorithm for determining the

containment of a point within a region bounded by discrete B�ezier curves. This is

extended in [5] to encompass discrete rational B�ezier curves and in [6, 7] to sup-

port dilation and erosion of discrete B�ezier curves and regions bounded by discrete

B�ezier curves by brushes which may be regions bounded by discrete B�ezier curves.

Corthout and Pol's thesis [7] contains full details of the mathematical theory of

discrete B�ezier curves, a version of the Jordan curve theorem for regions bounded

by discrete curves, a formal development of the point containment algorithm and

a description of its implementation in dedicated silicon, the Pharos chip fabricated

by Philips. A discrete curve can be computed by subdivision of an integer grid of

speci�ed resolution. Figure 3 shows a typical 8-connected discrete curve of width

1.25 pixels computed on a grid with 4 times pixel resolution. We show a circular

brush centered on each point of the discrete curve. Pixels whose center lie within

the dilated curve are rendered. The accuracy of the discrete intersection test is a

function of the sub-pixel resolution chosen for the discrete curve.

To give a description of the pre-�ltering process, we �rst de�ne our �lter space.
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r k+1 kr

ijI

Figure 4: Stack of nested brushes.

Any practical �lter in Computer Graphics is an even function having a �nite support

and unit integrated intensity [21]. Moreover, a �lter restricted to its support is

continuous. Then a �lter f is a function f : R �! R satisfying the conditions

� f
j [�a;a] 2 C([�a; a]) ; support(f) = [�a; a]

� f(x) = f(�x) 8x 2 R

�
R
1

�1
f(x)dx = 1

Figure 5: Nested regions along a discrete curve.

Let vw be the convolution product between a �lter f and the w-box function

de�ned by

bw(x) =

(
1 if jxj � w=2

0 if jxj > w=2
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That is,

vw (x) =

Z +1

�1

bw(t) f(x� t)dt =8><>:
Z +w=2

�w=2

f(x� t)dt if jxj � a+ w=2

0 if jxj > a+ w=2

The convolution vw between the cross section of the ideal curve (the w-box function)

and a �lter f is then approximated in a piecewise manner to create a stack of brushes,

as shown in Figure 4 for the box �lter convolved with the 1-box function. Let 

be a connected discrete curve obtained from � by some rasterization scheme. Let

0 < rm < � � � < r2 < r1 < a + w=2 (ri 2 R) be an uniform partition of the interval

[0; a+w=2] and let Ni be the -neighborhood obtained by stroking  with the brush

of radius ri. The sequence N1; N2; � � � ; Nm is a nested sequence of -neighborhoods

[11]. Note that, although ri are real numbers, the regions Ni are contained in the

discrete plane Z2.

The technique presented in this paper detects whether a pixel coordinate (xi; yj)

is inside or outside one of the disjoint regionseN1 = N1 �N2 ; eN2 = N2 �N3 ; � � � ; eNm = Nm :

Let D be a mapping from R to Z. The familiar truncation and rounding functions

are examples of such a mapping. Let � be the available number of grey levels.

The colour intensity function of the w-pixel wide discrete image of � is the functioneIw : Z2 �! Z de�ned by

� If (xi; yj) is outside N1, eIw = 0

� For k = 1; � � � ;m� 1, if (xi; yj) is inside eNk,eIw = D(2�vw(
rk+1 + rk

2
))

� If (xi; yj) is inside eNm, eIw = D(2�vw(0))

This de�nition characterizes our antialiasing technique for two-dimensional contin-

uous curves. Figure 5 shows a discrete curve generated at 2 times device resolution

with the convolved brush centred at the points of the discrete curve giving a discrete

antialiased curve which is sampled at the pixel centres to give the pixel values.

Details of the method employed for generation of the brush stack by optimal

discrete piecewise approximation of the intensity pro�le of the �ltered brush are

given in [11]. On-demand generation of sections of the brush pro�le rather than a

pre-computed set of brush slices would enable a root �nding procedure to determine

the fraction to arbitrary precision by interval halving.
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5 Results

Greyscale illustrations were computed at 6 � 6 sub-pixel resolution and viewed on

an Apple Macintosh with a colour monitor using the \special gamma" setting. For

reproduction, the images were saved as PostScript �les and printed on a Hewlett-

Packard LaserJet 4 Plus printer at 600 dpi using the \calibrated colour greyscale"

option in the standard print dialogue. Images viewed on the screen are rather

smoother as a consequence of the blurring e�ect of the gaussian-type reconstruction

of the CRT. Di�erences between �lters are less noticeable than in the printed ver-

sions. Laser printing allowed us more control over greyscale than would have been

possible using photography. The illustrations are best viewed from approximately

0.5 metres using a strong incandescent bulb for lighting.

A set of B�ezier curves were chosen to demonstrate particular geometric features

[11]:

� a cubic curve with two near-vertical and one near-horizontal portions;

� a parabola with a small radius of curvature;

� a parabola with a large radius of curvature;

� a cubic with a cusp;

� a small loop obtained by a slight perturbation of the cusp's control points;

� a cubic with two inection points also obtained by a slight perturbation of the

cusp's control points;

� a large loop.

Plate 1 shows the curves drawn aliased using the point containment algorithm. In

Plates 2{4 we use a circular brush convolved with a variety of �lters to create stacks

of circular brushes. Plate 2 shows the seven curves rendered as one pixel wide curves

using the Mitchell{Netravali �lter [26]. In Plate 3 we demonstrate the rendering of

the low curvature parabola using a variety of �lters. On balance the Mitchell-

Netravali �lter proved the best compromise between sharpness and smoothness or

lack of braiding. The poor performance of box �ltering is obvious. Plate 4 illustrates

the ability of the technique to render curves with a variety of thicknesses and also

the correct handling of a tight loop which is progressively �lled in as the curve

thickness increases.

6 Discussions, Conclusions and Further Work

We have presented a pre-�ltering technique to render cur- ves with arbitrary thick-

ness using a generic class of �lters. In [11, 12] we describe how stacks of brushes
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can be generated to approximate the convolved brush to any required accuracy. We

pay a price in terms of eÆciency. In [7], Corthout and Pol show that the major dis-

advantage of Point Containment algorithms { their quadratic time complexity with

increasing resolution { can be counteracted by applying coherence detection of large

uniformly coloured parts of the output bitmap. Using quadtrees and the convex hull

properties of discrete B�ezier curves the time complexity of the Point Containment

algorithm can be reduced to quasi-linear. In [13, 14], Fabris et al. reduce even more

this time complexity: they present a method whose time complexity depends not

on the resolution but only on the perimeter of the polygon boundary. Moreover, as

the tests for Point Containment are independent for di�erent pixels of the image,

Point Containment based algorithms can be implemented in a variety of parallel

con�gurations with great gains of performance [10].

Cases where the curve has more than one intersection with a pixel, for example

where a curve crosses itself, needs further investigation. As presently implemented,

we detect the smallest (highest) brush intersected, thus computing a maximum value

over all the curve's points within the pixel. There are no apparent problems with

the looping curves in Plates 2 and 4. Properly, global knowledge of the curve con-

�guration should be used, rather than serial exploration. The problem is related to

the bulge elimination problem discussed by Bloomental in the context of generating

implicit branching surfaces by convolution of skeletons [3] and the solution may lie

there or in investigation of level curves [20, 25].

As presently implemented, our technique covers only the antialiasing of curves as

strokes and assumes black curves drawn over a white background permitting write-

only image generation. Future implementations will include antialiasing of region

boundaries and the use of read-modify-write (lerping). More complex brushes such

as orientable brushes and brushes de�ned by closed sequences of B�ezier curves need

investigation.

7 Acknowledgment

The work reported in this paper was supported by Grant Number 97/03055-6 from

the Researcher Support Foundation of the State of S~ao Paulo (FAPESP).

References

[1] G. Abram, L. Westover, and T. Whitted. EÆcient alias-free rendering using bit-

masks and look-up tables. Computer Graphics (SIGGRAPH'85 Proceedings),

19:53{59, July 1985.

11



[2] Adobe Systems, Inc. PostScript Language Reference Manual. Addison-Wesley,

Reading, MA, 1985.

[3] J.I. Bloomenthal. Bulge elimination in convolution surfaces. Computer Graph-

ics Forum, 16(1):1{11, 1997.

[4] M.E.A. Corthout and H.B.M. Jonkers. A new point containment algorithm for

B-regions in the discrete plane. In R.A. Earnshaw, editor, Theoretical Founda-

tions of Computer Graphics and CAD, NATO Advanced Study Institute Series,

Series F, F40, pages 297{306. Springer-Verlag, 1988.

[5] M.E.A. Corthout and H.B.M. Jonkers. A point containment algorithm for

regions in the discrete plane outlined by rational b�ezier curves. In J. Andr�e

and R.D. Hersch, editors, Raster Imaging and Digital Typography, pages 169{

179. Cambridge University Press, 1989.

[6] M.E.A. Corthout and E.-J.D. Pol. Supporting outline font rendering in dedi-

cated silicon: the pharos chip. In Raster Imaging and Digital Typography II,

pages 177{189. Cambridge University Press, 1991.

[7] M.E.A. Corthout and E.-J.D. Pol. Point Containment and the PHAROS Chip.

PhD thesis, University of Leiden, Leiden, March 1992.

[8] F.C. Crow. The aliasing problem in computer-generated shaded images. Com-

munications of the ACM, 20(11):799{805, November 1977.

[9] T. Du�. Polygon scan conversion by exact convolution. In J. Andr�e and R.D.

Hersch, editors, Proceedings of the International Conference on Raster Imaging

and Digital Topography, pages 154{169. Cambridge University Press, 1989.

[10] A.E. Fabris, M.M.O. Assis, and A.R. Forrest. Parallelization of �lling algo-

rithms on distributed memory machines using the point containment paradigm.

In SIBGRAPI'2000 Proceedings, volume 13, pages 235{243. IEEE Computer

Society Press, October 2000.

[11] A.E. Fabris and A.R. Forrest. Antialiasing of curves by discrete pre-

�ltering. Computer Graphics (SIGGRAPH'97 Proceedings), 31(3):316{327, Au-

gust 1997.

[12] A.E. Fabris and A.R. Forrest. High quality rendering of two-dimensional con-

tinuous curves. In SIBGRAPI'97 Proceedings, volume 10, pages 10{17. IEEE

Computer Society Press, October 1997.

[13] A.E. Fabris, L. Silva, and A.R. Forrest. An eÆcient �lling algorithm for non-

simple closed curves using the point-contaninment paradigm. In SIBGRAPI'97

Proceedings, volume 10, pages 1{9. IEEE Computer Society Press, October

1997.

12



[14] A.E. Fabris, L. Silva, and A.R. Forrest. Stroking discrete polynomial B�ezier

curves via point containment paradigm. In SIBGRAPI'97 Proceedings, vol-

ume 11, pages 1{9. IEEE Computer Society Press, October 1998.

[15] E.A. Feibush, M. Levoy, and R.L. Cook. Synthetic texturing using digital

�lters. Computer Graphics (SIGGRAPH '80 Proceedings), 14(3):294{301, July

1980.

[16] D.A. Field. Algorithms for drawing anti-aliased circles and ellipses. Computer

Graphics and Image Processing, 33(1):1{15, January 1986.

[17] A.R. Forrest. Antialiasing in practice. In R.A. Earnshaw, editor, Fundamental

Algorithms for Computer Graphics, NATO Advanced Study Institute Series,

Series F, F17, pages 113{134. Springer-Verlag, 1985.

[18] L.J. Guibas, L.H. Ramshaw, and J. Stol�. A kinetic framework for computa-

tional geometry. In Proceedings of 24th IEEE Symposium on the Foundations

of Computer Science, pages 100{111, 1983.

[19] S. Gupta and R.F. Sproull. Filtering edges for gray-scale displays. Computer

Graphics (SIGGRAPH '81 Proceedings), 15(3):1{5, August 1981.

[20] W. Heidrich, M.D. McCool, and J. Stevens. Interactive maximum projection

volume rendering. In G.M. Nielson and D. Silver, editors, Proceeding of IEEE

Visualization '95, pages 11{18, October 29 { November 3 1995.

[21] R.V. Klassen. Device Dependent Image Construction for Computer Graphics.

PhD thesis, University of Waterloo, Ontario, July 1989.

[22] R.V. Klassen. Drawing antialiased cubic spline curves. ACM Transactions on

Graphics, 10(1):92{108, January 1991.

[23] S.-L. Lien, M. Shantz, and V.R. Pratt. Adaptive forward di�erencing for ren-

dering curves and surfaces. Computer Graphics (SIGGRAPH '87 Proceedings),

21:111{118, July 1987.

[24] M.D. McCool. Analytic antialiasing with prism splines. Computer Graphics

(SIGGRAPH '95 Proceedings), 28:221{228, August 1995.

[25] M.D. McCool. Private communication, September 1996.

[26] D. P. Mitchell and A. N. Netravali. Reconstruction �lters in computer graphics.

Computer Graphics (SIGGRAPH '88 Proceedings), 22:221{228, August 1988.

[27] M.L.V. Pitteway and D. Watkinson. Bresenham's algorithm with grey scale.

Communications of the ACM, 23:625{626, 1980.

13



 

 

                Plate 1: Aliased Test Curves                              Plate 2: Anti-aliased Test Curves
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                                              box                                                                                                            Catmull-Rom

                                           Bartlett                                                                                                        gaussian 1 2/

                                              bell                                                                                                          gaussian 1 2/

                                           B-spline                                                                                                           T-sinc

        
                                  Mitchell-Netravali

Plate 3: Parabola rendered with a variety of filters.
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Plate 4: Varying curve width (in pixel units) for a cubic with a small loop near a cusp.
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