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Detection of Influential Observation in Linear 

Regression 
R. Dennis Cook 
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University of Minnesota 


St .  Paul, Minnesota 5 5 1 0 8  


A new measure based on confidence ellipsoids is developed for judging the contribution of 
each data point to the determination of the least squares estimate of the parameter vector in full 
rank linear regression models. It is shown that the measure combines information from the 
studentized residuals and the variances of the residuals and predicted values. Two examples are 
presented. 
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I. INTRODUCTION 

It is perhaps a universally held opinion that the 
overall summary statistics (e.g., R2, 6)arising from 
data analyses based on full rank linear regression 
models can present a distorted and misleading pic- 
ture. This has led to the recommendation and use of a 
number of procedures that can isolate peculiarities in 
the data; plots of the residuals (R,) and examination 
of standardized residuals are probably the two most 
widely used. The studentized residuals, t,, (i.e. the 
residual divided by its standard error) have been rec- 
ommended (see, e.g., [2], [4], [6]) as more appropriate 
than the standardized residuals (i.e., the residual di- 
vided by the square root of the mean square for error) 
for detecting outliers. Also, approximate critical val- 
ues for the maximum absolute studentized residual 
are available [8]. 

Behnken and Draper [2] have illustrated that the 
estimated variances of the predicted values (or, 
equivalently, the estimated variances of the residuals, 
? (R,)) contain relevant information beyond that fur- 
nished by residual plots or  studentized residuals. Spe- 
cifically, they state "A wide variation in the [variance 
of the residuals] reflects a peculiarity of the X matrix, 
namely a nonhomogeneous spacing of the observa- 
tions and will thus often direct attention to  data 
deficiencies." The opinion that these variances con- 
tain additional information was also put forth by 
Huber [6] and Davies and Hutton [4]. Box and 
Draper [3] developed a robust design criterion based 
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on the sums of squares of the variances of the pre- 
dicted values. 

If a potentially critical observation has been de- 
tected using one or  more of the above measures then 
the examination of the effects of deleting the observa- 
tion seems a natural next step. However, the problem 
of determining which point(s) to delete can be very 
perplexing, especially in large data sets, because each 
point now has two associated measures (t,, F'(R~)) 
which must be judged simultaneously. For example, 
assuming the mean square for error to  be 1.0, which 
point from the set (ti, V(R,)) = (1, .I), (I .732, .25), (3, 
.5), (5.196, .75) is most likely to be critical? 

It is the purpose of this note to suggest an  easily 
interpretable measure that combines information 
from both t, and V(R,), and that will naturally isolate 
"critical" values. 

2. DEVELOPMENT 

Consider the model 

where Y is an n X 1 vector of observations, X is an n 
X p full rank matrix of known constants, 0 is an n x 
p vector of unknown parameters and e is an  n X 1 
vector of randomly distributed errors such that E(e) 
= 0 and V(e) = Ia2. Recall that the least squares 
estimate of p is 

The corresponding residual vector is 

The covariance matrices of Y and R are, respectively, 
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and 

Finally, the normal theory (1 -a )  X 100% confidence 
ellipsoid for the unknown vector, 8, is given by the 
set of all vectors @*,say, that satisfy 

where s2 = RIR/(n - p) and F@, n - p, 1 - a )  is the 
1-a probability point of the central F-distribution 
with p and n - p degrees of freedom. 

To determine the degree of influence the ith data 
point has on the estimate, 8 ,  a natural first step would 
be to compute the least squares estimate of@ with the 
point deleted. Accordingly, let b,-i, denote the least 
squares estimate of @ with the ith point deleted. An 
easily interpretable measure of the distance of b,-,, 
from /!? is (3). Thus, the suggested measure of the cri- 
tical nature of each data point is now defined to be 

This provides a measure of the distance between 
fi[-,, and fi in terms of descriptive levels of signifi- 
cance. Suppose, for example, that D, - F@, n - p, 
.5), then the removal of the ith data point moves the 
least squares estimate to the edge of the 50% con- 
fidence region for @ based on b. Such a situation may 
be cause for concern. For an uncomplicated analysis 
one would like each to stay well within a lo%, 
say, confidence region. 

On the surface it might seem that any desirability 
this measure has would be overshadowed by the com- 
putations necessary for the determination of n + 1 
regressions. However, it is easily shown that (see [I]) 

where X,-i ,  is obtained by removing the ith row, xi1, 
from X and Y ,  is the ith observation. Also, letting ui  
= xil(X'X)-'xi and assuming vi < 1, as well as be the 
case if X ,_ , ,  has full rank p, 

(x ( - , ) lx ( - i ) ) - l= (XfX)-' 

+ (xlx)- lx ,x, l (x 'x)-  '/(I - u,), 

from which it follows that 

Substitution of (6) into (5) yields 
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It follows immediately that 

Note that DL depends on three relevant quantities 
all relating to the full data set: The number of param- 
eters, p, the ith studentized residual, 

and the ratio of the variance of the ith predicted 
value, v(Ei) = xil(X'X)-'xia2 = via2(see, equation I), 
to the variance of the ith residual, V(R,) = a2(1 - ui) 
(see, equation 2). Thus Dican be written as simply 

Clearly, t,2 is a measure of the degree to which the ith 
observation can be considered as an outlier from the 
assumed model. In addition, it is easily demonstrated 
that if the possible presence of a single outlier is 
modeled by adding a parameter vector 0' = (0,0, . . ., 
0, 8, 0, . . . 0) (both 6' and its position within 0' are 
unknown) to the model, then max ti2 is a monotonic 
function of the normal theory likelihood ratio test of 
the hypothesis that 6 = 0. 

The ratios v(~,) /v(R,)  measure the relative sensi- 
tivity of the estimate, p ,  to potential outlying values 
at each data point. They are also monotonic func- 
tions of the 0,'s which are the quantities Box and 
Draper [3] used in the development of their robust 
design (i.e., insensitive to outliers) criterion. A large 
value of the ratio indicates that the associated point 
has heavy weight in the determination of.8. The two 
individual measures combine in (8) to produce a mea- 
sure of the overall impact any single point has on the 
least squares solution. 

A little care must be exercised when using D, since 
&,,is essentially undefined in extreme cases when 
V(R,) = 0 (see the lemma in [l]); i.e., when X(-,, has 
rank less than p.  

Returning to the example given in the Introduction 
we see that each point has an equal overall impact on 
the regression since in each case pD, = 9.0. To con- 
tinue the example, suppose p = 3 and n - p = 24, 
then Di = 3.0 and the removal of any of the four 
points would move the estimate of j3 to the edge of 
the 95% confidence region about f i .  However, in- 
spection of the individual components shows that the 
reasons for the extreme movement are different. The 
two points (3, .5) and (5.196, .75) could be rejected as 
containing outliers in the dependent variable while 
the remaining two could not. Inspection of X would 
be necessary to determine why the remaining points 
are important. It may be, for example, that they 
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correspond to outlying values in the independent var- 
iables. 

In any analysis additional information may be 
gained by examining t, and v ( ~ ~ ) / v ( R , )  separately. A 
three column output of ti, v(ki) /V(Ri) and Dl would 
seem to be a highly desirable option in any multiple 
regression program. 

The following two examples should serve as addi- 
tional demonstrations of the use of Dl. No attempt at 
a "complete" analysis is made. 

3. EXAMPLES 

Example I-Longley Data 

Longley [7] presented a data set relating six eco- 
nomic variables to total derived employment for the 
years 1947 to 1962. Table 1 lists the residuals stand- 
ardized by s, t , ,  v(P,)/ v(R,), Dl and the year. Notice 
first that there are considerable differences between 
R,/s and t,. Second, the point with the largest Dl 
value corresponds to 1951. Removal of this point will 
move the least squares estimate to the edge of a 35% 
confidence region around 8. The second largest Dl 
value is at 1962 and its removal will move the esti- 
mate of 0 to approximately the edge of a 15% con- 
fidence region. Clearly, 195 1 and 1962 have the great- 
est impact on the determination of 8. The point with 
the largest studentized residual is 1956; however, the 
effect of this point on 8 is not important relative to 
the effects of 195 1 and 1962. The identification of the 
points with max Iti 1 and max v(~,) /v(R,)  (or max 
ui) would not have isolated 1951. (It is interesting to 
note that '1951 was the first full year of the Korean 
conflict). 

TABLE I -Longley D a ~ a  

Year Ri/s 


1947 0.88 
4 8 -0 .31  
49 0.15 
5 0 -1.34 
51 1.02 
52 -0.82 
5 3 -0.54 
54 -0.04 
5 5 0.05 
5 6 1.48 
57 -0.06 
5 8 -0.13 
5 9 -0 .51  
6 0 -0.28 
61 1.12 
6 2 -0.68 

* :  smaller than 5 x 

Example 2-Hald Data 

The data for this example were previously pub- 
lished by Hald (see [2] and p.165 of [5]). There are 4 
regressors and 13 observation points. Table 2 lists 
Ri/s, ti, V(~ , ) /V(R, )  and Di. In contrast to the pre- 
vious example the data here seem well behaved. Ob- 
servation number 8 has the largest Di value but its 
removal moves the least squares estimate to the edge 
of only the 10% confidence region for 0. 

4. EXTENSIONS 

It is easily seen that Di is invariant under changes 
of scale. If the scale of each variable is thought to be 
an important consideration it may be more desirable 
to compute the squared length of @,-,, -8). It is 
easily shown that 

The proposed measure was developed under the 
implicit presumption that is the parameter of inter- 
est. This may not always be the case. If interest is in q, 
say, linearly independent combinations of the ele- 
ments of 0, then it would be more reasonable to 
measure the influence each data point has on the 
determination of the least squares estimates of these 
combinations. Let A denote a qxp rank q matrix 
and let $ = A0 denote the combinations of interest. 
A generalized measure of the importance of the ith 
point is now defined to be 

1 ti 1 A 

V(Yi)/V(Ri) 
i 

1.15 0.74 0.14 
0.48 
0.19 

1.30 
0.57 

0.04
* 

1.70 0.59 0.24 
1.64 1.60 0 .61  
1.03 0.59 0.09 
0.75 
0.06 
0.07 

0.97 
1.02 
0.84 

0.08* 
* 

1.83 
0.07 
0.18 

0.49 
0.56 
0.93 

0.23* 
* 

0.64 
0.32 

0.60 
0.30 

0.04* 
1.42 0.59 0.17 
1 . 2 1  2 .21  0.47 
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TABLE 2-Hald Data 

A 

Observation Ri / s 1 t i 1 V(Yi)/V(Ri) Di 

1 0.002 0.003 1 .22  * 
2 0.62 0.76 0.50 0.06 
3 -0.68 1.05 1.36 0.30 
4 
5 

-0 .71  
0.10 

0.84 
0.13 

0.42 
0.56 

0.06
* 

6 1 . 6 1  1 . 7 1  0.14 0.08 
7 -0.59 0.74 0.58 0.06 
8 -1.24 1 .69  0.69 0 . 3 1  
9 0.56 0.67 0 .42  0 .04  

10  0.12 0 . 2 1  2.34 0.02 
11 0 . 8 1  1 .07  0.74 0 .17  
12 0.40 0.46 0.36 0.02 
13 -0.94 1 .12  0.44 0 . 1 1  

* :  smaller than 2 x 

where 

B = A(XIX) - 'A '  and *,-,, = @,-,,. 
Since 

it follows that 

T o  obtain the descriptive levels of significance the 
values of this generalized measure should, of course, 
be compared to the probability points of the central 
F-distribution with q and n - p degrees of freedom. 

The case when q = 1 ,  i.e., when A is chosen to be a 
lxp  vector z' ,  say, warrants special emphasis. From 
(9 )  it is easily seen that 

where Di= Di(I) and p( .  , .) denotes the correlation 
coefficient. If z' is a vector of values of the independ- 
ent variables then Di(z l )  measures the distance be- 
tween the predicted mean value of y a t  z using the ith 
data point (z 'b) and the predicted value at  z without 
the ith point ( z '&-~ , ) .Note also that when z' is chosen 
to be a vector of the form (0 ,  . . . , 1,0, . . . ,0 ) ,  D,(z l )  
measures the distance between the corresponding 
components of 8 and 6,-,,. 

The maximum value of D,(z l ) for a fixed i is ob- 
tained by choosing z' = x,', 

Di(z l )I Di(xi l )= pDi 

for all z .  Thus, when prediction of mean values or the 
individual components of 0 are of interest it may not 
be necessary to use (10) directly: If Di(xL1)shows a 
negligible difference between xi 8 and ~ , ' f ? - ~ ,then the 
difference between 2'8 and Z ' B ( - ~ ,must also be negli- 
gible for all z .  
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