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An Analysis of Transformations 

By G. E. P. Box and D. R. Cox 

University of Wisconsin Birkbeck College, University of London 

[Read at a RESEARCH MEETING April 8th, 1964,METHODS of the SOCIETY, 
Professor D. V. LINDLEYin the Chair] 

In the analysis of data it is often assumed that observations y,, y,, ...,y, 
are independently normally distributed with constant variance and with 
expectations specified by a model linear in a set of parameters 0. In this 
paper we make the less restrictive assumption that such a normal, homo- 
scedastic, linear model is appropriate after some suitable transformation 
has been applied to the y's. Inferences about the transformation and about 
the parameters of the linear model are made by computing the likelihood 
function and the relevant posterior distribution. The contributions of 
normality, homoscedasticity and additivity to the transformation are 
separated. The relation of the present methods to earlier procedures for 
finding transformations is discussed. The methods are illustrated with 
examples. 

1. INTRODUCTION 
THE usual techniques for the analysis of linear models as exemplified by the analysis of 
variance and by multiple regression analysis are usually justified by assuming 

(i) simplicity of structure for 'E(y); 
(ii) constancy of error variance; 
(iii) normality of distributions; 
(iv) independence of observations. 

In  analysis of variance applications a very important example of (i) is the assumption 
of additivity, i.e. absence of interaction. For example, in a two-way table it may be 
possible to regresent E(y) by additive constants associated with rows and columns. 

If the assumptions (i)-(iii) are not satisfied in terms of the original observations, 
y, a non-linear transformation of y may improve matters. With this in mind, numerous 
special transformations for use in the analysis of variance have been examined in the 
literature; see, in particular, Bartlett (1947). The main emphasis in these studies has 
tended to be on obtaining a constant error variance, especially when the variance 
of y is a known function of the mean, as with binomial and Poisson variates. 

In multiple regression problems, and in particular in the analysis of response 
surfaces, assumption (i) might be that E(y) is adequately represented by a rather 
simple empirical function of the independent variables x,, x,, ...,xt and we would 
want to transform so that this assumption, together with assumptions (ii) and (iii), 
is approximately satisfied. In some cases transformation of independent as well as 
of dependent variables might be desirable to produce the simplest possible regression 
model in the transformed variables. In all cases we are concerned not merely to find 
a transformation which will justify assumptions but rather to find, where possible, 
a metric in terms of which the findings may be succinctly expressed. 
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Each of the considerations (i)-(iii) can, and has been, used separately to select a 
suitable candidate from a parametric family of transformations. For example, to 
achieve additivity in the analysis of variance, selection might be based on 

(a) minimization of the 	F value for the degree of freedom for non-additivity 
(Tukey, 1949); or 

(b) minimization of the Fratio for interaction versus error; or 
(c) maximization of the F ratio for treatments versus error (Tukey, 1950). 
Tukey and Moore (1954) used method (a) in a numerical example, plotting 

contours of F against (A,, A,) for transformations in the family (y +A,)". They found 
that in their particular example the minimizing values were very imprecisely determined. 

In both (a) and (b) the general object is to look for a scale on which effects are 
additive, i.e. to see whether an apparent interaction is removable by a transformation. 
Of course, only a particular type of interaction is so removable. Whereas (a) can be 
applied, for example, to a two-way classification without replication, method (b) 
requires the availability of an error term separated from the interaction term. Thus, 
if applied to a two-way classification, method (b) could only be used when there was 
some replication within cells. Finally, method (c) can be used even in a one-way 
analysis to find the scale on which treatment effects are in some sense most sensitively 
expressed. In particular, Tukey (1950) suggested multivariate canonical analysis of 
(y,y2) to find the linear combination y +  Ay2 most sensitive to treatment effects. 
Incidentally, care is necessary in using y +  Ay2 over the wide ranges commonly 
encountered with data being considered for transformation, for such a transformation 
is sensible only so long as the value of A and the values of y are such that the 
transformation is monotonic. 

For transformation to stabilize variance, the usual method (Bartlett, 1947) is to 
determine empirically or theoretically the relation between variance and mean. An 
adequate empirical relation may often be found by plotting log of the within-cell 
variance against log of the cell mean. Another method would be to choose a trans- 
formation, within a restricted family, to minimize some measure of the heterogeneity 
of variance, such as Bartlett's criterion. We are grateful to a referee for pointing 
out also the paper of Kleczkowski (1949) in which, in particular, approximate fiducial 
limits for the parameter A in the transformation of y to log(y+ A) are obtained. The 
method is to compute fiducial limits for the parameters in the linear relation observed 
to hold when the within-cell standard deviation is regressed on'the cell mean. 

Finally, while there is much work on transforming a single distribution to 
normality, constructive methods of finding transformations to produce normality in 
analysis of variance problems do not seem to have been considered. 

While Anscombe (1961) and Anscombe and Tukey (1963) have employed the 
analysis of residuals as a means of detecting departures from the standard assumptions, 
they have also indicated how transformations might be constructed from certain 
functions of the residuals. 

In regression problems, where both dependent and independent variables can be 
transformed, there are more possibilities to be considered. Transformation of the 
independent variables (Box and Tidwell, 1962) can be applied without affecting the 
constancy of variance and normality of error distributions. An important application 
is to convert a monotonic non-linear regression relation into a linear one. Obviously 
it is useless to try to linearize a relation which is not monotonic, but a transformation 
is sometimes useful in such cases, for example, to make a regression relation more 
nearly quadratic around its maximum. 
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2. GENERAL ON TRANSFORMATIONSREMARKS 
The main emphasis in this paper is on transformations of the dependent variable. 

The general idea is to restrict attention to transformations indexed by unknown 
parameters A, and then to estimate X and the other parameters of the model by 
standard methods of inference. Usually X will be a one-, or at most two-, dimensional 
parameter, although there is no restriction in principle. Our procedure then leads 
to an interesting synthesis of the procedures reviewed in Section .I. It is convenient 
to make first a few general points about transformations. 

First, we can distinguish between analyses in which either (E) the particular 
transformation, A, is of direct interest, the detailed study of the factor effects, etc., 
being of secondary concern; or (b) the main interest is in the factor effects, the choice 
of X being only a,preliminary step. Type (b) is likely to be much the more common. 
Nevertheless, (a) can arise, for example, in the analysis of a preliminary set of data. 
Or, again, we may have two factors, A and B, whose main effects are broadly under- 
stood, it being required to study the A, if any, for which there is no interaction between 
the factors. Here the primary interest is in A. In case (b), however, we shall need to 
fix one, or possibly a small number, of X's and go ahead with the detailed estimation 
and interpretation of the factor effects on this particular transformed scale. We 
shall choose X partly in the light of the information provided by the data and partly 
from general considerations of simplicity, ease of interpretation, etc. For instance, 
it would be quite possible for the formal analysis to show that say ,/y is the best 
scale for normality and constancy of variance, but for us to decide that there are 
compelling arguments of ease of interpretation for working say with logy. The 
formal analysis will warn us, however, that changes of variance and non-normality 
may need attention in a refined and efficient analysis of logy. That is, the method 
developed below for finding a transformation is useful as a guide, but is, of course, 
not to be followed blindly. In Section 7' we discuss briefly some of the consequences 
of interpreting factor effects on a scale chosen in the light of the data. 

In regression studies, it is sometimes necessary to take an entirely empirical 
approach to the choice of a relation. In other cases, physical laws, dimensional 
analysis, etc., may suggest a particular functional form. Thus, in a study of a chemical 
system one would expect reaction rate to be proportional to some power of the 
concentration and to the antilog of the reciprocal of absolute temperature. Again, 
in many fields of technology relationships of the form 

y K x<?. .x$ 
are very common, suggesting a log transformation of all variables. In such cases 
the reasonable thing will often be first to apply the transformations suggested by the 
prior reasoning, and after that consider what further modifications, if any, are needed. 
Finally, we may know the behaviour of y when the independent variables xi tend 
to zero or infinity, and certainly, if we are hopeful that the model might apply over a 
wide range, we should consider models that are consistent with such limiting properties 
of the system. 

We can distinguish broadly two types of dependent variable, extensive and non- 
extensive. The former have a relevant property of physical additivity, the latter not. 
Thus yield of product per batch is extensive. The failure time of a component would 
be considered extensive if components are replaced on failure, the main thing of 
interest being the number of components used in a long time. Properties like 
temperature, viscosity, quality of product, etc., are not extensive. In the absence of 
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the sort of prior consideration mentioned in the previous paragraph there is no 
reason to prefer the initial form of a non-extensive variable to any monotonic function 
of it. Hence, transformations can be applied freely to non-extensive variables. For 
extensive variables, however, the population mean of y is the parameter determining 
the long-run behaviour of the system. Thus in the two examples mentioned above, 
the total yield of product in a long period and the total number of components used 
in a very long time are determined respectively by the population mean of yield per 
batch and the mean failure time per component, irrespective of distributional form. 

In a narrowly technological sense, therefore, we are interested in the population 
mean of y, not of some function of y. Hence we either analyse linearly the untrans- 
formed data or; if we do apply a transformation in order to make a more efficient and 
valid analysis, we convert the conclusions back to the original scale. Even in circum- 
stances where, for immediate application, the original scale y is required, it may be 
better to think in terms of transformed values in which, say, interactions have been 
removed. 

In general, we can regard the usual formal linear models as doing two things: 
(a) specifying the questions to be asked, by defining explicitly the parameters 

which it is the main object of the analysis to estimate; 
(b) specifying assumptions under which the above parameters can be simply and 

effectively estimated. 
If there should be conflict between the requirements for (a) and for (b), it is best to 
pay most attention to (a), since approximate inference about the most meaningful 
parameters is clearly preferable to formally "exact" inference about parameters 
whose definition is in some way artificial. Therefore in selecting a transformation we 
might often give first attention to simplicity of the model structure, for example to 
additivity in the analysis of variance. This allows simplicity of description and also 
the main effect of a factor A, measured on a scale for which there appears to be 
no interaction with a factor B, often has a reasonable possibility of being valid for 
levels of B outside those of the initial experiment. 

3. TRANSFORMATION VARIABLEOF THE DEPENDENT 
We work with a parametric family of transformations from y to y(*), the 

parameter A, possibly a vector, defining a particular transformation. Two important 
examples considered here are 

and 

The transformations (1) hold for y >0 and (2) for y > -A,. Note that since an analysis 
of variance is unchanged by a linear transformation (1) is equivalent to 

y'" '- (Af O),/I:*
logy (A=O); 
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the form (1) is slightly preferable for theoretical analysis because it is continuous at 
A = 0. In general, it is assumed that for each A, ycA) is a monotonic function of y 
over the admissible range. Suppose that we observe an n x 1 vector of observations 
y = {yl, . . .,yn}, and that the appropriate linear model for the problem is specified by 

where y(" is the column vector of transformed observations, a is a known matrix 
and 0 a vector of unknown parameters associated with the transformed observations. 

We now assume that for some unknown A, the transformed observations 
yiA) (i = 1, . . .,n) satisfy the full normal theory assumptions, i.e. are independently 
normally distributed with constant variance u2, and with expectations (4). The 
probability density for the untransformed observations, and hence the likelihood 
in relation to these original observations, is obtained by multiplying the normal 
density by the Jacobian of the transformation. 

The likelihood in relation to the original observations y is thus 

where 

We shall examine two ways in which inferences about the parameters in (5) can 
be made. In the first, we apply "orthodox" large-sample maximum-likelihood 
theory to (5). This approach leads directly to point estimates of the parameters and 
to approximate tests and confidence intervals based on the chi-squared distribution. 

In the second approach, via Bayes's theorem, we assume that the prior distributions 
of the 0's and logu can be taken as essentially uniform over the region in which the 
likelihood is appreciable and we integrate over the parameters to obtain a posterior 
distribution for A; for general discussion of this approach, see, in particular, Jeffreys 
(1961). 

We find the maximum-likelihood estimates in two steps. First, for given A, (5) is, 
except for a constant factor, the likelihood for a standard least-squares problem. 
Hence the maximum-likelihood estimates of the 0's are the least-squares estimates 
for the dependent variable y(" and the estimate of u2, denoted for fixed A by e2(A), is 

where, when a is of full rank, 

a, = I-a(afa)-I a', 

and S(A) is the residual sum of squares in the analysis of variance of ycA). 
Thus for fixed A, the maximized log likelihood is, except for a constant, 

L,,,(A) = -+n log G2(A) +log J(A; y). (8) 
In the important special case (1) of the simple power transformation, the second term 
in (8) is 

(A-1)x logy,. (9) 

In (2), when an unknown origin A, is included, the term becomes 
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It will now be informative to plot the maximized log likelihood Lmax(h)against h 
for a trial series of values. From this plot the maximizing value 3 may be read off 
and we can obtain an approximate 100(1- ol) per cent confidence region from 

where vh is the number of independent components in A. The main arithmetic 
consists in doing the analysis of variance of ych) for each chosen h. 

If it were ever desired to determine 3more precisely this could be done by determin- 
ing numerically the value 3 for which the derivatives with respect to X are all zero. 
In the special case of the one parameter power transformation ych)= ( Y ~ -l)/X, 

where u(" is the vector of components (h-ly,"logy,). The numerator in (12) is the 
residual sum of products in the analysis of covariance of y(h)and u(". 

The above results can be expressed very simply if we work with the normalized 
transformation 

Z ( h )= Y ( A )lJlln 
3 

where J = J(X; y). Then 
Lmax(X)= -&nlog a2(h;z), 

where 
Z(h) 'arZ(h)  S(X; z) a2(x;Z )  = 

n 
---

n '  

where S(X; z) is the residual sum of squares of ~ ( ~ The maximized likelihood is thus 1 . 

proportional to (S(X;z ) ) - ~and the maximum-likelihood estimate is obtained by 
minimizing S(X; z) with respect to A. 

For the simple power transformation 

where 3 is the geometric mean of the observations. 
For the power transformation with shifted location 

where gm ( y+A,) is the sample geometric mean of the ( y+h2)'s. 
Consider now the corresponding Bayesian analysis. Let the degrees of freedom 

for residual be v, = n -rank (a),and let 

be the residual mean square in the analysis of variance of ycA);note the distinction 
between a2(X),the maximum-likelihood estimate with divisor n, and s2(X)the "usual" 
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estimate, with divisor the degrees of freedom v,. We first rewrite the likelihood (5), 
i.e. the conditional probability density function of the y's given 8, 02, A, in the form 

I ( .,s~(A)+(8-B,)'a'a(8 -6 
exp -P(Y~0, 02, A) = ( 2 7 ~ ) ~ ~  202(3" 

where 6, is the least-squares estimate of 8 for given A. 
Now consider the choice of the joint prior distribution for the unknown para- 

meters. We first parametrize so that the 8's are linearly independent and hence 
n- v, in number. Let p,(A) denote the marginal prior density of A. We assume that it 
is reasonable, when making inferences about A, to take the conditional prior distri- 
bution of the 8's and logo, given A, to be effectively uniform over the range for which 
the likelihood is appreciable. That is, the conditional prior element given A is 

where, for definiteness, we for the moment denote the effects and variance measured 
in terms of y(" by a suffix A. The factor g(A) is included because the general size 
and range of the transformed observations y(" may depend strongly on A. If the 
conditional prior distribution (15) were assumed independent of A, nonsensical 
results would be obtained. 

To determine g(A) we argue as follows. Fix a standard reference value of A, say A,. 
Suppose provisionally that, for fixed A, the relation between y(" and y(") over the 
range of the observations is effectively linear, say 

We can then choose g(A) so that when (16) holds, the conditional prior distributions 
(15) are consistent with one another for different values of A. In fact, we shall need 
to apply the answer when the transformations are appreciably non-linear, so that 
(16) does not hold. There may be a better approach to the choice of a prior distribution 
than the present one. 

It follows from (16) that 
log a: = const+log o:* (17) 

and hence, to this order, the prior density of 02, is independent of A. However, the 
8,'s are linear combinations of the expected values of the y(n)'s, so that 

Since there are n -v, independent components to 8, it follows that g(A) is proportional 
to l/lY-vr. 

Finally we need to choose I,. In passing from A, to A, a small element of volume 
of the n dimensional sample space is multiplied by J(A; y)/J(A,; y). An average scale 
change for a single y component is the nth root of this and, since A, is only a standard 
reference value, we have approximately 

Thus, approximately, the conditional prior density (15) is 
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The combined prior element of probability is thus 

where we now suppress the suffix X on 8 and a. 
This is only an approximate result. In particular, the choice of (18) is somewhat 

arbitrary. However, when a useful amount of information is actually available from 
the data about the transformation, the likelihood will dominate and the exact choice 
of (19) is not critical. The prior distribution (19) is interesting in that the observations 
enter the approximate standardizing coefficient J(X; y). 

We now have the likelihood (14) and the prior density (19) and can apply Bayes's 
theorem to obtain the marginal posterior distribution of X in the form 

where Kh is a normalizing constant independent of A, chosen so that (20) integrates 
to one with respect to A, and 

The integral (21) can be evaluated to give 

Substituting into (20); we have that the posterior distribution of X is 

where K, is a normalizing constant independent of X. 
Thus the contribution of the observations to the posterior distribution of X is 

represented by the factor 

{J(X;y)}vr~?b/{sz(X)}~v~ 

or, on a log scale, by the addition of a term 

Lb(X)= -+vTlog sz(X) +(vr/n) log J(h ;y) (22) 

to logpo(4. 
Once again if we work with the normalized transformation =y("/J1In, the 

result is expressed with great simplicity, for 

and the posterior density is 
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In practice we can plot (S(h; z))-*". against A, combining it with any prior 
information about A. When the prior density of h can be taken as locally uniform, 
the posterior distribution is obtained directly by plotting 

p,(h) = k(S(h; z)}-tv~, (24) 

where k is chosen to make the total area under the curve unity. 
We normally end by selecting a value of h in the light both of this plot and of 

other relevant considerations discussed in Section 2. We then proceed to a standard 
analysis using the indicated transformation. 

The maximized log likelihood and the log of the contribution to the posterior 
distribution of h may be written respectively as 

L,,,(h) = -&n log (S(h ;z)/n}, Lb(X)= -&vrlog {S(X; z)/v,}. 
They differ only by substitution of v, for n. They are both monotonic functions of 
S(X; z) and their maxima both occur when the sum of squares S(h; z) is minimized. 
For general description, L,,,(h) and Lb(X) are substantially equivalent. However, 
it can easily happen that v,/n is appreciably less than one, even when n is quite large. 
Therefore, in applications, the difference cannot always be ignored, especially when 
a number of models are simultaneously considered. 

There are some reasons for thinking Lb(h) preferable to L,,,(h) from a non- 
Bayesian as well as from a Bayesian point of view; see, for example, the introduction 
by Bartlett (1937) of degrees of freedom into his test for the homogeneity of variance. 
The general large-sample theorems about the sampling distributions of maximum- 
likelihood estimates, and the maximum-likelihood ratio chi-squared test, apply just 
as much to Lb(h) as to L,,,(h). 

4. Two EXAMPLES 
We have supposed that after suitable transformation from y to y(", (a) the 

expected values of the transformed observations are described by a model of simple 
structure; (b) the error variance is constant; (c) the observations are normally 
distributed. Then we have shown that the maximized likelihood for h, and also the 
approximate contribution to the posterior distribution of A, are each proportional 
to a negative power of the residual sum of squares for the variate dh)=Y(~)/J~/". 

The "overall" procedure seeks a set of transformation parameters h for which 
(a), (b) and (c) are simultaneously satisfied, and sample information on all three 
aspects goes into the choice. In this Section we now apply this overall procedure to 
two examples. In Section 5 we shall show how further analysis can show the separate 
contributions of (a), (b) and (c) in the choice of the transformation. We shall then 
illustrate this separation using the same two examples. 

The above procedure depends on specific assumptions, but it would be quite 
wrong for fruitful application to regard the assumptions as final. The proper attitude 
of sceptical optimism is accurately expressed by saying that we tentatively entertain 
the basis for analysis, rather than that we assume it. The checking of the plausibility 
of the present procedure will be discussed in Section 5. 

A Biological Experiment using a 3x 4 Factorial Design with Replication 
Table 1 gives the survival times of animals in a 3 x 4 factorial experiment, the 

factors being (a) three poisons and (b) four. treatments. Each combination of the 
two factors is used for four animals, the allocation to animals being completely 
randomized. 



- -- - - 

220 Box AND COX-An ArzulysB oj" Transformations [No. 2, 

We consider the application of a simple power transformation y(" = (y" 1))h. 
Equivalently we shall actually analyse the standardized variate zch) = (yh- l)/(hjh-I). 

TABLE1 
Survival times (unit, 10hr) of animals in a 3x 4 factorial experiment 

Treatment 
Poison 

A B C D 

We are tentatively entertaining the model that after such transformation 

(a) the expected value of the transformed variate in any cell can be represented 
by additive row and column constants, i.e. that no interaction terms are needed, 

(b) the error variance is constant, 
(c) the observations are normally distributed. 

The maximized likelihood and the posterior distribution are functions of the residual 
sum of squares for zch) after eliminating row and column effects. This sum of squares 
is denoted S(h; z). It has 42 degrees of freedom and is the result of pooling the 
"within groups" and the "interaction" sums of squares. 

Table 2 gives S(A; z) together with Lm,,(h) and pu(h) over the interesting ranges. 
The constant k in keLb(h) =pu(h) is the reciprocal of the area under the curve 
Y = eLb(h) determined by numerical integration. Graphs of Lm,,(A) and of pu(A) 
are shown in Fig. 1. This analysis points to an optimal value of about = -0.75. 
Using (11) the curve of maximized likelihood gives an approximate 95 per cent 
confidence interval for A extending from about -1.13 to -0.37. 

The posterior distribution pu(A) is approximately normal with mean -0.75 and 
standard deviation 0.22. About 95 per cent of this posterior distribution is included 
within the limits -1.18 and -0.32. 

The reciprocal transformation has a natural appeal for the analysis of survival 
times since it is open to the simple interpretation that it is the rate of dying which is 
to be considered. Our analysis shows that it would, in fact, embody most of the 
advantages obtainable. The complete analysis of variance for the untransformed 
data and for the reciprocal transformation (taken in the z form) is shown in Table 3. 

Whereas no great change occurs on transformation in the mean squares associated 
with poisons and treatments, the within groups mean square has shrunk to a third of 
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TABLE2 
Biological data. Calculations based on an additive, homoscedastic, 

normal model in the transformed observations 

Lmax(h) = -24 log B2(h;Z )  = -k 92.91 ; P,(h) = k eLa(A)= 0.866 xlog {S(h;z ) ) - ~ ~  10-10{S(h;=)}-21. 

'I 

FIG. 1.  Biological data. Functions Lma,(h) and p,(h). Arrows show approximate 
95 per cent. confidence interval for h. 

9 
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its value and the interaction mean square is now much closer in size to that within 
groups. Thus, in the transformed metric, not only is greater simplicity of interpre- 
tation possible but also the sensitivity of the experiment, as measured by the ratios 

TABLE 3 
Analyses of variance of biological data 

Mean squares x 1000 

Degrees 
of 

freedom 
Untransformed 

Reciprocal 
transformation 

(2form) 

Poisons . 
Treatments . 
P x T .  
Within groups . 

2 
3 
6 

36 

516.5 
307.1 
41.7 
22.2 

568.7 
221.9 

8.5 
7.8 

of the poisons and the treatments mean squares to the residual square, has been 
increased almost threefold. We shall not here consider the detailed interpretation of 
the factor effects. 

A Textile Experiment using a Single Replicate of a 3, Design 
In an unpublished report to the Technical Committee, International Wool Textile 

Organization, Drs A. Barella and A. Sust described some experiments on the behaviour 
of worsted yarn under cycles of repeated loading. Table 4 gives the numbers of 
cycles to failure, y, obtained in a single replicate of a 3, experiment in which the 
factors are 

x1 : length of test specimen (250, 300, 350 mm.), 
x, : amplitude of loading cycle (8, 9, 10 mm.), 
x, : load (40, 45, 50 gm.). 

In Table 4 the levels of the x's are denoted conventionally by -1, 0, 1. 
It is useful to describe first the results of a rather informal analysis of Table 4. 

Barella and Sust fitted a full equation of second degree in x,, x, and x,, but the 
conclusions were very complicated and messy. In view of the wide relative range of 
variation of y, it is natural to try analysing instead log y, and there results a great 
simplification. All linear regression terms are very highly significant and all second- 
degree terms are small. Further, it is natural to take logs also for the independent 
variables, i.e. to think in terms of relationships like 

The estimates of the P's, from the linear regression coefficients of log y on the 
log x's, are, with their estimated standard errors, 

Since p11: -p,, the combination log x, -log x, = log (x,/x,) is suggested by the 
data as of possible importance. In  fact, x,/xl is just the fractional amplitude of the 
loading cycle; indeed, naPve dimensional considerations suggest this as a possible 
factor, although there are in fact other relevant lengths, so that dependence on x1 
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and x, separately is not inconsistent with dimensional considerations. If, however, 
we write x,/x, = x, and round the regression coefficients, we have the simple formula 

y Cc xy5 x33 

which fits the data remarkably well. 

TABLE4 
Cycles to failure of worsted yarn: 33factorial experiment 

Factor levels 
Cycles to failure, y 

x1 x2 x3 


In this case, there seem strong general arguments for starting with a log trans- 
formation of all variables. Power laws are frequently effective in the physical sciences; 
also, provided that the signs of the p's are right, (25) has sensible limiting behaviour 
for x2,x3+0,co; finally, the obvious normal theory model based on transforming 
(25) gives distributions over positive values of y only. 
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Nevertheless, it is interesting to see whether the method of the present paper 
applied directly to the data of Table 4 produces the log transformation. In this 
paper, transformations of the dependent variable alone are considered; in fact, since 
the relative range of the x's is not very great, transformation of the x's does not have 
a big effect on the linearity of the regression. 

We first consider the application of a simple power transformation in terms, as 
before, of the standardized variate z ( ~ )= (yh- ~)/(XJP-~). We tentatively suppose 
that after such transformation 

(a) the expected value of the transformed response can be represented merely by 
a model linear in the x's, . 

(b) the error variance is constant, 
(c) the observations are normally distributed. 

The maximized likelihood and the posterior distribution are functions of the residual 
sum of squares for z(" after fitting only a linear model to the x's. Since there are 
four constants in the linear regression model this residual sum of squares has 
27-4 = 23 degrees of freedom; we denote it by S(h; 2). 

Table 5 shows S(X; z) together with L,,,(h) and p,(X) over the interesting ranges 
and the results are plotted in Fig. 2. The optimal value for the transformation para- 
meter is ĥ = -0.06. The transformation is determined remarkably closely in this 

TABLE 5 
Textile data. Calculations based on normal linear model in the 

transformed observations 

L,,,(h) = -13.5 log B2(h;z) = { S ( h ;  ~ ) } - ~ ~ ' ~ + 4 4 . 4 9 .  

pu(h) = k eLacn)= 0.540 x { S ( h ;  ~ ) } - l l ' ~ .  


example, the approximate 95 per cent confidence range extending only from -0.18 
to +0.06. The posterior distribution p,(X) has its mean at -0.06. About 95 per cent 
of the distribution is included between -0.20 and +0.08. As we have mentioned, 
the advantages of a log transformation corresponding to the choice X = 0 are very 
great and such a choice is now seen to be strongly supported by the data. 

http:~)}-~~'~+44.49
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The complete analysis of variance for the untransformed and the log trans-
formation, taken in the z form, is shown in Table 6. 

- I  0 I 
X 

FIG. 2. Textile data. Functions L,,(h) and p,(h). Arrows show approximate 
95 per cent confidence interval for h.  

TABLE6 
Analyses of variance of textile data 

Mean squares x 1000 

Degrees Logarithmic 
of Untransformed transformation 

freedom (Z form) 

Linear . 3 4,916.2 2,374.4 
Quadratic . 6 704.1 8.1 
Residual . . 17 73.9 11.9 

The transformation eliminates the need for second-order terms in the regression 
equation while at the same time increasing the sensitivity of the analysis by about 
three, as judged by the ratio of linear and residual mean squares. 

For this example we have also tried out the procedures we have discussed using 
the two parameter transformation ych) = { (y+h,)hl- 1)/X, or in the z form actually 
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used here zch)= {(y+ - l)/{Al gm (y +AZ))hl-l. Incidentally the calculation and 
print out of 77 analysis of variance tables, involving in each case the fitting of a 
general equation of second degree, and calculation of residuals and fitted values 
took 2 min. 6 sec. on the C.D.C. 1604 electronic computer. The full numerical 
results can be obtained from the authors, but are not given here. Instead approximate 
contours of -11.5 log S(A; z), and hence of S(A; z) itself, of the maximized likelihood 
and of p,(Al, A,), are shown in Fig. 3. If the joint posterior distribution p,(Al, A,) 
were normal then a region which excluded 100a per cent of the total posterior 
probability could be given by 

The shape of the contours indicates that the normal assumption is not very exact. 
Nevertheless, the quantity 100a obtained from (26) has been used to label the contours 
in Fig. 3 which thus roughly indicates the posterior probability distribution. For this 
example no appreciable improvement results from the addition of the further 
transformation parameter A,. 

300 

.200 

i s  

100 

0 

0.2 0 -0.2 -0.4 -0.6 -0.8 
A, 

FIG.3.  Textile data. Transformation to ( y S As)". Contours of p,(h,, h,) labelled 
with approximate percentage of posterior distribution excluded. 

5. FURTHER OF THE TRANSFORMATIONANALYSIS 
5.1. General Procedure for Further Analysis 

The general procedure discussed above seeks to achieve simultaneously a model 
with (a) simple structure for the expectations, (b) constant variance and (c) normal 
distributions. Further analysis is sometimes profitable to see the separate contri- 
butions of these three elements to the transformation. Such analysis may indicate 

(i) how simple a model we are justified in using; 
(ii) what weight is given to the considerations (a) - (c) in choosing A; 

(iii) whether different transformations are really needed to achieve the different 
objectives and hence whether or not the value of A chosen using the overall 
procedure is a compatible compromise. 

Of course, quite often careful inspection of the data will answer (i)-(iii) adequately 
for practical purposes. Nevertheless, a further analysis is of interest. 
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We aim at simplicity both to achieve ease of understanding and' to allow an 
efficient analysis. Validity of the formal tests associated with analysis of variance may, 
in virtue of the robustness of these tests, often hold to a good enough approximation 
even with the untransformed data. We stress, however, that such approximate validity 
is not by itself enough to justify an analysis; sensitivity must be considered as well as 
robustness. Thus in the biological example we have about one-third the sensitivity on 
the original scale as on the transformed scale. The approximate validity of significance 
tests on the original scale would be very poor consolation for the substantial loss of 
information involved in using the untransformed analysis. In any case even such 
validity is usually only preserved under the null hypothesis that all treatment effects 
are zero. 

For the further analysis we again explore two approaches, one via maximum 
likelihood and the other via Bayes's theorem. Consider a general model to which a 
constraint C can be applied or relaxed, so that the relative merits of the simple and 
of the more complex model can be assessed. For example, the general model may 
include interaction terms, the constraint C being that the interaction terms are zero. 

If Lmax(A)and Lmax(AI C )  denote maximized log likelihoods for the general model 
and for the constrained model, then 

Here the second term on the right-hand side is a statistic for testing for the presence 
of the constraint. 

More generally, with a succession of constraints, we have 

and the three terms on the right of (28) can be examined separately. The detailed 
procedure should be clear from the examples to follow. 

To apply the Bayesian approach, we write the posterior density of A 

where p(C) = E,{p(CI A)) is a constant independent of A. That is, the posterior 
density of A under the constrained model is the posterior density under the general 
model multiplied by a factor proportional to the conditional probability of the 
constraint given A. Successive factorization can be applied when there is a series of 
successively applied constraints, giving, for example, 

where p(C, I C,) = E,{p(C2 I A, C,)) is a further constant independent of A. Note that 
we are concerned here not with the probabilities that the constraints are true, but with 
the contributions of the constraints to the final function p(AI C,, C,). 

5.2. Structure of the Expectation 
Now very often the most important question is: how simple a form can we use 

for E { Y ( ~ ) ) ?Thus in the analysis of the biological example in Section 4, we assumed, 
among other things, that additivity can be achieved by transformation. In fact, 
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interaction terms may or may not be needed. Similarly, in our analysis of the textile 
example we took a linear model with four parameters; the full second-degree model 
with ten parameters may or may not be necessary. 

Now let A, Hand N denote respectively the constraints to the simpler linear model 
(without interaction or second-degree terms), to a heteroscedastic model and to a 
model with normal distributions. Then, 

Lmax(h) A, H, N) = Lmax(hl H, N) +{Lrnax(XIA, H, N)-Lmax(hI H, N)). (31) 
Let the parameter 8 in the expectation under the general linear model be partitioned 

(O,, 8,) where 8, = 0 is the constraint A. Denote the degrees of freedom associated 
with 8, and 8, by V, and v,. If v, is the number of degrees of freedom for residual 
in the complex model, the number in the simpler model is thus v,+ v,. 

As before, we work with the standardized variable z ( ~ )= Y ( ~ ) / J ~ / * .  If we identify 
residual sums of squares by their degrees of freedom, we have 

Lmax(X1 8, = 0, H, N) = -Sn log {S,p+,2(h ;z)ln), (32) 
whereas 

Lma,(X I H, N) = -Sn log {Svv(X; z)ln). (33) 

Thus, in the textile example, Svrrefers to the residual sum of squares from a second- 
degree model and S,~+,arefers to the residual sum of squares from a first-degree model. 
Quite generally 

s , ~ + , z ( ~ ;  Sur(X; z)+S,~,~(X; 4 ,  z) = 

where S,2,,1(X; z) denotes the extra sum of squares of ztA) for fitting 8,, adjusting for 
el, and has v, degrees of freedom. 

Thus with (32) and (33) the decomposition (31) becomes 

where 

is the standard F ratio, in the analysis of variance of z ( ~ ) ,  for testing the restriction to 
the simpler model. 

Equation (34) thus provides an analysis of the overall criterion into a part taking 
account only of homoscedasticity (H) and normality (N) plus a part representing 
the additional requirement of a simple linear model, given that H and N have been 
achieved. 

In the corresponding Bayesian analysis (30) gives 

p(hl 8, = O, H, N) =p(hl H, N) x k,p(e2 = 01 A, H, N), (36) 
where 

Ilk, = EA 1 ,,,{P(~z = 01 A, H, N)), 

the expectation being taken over the distribution p(XI H, N). 
Note that since the condition 8, = 0 is given, there is no component for these 

parameters in the prior distribution, so that the left-hand side of (36) is the posterior 
density obtained previously assuming A. Thus, in terms of the standardized variable 
dA) ,  the left-hand side is 
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where the normalizing constant is given by 

Similarly, in the general model with 8, and 82 both free to vary, we obtain the first 
factor on the right-hand side of (36) as 

P(A IH, N) = PO(^ Cvr {Svv(A ;Z))-*~T, (38)
with 

C;;' = /po(h) {S,~(A ;z)}-ivr dA. 

Thus, from (37) and (38), the second factor on the right-hand side of (36) must be 

Now the general equation (36) shows that this last expression must be proportional 
to p(02 = 01 A, H, N). It is worth proving this directly. To do this, consider a trans- 
formed scale on which constant variance and normality have been attained and the 
standard estimates 8, and s2 calculated. For the moment, we need not indicate 
explicitly the dependence on A and z. We denote the matrix of the reduced least- 
squares equations for 8,, eliminating el, by b, so that the covariance matrix of 8, is 
02b-I. The elements of b and bL1 are denoted bij and bij. Also we write 
pij = bij/d(bii bjj) and {pij) for the matrix inverse to {pij). Then the joint distribution of 

is (Cornish, 1954; Dunnett and Sobel, 1954) 

where here and later the constant involves neither the parameters nor the observations. 
With uniform prior distributions for-the 0's and for log a, this is also the posterior 
distribution of the quantities (dZi- dZi)/(s/Jbii), where now the dZi are the random 
variables. Transforming from the ti's to the d2,'s we have that 

whence 

If now we restore in our notation the dependence on A, comparison of (40) with 
(39) proves the required result; the appropriateness of the constant is easily checked. 

Thus (36) provides an analysis of the overall density into a part p(AI H,N) taking 
account only of homoscedasticity and normality, and a second part, (39), in which 
the influence of the simplifying constraint is measured. 
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Equation (39) can be rewritten 

Now, by (34), the corresponding expression in the maximum-likelihood approach is 
given, in a logarithmic version, by 

The essential difference between (41) and (42) is the occurrence of the term in 
SJX; z) in (41). In conventional large sample theory, vr is supposed large compared 
with v, and then in the limit the variation with h of the additional term is negligible, 
and the effect of both terms can be represented by plotting the standard F ratio as a 
function of A. In applications, however, v,/v,may well be appreciable; thus in the 
textile example v,/v,= 6/17. 

Hence (41) and (42) could lead to appreciably different conclusions, for example, 
if we found a particular value of X giving a low value of F(h; z) but a relatively 
high value of SJh; z). 

The distinction between (41) and (42) from a Bayesian point of view can be 
expressed as follows. In (41) there occurs the ordinate of the posterior distribution 
of 8, at 8, = 0. On the other hand, the Fratio, which determines (42), is a monotonic 
function of the probability mass outside the contour of the posterior distribution 
passing through 8, = O: Alternatively, a calculation of the posterior probability of a 
small region near 8, = 0 having a length proportional to o, in each of the v, 
component directions gives an expression equivalent to (42). The difference between 
(41) and (42) will be most pronounced if there exists an extreme transformation 
producing a low value of F(h; z )  but a large value of S,,(X; z), corresponding to a 
large spread of the posterior distribution of 8,. Expression (42) would give an 
answer tending to favour this transformation, whereas (41) would not. 

5.3. Application to Textile Example 
We now illustrate the above analysis using the textile data. The calculations are 

set out in Table 7 and displayed in Figs. 4 and 5. We discuss the conclusions in some 
detail here. In practice, however, the most useful aspect of this approach is the 
opportunity for graphical assessment. 

Fig. 4 shows that the curvature of L,,,(hl H, N) is much jess than that of 
L,,,(XI A, H, N) previously given in Fig. 2, the constraint A here being that the 
second-degree terms are supposed zero. The inequality 

thus gives the much wider approximate 95 per cent confidence interval (-0.48, 0.13) 
for h indicated by H N  in Fig. 4 and compared with the previous interval, marked 
AHN. Since the constraint has 6 degrees of freedom the sampling distribution of 

for fixed normalizing h is asymptotically xi. Alternatively, (44, being a monotonic 
function of F, can be tested exactly. Thus we can decide for which X's, if any, the 
inclusion of the constraint is compatible with the data. In Fig. 5, F(h; z) is close to 
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unity over the interesting range of h close to zero, so that we can use the simpler model 
in this neighbourhood. The range indicated by C in Fig. 4 is that for which F is less 
than 2-70, the 5 per cent significance point. 

TABLE7 
Textile data. Calculations for the analysis of the transformation 

Diference = - 13.5 x 
h Lmax(h I A, H, N )  Lmax(h I H, N )  

log (1s & F ( ~ ;z)) F(X;  2)  

The Bayesian analysis follows parallel lines. In Fig. 4, pu(hI H,N )  has a much 
greater spread than ~ , ( h l  A,  H,N).  Fig. 5 shows pu(XI H, N )  with the component 
kAp(AI A, H, N )  from the constraint. When multiplied together they give the overall 
density pu(hIA, H, N) .  A value of h near zero maximizes the posterior density 
assuming the constraint and is consistent with the information in pu(hj H, N) .  

There is, however, nothing in our Bayesian analysis itself to tell us whether the 
simplified model with the constraint is compatible with the data, even for the best 
possible A. There is an important general point here. All probability calculations in 
statistical inference are conditional in one way or another. In particular, Bayesian 
posterior distributions such as p,(hIA, H, N )  are conditional on the model, in 
particular here on assumption A. It could easily happen that there is no value of h 
for which A is at all reasonable, but to check on this we need to supplement the 
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Bayesian argument (Anscombe, 1961). Here we can do this by a significance test 
based on the sampling distribution of a suitable function of the observations, namely 
P(h; z). For h around zero the value of P(h; z )  is, in fact, well within the significance 
limits, so that we can reasonably use the posterior distribution of h in question. 

X 

FIG.4. Textile data. Functions Z,,,(h) andp,(h) under different models. A :  additivity. 
H: homogeneity of variance. N :  normality. Arrows HN, AHN show approximate 95 per 
cent confidence intervals for h. Arrows C show range for which F for second-degree 
terms is not significant at 5 per cent level. 

5.4. Homogeneity of Variance 
Suppose that we have k groups of data, the expectation and variance being 

constant within each group. In the Zth group, let the variance be a? and let S(l) 

denote the sum of squares of deviations, having vl = nl- 1 degrees of freedom. 
Write Xnl = n, Cvl = n -k. Thus in our biological example, k = 12, v, = ... =v,, = 3, 
n,= ...=n I , = 4 a n d v = 3 6 , n = 4 8 .  

Now suppose that a transformation to y(" exists which induces normality simul- 
taneously in all groups. Then in terms of the standardized variable z(", the maximized 
log likelihood is 

L,,,(X I N) = -&Cnl log {S(l) (A; z)/n,}, 
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where S(l)(X; z )  is the sum of squares S'l), considered as a function of X and 
calculated from the standardized variable z(". 

?,,(A.IH,Nf 
and 

k~ 

p ( A l M , N )  


X 

Textile data. -Components of posterior distribution. ----- Variance 
ratio, F ( X ;  2). Arrow gives 5 per cent significance level. 

We now consider the constraint H, a! = ... = a;, i.e. look at the possibility that 
a transformation exists simultaneously achieving normality and constant variance. 
Then if S ,  = XS'l) is the pooled sum of squares within groups 

Lmax(XI H, N )  = -i!n log {S,(X ; z)ln). 
Therefore 

= Lm,, ( A I N )+log L,(X; z), (47) 

say. Here the second factor is the log of the Neyman-Pearson L, criterion for testing 
the hypothesis a: = ... = a;. 

In the corresponding Bayesian analysis, (29) gives 

p(hIH,N) =p(XIN)xkHp(u,2 = ... = h,N),  (48) 
where 

kg1= EAIN{p(a:= ... = U; 1 A, N)) .  

For the general model in which a!, ..., o; may be different, the prior distribution is 

po(X)(ndo,)(nd log o,)J -"in 
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and 

with 
(49) 

For the restricted model in which the variances are all equal to a2, the appropriate 
prior distribution is 

P o ( ~ )(rI'd0,) (dlog a) J-vln 

and 
P(X I H, N) = {P,(X) c,(X ;z))-tv. (50) 

Hence, on dividing (50) by (49), we have that the second factor in (48) is 

where (Bartlett, 1937) 

( S  (9'z)) (s"';;")M(X;. z) = v log --Zvllog 

is the modification of the L, statistic for testing homogeneity of variance, replacing 
sample sizes by degrees of freedom. 

From our general argument, (51) must be proportional to p(u! = ... = oil X, N). 
This can be verified directly by finding the joint posterior distribution of a!, ...,a;, 
transforming to new variables u,2, oi/a!, ...,ui]u,2, integrating out u,2, and then taking 
unit values of the remaining arguments. 

5.5. Application to ~ i o l o ~ i c a l  Example 
In the biological example, we can now factorize the overall criterion into three 

parts. These correspond to the possibilities that in a$dition to normality within 
each group, we may be able to get constant variance and that it may be unnecessary to 
include interaction terms in the model, i.e. that additivity is achievable. 

In terms of maximized likelihoods, 

where L,(A; z) is the criterion for testing constancy of variance given normality and 
F(X; z) is the criterion for absence of interaction given normality and constancy of 
variance. 

The correspondiilg Bayesian analysis is 

The results are set out in Table 8 and in Figs. 6-8. The graphs of Lrna,(XI N) and 
p,(XI N) in Fig. 6 show that the information about X comihg from within group 
normality is very slight, values of X as far apart as - 1 and 2 being acceptable on this 
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basis. The requirement of constant variance, however, has a major effect on the 
choice of A; further, some information is contributed by the requirement of additivity. 

TABLE8 
Biological data. Calculations for analysis of the transformation 

From Fig. 7, which shows the detailed separation of the maximum-likelihood and 
Bayesian components; any transformation in the region y-I to y-* gives a compatible 
compromise. 



FIG. 6. Biological data. Functions ~,,,(h) and P,(X)  under different models. 
A :  additivity. H: homogeneity of variance. N :  normality.. Arrows N, HN, AHN show 
approximate 95 per cent confidence intervals for A. 

h 

FIG. 7. Biological data. Components of posterior distribution. 
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Since the groups all contain four observations 

and the graph of M(X; z) in Fig. 8 is equivalent to one of &(A; z). Since on the null 
hypothesis the distribution of M(h; z) is approximately x:,, we can use Fig. 8 to 

FIG. 8. Biological data. Variance ratio, F(h;  z), for interaction against error as a 
function of h. Bajtlett's criterion, M ( h ;  z), for equality of cell variances as a function of h. 
Dotted lines give 5 per cent significance limits. 

find the range in which the data are consistent with homoscedasticity. Similarly 
the graph of F(h; z) indicates the range within which the data are consistent with 
additivity. The dotted lines indicate the 5 per cent significance levels of M and of F. 

The minimum of M(h; z) is very near h = - 1. It is of interest that the regression 
coefficient of log(samp1e variance) on log(samp1e mean) is nearly 4, so that the 
reciprocal transformation is suggested also by the usual approximate argument for 
stabilizing variance. 

6 .  ANALYSISOF RESIDUALST 
We now examine briefly a connection between the methods of the present paper 

and those based on the analysis of residuals. The analysis of residuals is intended 

t We are greatly indebted to Professor F. J. Anscombe for pointing out an error in the 
approximation for a as we originally gave it. In the present modified version terms originally 
neglected in this Section have been included to correct the discrepancy. 
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primarily to examine what happens on one particular scale, although its use to 
indicate a transformation has been suggested (Anscombe and Tukey, 1963). Corre- 
sponding to an observation y, let Y be the deviation j-j of the fitted value j from 
the sample mean and let r = y - j  be the residual. If the ideal assumptions are satisfied 
r and Y will be distributed independently. Different sorts of departures from ideal 
assumptions can be measured, therefore, by studying the deviations of the statistics 

= Cri Yj from nE(ri)E(Yj). In addition to graphical analysis, a number of such 
functions have indeed been proposed for particular study (Anscombe, 1961; 
Anscombe and Tukey, 1963). 

Specifically, the statistics 

were put forward as measures respectively of skewness, kurtosis, heterogeneity of 
variance and non-additivity. Tukey's degree of freedom for non-additivity (Tukey, 
1949) involves the sum of squares corresponding to TI, considered as a contrast of 
residuals with "fixed" coefficients Y2. 

Suppose now that we consider the family of power transformations and, writing 
z = y/j, and w = z- 1, make the expansion 

where w, = w2, w3 = w3 and a! = 1-A. 
Now, L,,,(X) and L,(X) are determined by the residual sum of squares of z ( ~ ) ,  

which is approximately 

If we take terms up to the fourth degree in w and then differentiate with respect to a!, 

we have that the maximum-likelihood estimate of a! is approximately 

3w1a, w, -w'a, w3 A 
a!= 

3wk a, w, + 4w!a, w3 ' 

If we write y, = y -);, y, = (y -j),, y3 = (Y-);)~ and denote by 9,,9,,j3 the values 
obtained by fitting y,, y, and y3 to the model, the above approximation may be 
expressed in terms of the original observations as 

To see the relation between this expression and the T statistics, write d = j-3. 
Then y, = y-); = r +  Y+d. Bearing in mind that a,Y = O,a,r = r, Y'r = O,a,1 = 0, 
l'r = 0, where 1denotes a vector of ones, terms such as y; a, y, can easily be expressed 
in terms of sums of powers and products of r ,  Y and d. In particular, on writing S 
for Cr2, we find the numerator of (58) to be 

To this order of approximation the maximum-likelihood estimate of a! thus 
involves all the T statistics of orders 3 and 4. 
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As a very special case, for data assumed to form a single random sample 

Here questions such as non-additivity and non-constancy of variance do not arise and 
the transformation is attempting only to produce normality. Correspondingly in (59), 
T,, = TI, = T3, = T,, = TI, = 0, since Y = 9-J = 0. In fact if we write m, = J, 
m, = n-l C(y -J)p (p = 2,3, ...) and make the approximation d = *m,/m,, we have 
that 

For distributions in which m,, m,, m, and m,- 3mi are of the same order of magnitude, 
the terms in curly brackets are of one order higher in l/m,,than are the other terms of 
the numerator and denominator. If we ignore the higher-order terms, we, have 

A useful check suggested by Anscombe is to consider the X 2  distribution for moderate 
degrees of freedom and the Poisson distribution for not too small a mean. For 
x2 we find a-4, whence A- 4,corresponding to the well-known Wilson-Hilferty 
transformation. For the Poisson distribution, a- 4,whence A- 3. 

In Section 2 we suggested that, having chosen a suitable X, we should make the 
usual detailed estimation and interpretation of effects on this transformed scale. Thus 
in our two examples we recommended that the detailed interpretation should be in 
terms of a standard analysis of respectively l/y and log y. Since the value of A used 
is selected at least partly in the light of the data, the question arises of a possible 
need to allow for this selection when interpreting the factor effects. 

To investigate an appropriate allowance, we regard X as an unknown parameter 
with "true" value A,, say, and suppose the true factor effects to be measured in terms 
of the scale A,,. If we were, for instance, to analye the factor effects on the scale 
corresponding to the maximum-likelihood estimate A, we might expect some additional 
error arising from the difference between 2 and A,. We now investigate this matter, 
although the present formulation of the problem is not always completely realistic. 
For example, in our biological example, having decided to work with lly, we shall 
probably be interested in factor effects measured on this scale and not those measured 
in some unknown scale corresponding to an unknown "true" A,. On the other hand, 
if we are interested in whether there is interaction between two fa%tors, it iz possibly 
dangerous to answer this by testing for interaction Qn the scale A, since X may be 
selected at least in part to minimize the sample interaction. A more reasonable 
formulation here may often be: on some unknown "true" scale A,, are interaction 
terms necessary in the model? 
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From the maximum-likelihood:approach, the most useful result is that significance 
tests for null hypotheses, such as that just mentioned about the absence of interaction, 
can be obtained in a straightforward way in terms of the usual large-sample chi- 
squared test. Thus, in the textile example, we could test the null hypothesis that 
second-degree terms are absent for some unknown "true" A,, by testing twice the 
difference of the maxima of the two curves of L,,,(X) in Fig. 4 as x,2. Note that the 
maxima occur at different values of A. In this particular example, such a test is hardly 
necessary. 

It would be possible to obtain more detailed results by evaluating the usual large- 
sample information matrix for the joint estimation of A, u2 and 8. Since, however, 
more specific results can be obtained from the Bayesian analysis, we shall present 
only those. The general conclusion will be that to allow for the effect of analysing in 
terms of 2 rather than A,, the residual degrees of freedom need only be reduced by 
v,, the number of component parameters in A. This result applies provided that the 
population and sample effects are measured in terms of the normalized variables z(,). 

Consider locally uniform prior densities for 8, log u and A. Then the posterior 
density for 8 is 

Approximate evaluation of the integral in (61) is done by expansion around the 
maxima of the integrands. The ~ a x i m u m  of the integrand in the denominator is at 
the maximum-likelihood estimate A, and that of the numerator is near 2, so long as 8 
is near its maximum-likelihood value. The answer is that (61) is approximately 

This is exactly the posterior density of 8 for some known fixed X with the degrees of 
freedom reduced by v,. 

To derive (62) from (61), we need to evaluate integrals of the form 

w h e ~v is large, and q(A) is assumed positive and to have a unique minimum at 
A = A, with a finite Hessian determinant A, at the minimum. We can then make a 
Laplace expansion, writing 

{q(>)}-*v-*v~
-N x const; 
A: 

for this we expand the second logarithmic term as far as the quadratic terms and then 
integrate over the whole v,-dimensional space of A. In our application the terms 
A: in numerator and denominator are equal to the first order. 
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Finally, we can obtain an approximation to the posterior distribution p,(A) of A 
that is better than the usual type of asymptotic normal approximation. For an 
expansion about A gives that 

const 

Here 

with d(A) being the n x v, matrix with elements 

-a z p  
( i =  1,...,n; j =  1,...,v,).ax, 

The matrix b determines the quadratic terms in the expansion of s2(A; Z) around ?,. 
Thus the quantities (Aj-&)/{s@; z)dbii) have approximately a posterior multi- 

variate t distribution and 

(A- X)'b(A-X) 

a posterior F distribution. In fact, however, it will usually be better to examine the 
posterior distribution of A directly, as we have done in the numerical examples. 

8. FURTHERDEVELOPMENTS 
We now consider in much less detail a number of possible developments of the 

methods proposed in this paper. Of these, the most important is probably the simul- 
taneous transformation of independent and dependent variables in a regression 
problem. Some general remarks on this have been made in Section 1. 

Denote the dependent variable by y and the independent variables by x,, ...,x,. 
Consider a family of transformations from y into y(,) and x,, ...,x, into x p ) ,  ...,xjKz), 
the whole transformation being thus indexed by the parameters (A; K,, ...,K,). It is 
not necessary that the family of transformations of say x, into x p )  and x, into 
x$J should be the same, although this would often be the case. 

We now assume that for some unknown (A; K,, ...,K,) the usual normal theory 
assumptions of linear regression theory hold. We can then compute say the maximized 
log likelihood for given (A; K,, ...,K,), obtaining exactly as in (8) 

L,,,(A; Kl, ...,KJ = -8log G2(A ; Kl, . . . ,K1)+10gJ(A; y) ,  (67) 

where G2(A; K,, ...,K,) is the maximum-likelihood estimate of residual variance in 
the standard multiple regression analysis of the transformed variable. The corre- 
sponding expression from the Bayesian approach is 
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The straightforward extension of the procedure of Section 3 is to compute (67) or 
(68) for a suitable set of (A; K,, ...,K,) and to examine the resulting surface especially 
near its maximum. This is, however, a tedious procedure, except perhaps for 1= 1. 
Further, graphical presentation of the conclusions will not be easy if 1> 1; for 1= 1 
we can plot contours of the functions (67) and (68). 

When X is fixed, i.e. transformations of the independent variables only are involved, 
Box and Tidwell (1962) developed an iterative procedure for the corresponding non- 
linear least-squares problem. In this the independent variables are, if necessary, first 
transformed to near the optimum form. Then two terms of the Taylor expansion 
of x?), . . .,~ ~ ( ~ 1 )  For example if x?) = xKl and the best value for K,are taken. is 
thought to be near 1, we write 

x? = x,+(K,- 1)xllogx1. (69) 

A linear regression term p, xyl can then be written approximately 

PI XI+P1(~1- 1) xl logx, = Plx1+ YIx1 1% x1, 

say. If the linear model involves linear regression on x,, .. . ,x, and if all the transfor- 
mations of the independent variable are to powers, we can therefore take the linear 
regression on x,, ...,x,, x,logx,, ...,x,logx, in order to estimate the p's and y's and 
hence also the K'S. The procedure can then be iterated. Transformation of the 
dependent variable will usually be the more critical. Therefore, a reasonable practical 
procedure will often be to combine straightforward investigation of transformation 
of the dependent variable with Box and Tidwell's method applied to the independent 
variables. 

It is possible also to consider simplifications of the procedure for determining a 
transformation of the dependent variable. The main labour in straightforward 
application of the method of Section 3 is in applying the transformation for various 
values of h and then computing the standard analysis of variance for each set of 
transformed data. Such a sequence of similar calculations is straightforward on an 
electronic computer. It is perfectly practicable also for occasional desk calculation, 
although probably not for routine use. There are a number of possible simplifications 
based, for example, on expansions like (69) or even (55), but they have to be used 
very cautiously. 

In the present paper we have concentrated largely on transformations for those 
standard "fixed-effects" analysis of variance situations where the response can be 
treated as a continuous variable. The same general approach could be adopted in 
dealing with "random-effects" models, and with various problems in multivariate 
analysis and in the analysis of time series. We shall not go into these applications 
here. 

An important omission from our discussion concerns transformations specifically 
for data suspected of following the Poisson or binomial distributions. There are two 
difficulties here. One is purely computational. Suppose we assume that our obser- 
vations, y, follow, for example, Poisson distributions with means that obey an 
additive law on an unknown transformed scale. Thus, in a row-column arrangement, 
it might be assumed that the Poisson mean in row i and column j has the form 

(P+ai+pj>llh (XfO), 

Pj (A = O), 
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where h is unknown. Then h and the other parameters of the model can be estimated 
by maximum likelihood (Cochran, 1940). It would probably be possible to develop 
reasonable approximations to this procedure although we have not investigated 
this matter. 

An essential distinction between this situation and the one considered in Section 3 
is that here the untransformed observations y have known distributional properties. 
The analogous normal theory situation would involve observations y normally 
distributed with constant variance on the untransformed scale, but for which the 
population means are. additive on a transformed scale. The maximum-likelihood 
solution in this case would involve, at least in principle, a straightforward non-linear 
least-squares problem. However, this situation does not seem likely to arise often; 
certainly, it is inappropriate in our examples. 

An important possible complication of the analysis of data connected with 
Poisson and binomial distributions has been particularly stressed by Bartlett (1947). 
This is the presence of an additional component of variance of unknown form on 
top of the Poisson or binomial variation. If inspection of the data shows that such 
additional variation is 'substantial, it may be adequate to apply the methods of 
Section 3. For integer data with range (0, 1, ...) it will often be reasonable to consider 
power transformations. For data in the form of proportions of "successes" in which 
" S U C C ~ S S ~ S "  and "failures" are to be treated symmetrically, Professor J. W. Tukey 
has, in an unpublished paper, suggested the family of transformations from y to 

yh-(1 -y)h. 

For suitable X's this approximates closely to the standard transforms of proportions, 
the probit, logistic and angular transformations. The methods of the present paper 
could be applied with this family of transformations. 
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Mr J. A. NELDER:May I begin with a definition (from the Concise Oxford Dictionary) : 
"Box and Cox-two persons who take turns in sustaining a part." I must admit to having 
spent some time in trying to deduce which person was sustaining which part of this most 
interesting paper. I do not think the exercise was very successful, and this testifies to some 
sound collaboration on the part of the authors. 

It seems to me that there are two basic problems besetting all conscientious data 
analysts (to borrow Professor Tukey's term). One is how to check that the data are not 
contaminated with rogue observations and what action to take if they are. The other is 
how to check that the model being used to analyse the data is substantially the right one. 
Looking through the corpus of statistical writings one must be struck, I think, by how 
relatively little effort has been devoted to these problems. The overwhelming preponder- 
ance of the literature consists of deductive exercises from a priori starting points. Now, 
of course, there must always be some assumptions made a priori; in data analysis the 
important thing is that they should not be much stronger than previous evidence justifies. 
The first of the two problems, that of gross errors or rogue observations, we are not 
directly concerned with now, but the question of scale for analysis, which is discussed 
here, is fundamental to the second. One sees not infrequently remarks to the effect that 
the design of an experiment determines the analysis. Life would be easier if this were 
true. To the information from the design we must add the analyst's prior judgements, 
preconceptions or prejudices (call them what you will) about questions of additivity, 
homoscedasticity and the like. Frequently these prior assumptions are unjustifiably strong, 
and amount to an assertion that the scale adopted will give the required additivity, etc. 
The great virtue of this paper lies in its showing us how to weaken these prior assumptions 
and allow the data to speak for themselves in these matters. The data analyst's two 
problems are closely intertwined, however; for if rogue observations are present their 
residuals tend to dominate the residual sum of squares, and may thus seriously affect the 
estimation of h. 

The two approaches, via likelihood and via Bayes theorem, run side by side, and give 
results which will often be very similar. I am not entirely happy about the derivation of 
equation (19) and wonder whether the appearance of the observations in the prior proba- 
bility is not only "interesting", as the authors state,'but also illegal. They remark (on 
p. 219) that, "There are some reasons for thinking L,(h) preferable to L,,,(h) from anon- 
Bayesian as well as from a Bayesian point of view." I agree and, furthermore, I believe 
that a suitable modification of the likelihood approach may be found to produce just this 
result. The starting point is that fixed effects are unrealistic in a model. If we measure a 
treatment effect in an experiment, it is common experience that a further experiment will 
give us a further estimate of the effect which often differs from the original estimate by 
more than the internal standard errors of the experiments would lead us to expect. If we 
construct a model with this in mind, then for a single normal sample of n we might obtain 

where m = N(p, ut2) and ei = N(0, u2). If we now do an orthogonal transformation of 
the data z = Hy where H is an orthogonal matrix of known coefficients having its first row 
with elements n-4, then the log likelihood is given by 

n 

L = const -:In V- (z, -,u Jn)2/2V - $(n - 1) log u2 -2z,2/2u2, 

where V = u2+ nu'2. Clearly we cannot estimate V unless ,u is known, which in general 
it is not. However, for any fixed but unknown V, we have L maximized by taking 

P = 8, and B2 = C(y-jj)2/(n- 1). 
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'Thus L,,,(h) following equation (24) is replaced (apart from an unknown constant) by 
L,(h). By extensions of this argument we obtain Bartlett's criterion for testing the homo- 
geneity of variances instead of the L, criterion, and the likelihood criterion for a restricted 
hypothesis on the means (equation (35)) becomes the same (apart from an unknown 
constant factor) as the Bayesian one. Thus some of the apparent differences between the 
two approaches may result from the restrictions implied by fixed effects in a model, these 
being equivalent to assertions of zero variance in repetitions of the experiment. 

Taken with the work of Tukey, Daniel and others, on the detection of rogue obser- 
vations, the results of this paper should lead before long to substantial improvements in 
computer programmes for the analysis of experiments. "First generation" programmes, 
which largely behave as though the design did wholly define the analysis, will be replaced 
by new second-generation programmes capable of checking the additional assumptions 
and taking appropriate action. It is hardly necessary to stress what an advance this 
would be. 

I suppose that the converse of "two persons who take turns in sustaining a part" 
would be "one person who takes turns in sustaining two parts". Such a person is often 
the proposer of the vote of thanks, the parts being those of congratulator and critic; 
the latter has been known to overwhelm the former, but not, I hope, today. We must 
all be grateful for the clear exposition of an important problem, for the practical value 
of the results obtained and for the possibilities opened up for future investigations.. I t  is 
a real pleasure, therefore, for me to propose the vote of thanks today. 

Dr J. HARTIGAN:I would like to suggest a non-parametric approach to Box and Cox's 
problem. Suppose in the ith experiment we observe yi under conditions xi and that it is 
desired to find the probability distribution of y given x for various x. The only general 
principle that seems to apply is a similarity principle-"What will happen under present 
circumstances will probably be similar to what happened under similar circumstances in 
the past" or more simply "like equals likely". The Meteorological Office does seem to be 
acting according to this principle in its long-range forecasts, where the procedure is to 
look at this month's weather, look in the records for a similar month, see what happened 
the following month then, and predict the same thing will happen next month, now- 
they would say, to predict what yo will be under conditions x,, look among the (y,, xi) 
for an xi close to x,, then predict yo = y,. 

I t  does seem possible to offer a non-parametric method for predicting a new y at x,; 
in least squares theory this would be the fitted value Yo. The general procedure is to 
smooth from the various readings (y, x) in the neighbourhood of x,, values of y being 
given greater or less weight according to x's "similarity" to x,; just how the weights are 
to be chosen, or how the y's are to be combined is an open question; the least squares 
answer is Yo = Xa, y,, where the weights a, (possibly negative, but not very, and nearly 
always adding to one) are calculated from the linear model. 

Box and Cox are assuming that for some transformed set of observations f(yi), the 
model is valid, and their smoothed value would be given by 

A "non-parametric" approach would be to order the observations y,,,, ...,y,;) and 
select Yo such that 

Essentially, Yo is the median of the distribution consisting of points y(i, with probability a, 
(possible negative values confuse this interpretation). The justification of this procedure 
is that Yo should not be too far from the value obtained by Box and Cox's procedure, 
since the median of the f(yi)'s will be approximately equal to the mean of the f(yi)'s; 
but this procedure is invariant under any monotonic transformation of the observations. 
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I have tried this with Box and Cox's 33 experiment, when x, is at the centre of the 
cube (O,O, 0). The weights a, will depend on the linear model; for a complete factorial 
model a, = 1 at (0, 0, 0) and 0 elsewhere so that no smoothing takes place; for the second- 
degree polynomial model a, = 7 at the centre, 4 at the midpoint of a face, 1 at the midpoint 
of an edge and -2  at a vertex; for the first- and zero-degree polynomials, a, = 1 every- 
where and the smoothing is excessive. 

The smoothed values with various similarity coefficients (we may regard ai as the 
relevance of the ith observation to Yo) and various methods of combination are 

Degree of 
Polynomial Mean Mean log Median 

0,1 861 564 566 
2, 724 610 604 

C F 620 620 620 

Negative weights are a,nuisance, and, also, we would like the similarity coefficients to 
decrease with distance. However, least squares is the only general way of generating the 
coefficients at present. 

I wonder if the interquartile range of the distribution over the y, with weights a, would 
be a reasonable (transformation invariant) measure of dispersion of a new observation y 
about Yo. In general this would tend to be large if yi's which were observed under highly 
similar conditions were a long way from the predicted Yoat xo. 

A preliminary analysis of the above type based on the order statistics would be invariant 
under monotonic transformation, and so would seem an appropriate method of finding 
a transformation in which an ordinary "metric" analysis might be performed. 

I have found this paper extremely informative and stimulating and it gives me great 
pleasure to second the vote of thanks to Professors Box and Cox. 

The vote of thanks was put to the meeting and carried unanimously. 

The following written contribution was read by Professor D. G. Kendall. 
Professor J. W. TUKEY: The results reported by Professors Box and Cox clearly 

represent a substantial step forward; all those concerned with the actual analysis of data 
should be pleased to know that they do exist, both because of the new and modified 
techniques which they urge us to try, and because these results were obtained by using 
almost "all the allowed principles of witchcraft" as of the year 1964: normality assumptions, 
maximum-likelihood estimation, Bayesian inference and a priori distributions invariant 
under natural, transitive groups. This last fact makes it inevitable that intelligent choice 
of modes of expression for the observed responses will become both socially acceptable 
and widely taught and that the long-run consequences for the analysis of data will be 
very desirable. 

While this is a useful step forward, it is, I think, important not to overestimate its 
conclusiveness. From the point of view of the man who does indeed have data to analyse, 
these results are merely further guidance about a situation only reasonably close to the 
one he actually faces. This is, of course, no novelty in statistics, but some aspects of the 
present discussion make it important to re-emphasize some things that should be familiar 
to all of us. In the authors' discussion, as in all to nearly all of our presently available 
theory, all the approaches are at least formally based upon a model involving normality- 
or, as I would rather say, Gaussiahity. I think that this is stressed by the discussion in 
Section 5 where one is asked to look first at the evidence from assumed Gaussianity, then 
at the evidence from an additional assumption of constancy of variance in the presence of 
Gaussianity and, finally, at the evidence from a further assumption of additivity in the 
presence of both other assumptions. So long as we are going to work with tight specifi- 
cations, where only a few parameters can be allowed to enter, it is hard to see how things 
can be done in any other way than this. But from the point of view of the man with the 
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actual data, it would make much more sense to ask-possibly in vain-for an analysis in 
which one could examine first the evidence derived from assumed additivity in the absence 
of other assumptions, secondly (in those situations where this was appropriate) the evidence 
provided by an additional assumption of constant variance in the presence of additivity, 
and thirdly (in perhaps a few cases) the additional evidence provided by assumed 
Gaussianity, in the presence of both additivity and constancy of variance. (If additivity 
-or, more generally, parsimony-is at issue, considerations of constancy of variance and 
Gaussianity of distribution are usually negligible, at least so far as the choice of a mode 
of expression is concerned. If additivity is not at issue, constancy of variance usually 
dominates Gaussianity of distribution.) If all of us can have enough good ideas over a long 
enough period of time, perhaps we can come, eventually, to a theory which corresponds 
more directly to what we desire. It may well be that, with the exception of very rare 
instances, the differences in practice associated with such an approach would be in- 
appreciably different from those suggested by the present approach. The widespread 
tendency for additivity, constancy of variance and Gaussianity of distribution to come 
and go as a group offers us such a hope. I t  would be nice to know whether or not this hope 
is justified. 

We are all used to having maximum-likelihood estimation combine different bits of 
evidence with quite appropriate weights. Accordingly, we may hope that this is still the 
case in the present situation, but I must report that the relative weighting of the evidence 
provided by interaction sums of squares and error sums of squares does not feel as if it 
were being quite fairly weighted when one merely looks, as in Table 3, at the total of these 
two sums of squares. Perhaps the decomposition into the three parts mentioned above, and 
concentration upon the part associated with the additivity assumption, might produce a 
much heavier weighting of the interaction sums of squares. Again it would be interesting 
to know whether or not this is true. 

In most circumstances one is going to be more interested in reaching additivity than 
in maximizing the formal sensitivity of the main effects. There will be, however, a few 
instances where the reverse is true. I am not clear, from the discussion of Table 6, to what 
extent the results of applying the proposed approach rigorously and without thought 
will differ from the results obtained by seeking maximum sensitivity. If there should be 
differences which persist as the amount of data is increased without limit, I think one 
will have, in the long run, to look more carefully into the choice of criterion, where a 
decision to look need not imply an ultimate decision to adopt a different criterion. 

Clearly Box and Cox have made a major step forward in the succession of approxi- 
mations which give us better and better answers to an important problem of practice. 

The following written contribution was read by the Honorary Secretary. 
Professor R. L. PLACKETT:The authors have come up with the interesting ideas we 

would have expected from them, and deserve our congratulations for a paper which will 
be widely appreciated. They have made full use of modern computational facilities and 
the two systems of inference which are currently competing for our attention. An 
impression ltft by reading their paper is that the data should be fed into a large and 
powerful machine which will very quickly draw all the necessary graphs and print out the 
best analysis of variance available in the circumstances. Those accustomed to the blissful 
ease of the standard analysis of variance calculations will need to be convinced that such 
hard work is really necessary, and will ask for assuran'ce that too much responsibility has 
not been delegated. 

So much has recently been said on Bayesian procedures that it is a relief to find that 
the authors are not really Bayesians at all, but have been very ingenious in using Bayesian 
arguments without ever becoming fully committed to them. Thus they call for uniform 
distributions, but only over the region where the likelihood is appreciable, and they justify 
their preference for a Bayesian procedure on the grounds that the confidence coefficients 
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from asymptotic distribution theory are closer to their nominal values if Lb is used instead 
of L,,,. It is true that in the further analysis separating out A and H they suggest that 
the two procedures may lead to appreciably different conclusions, but the circumstances 
in which this might occur are not closely defined. Surely it is not the magnitude of either 
S,,(h; z) or F(h; z) which is relevant, but that of the derivatives of these quantities with 
respect to A. In any case, the authors do not tell us what they would do if the conclusions 
differ markedly; but it accords with the spirit of this long-awaited collaboration that we 
should be left in doubt as to which method of inference to follow. 

Likelihood procedures have also been well publicized and discussed, but there is a 
practical point which seems not to have been emphasized in the midst of a good deal of 
mathematical and logical argument. It arises because the likelihood function contains 
much that is taken for granted in the way of distributional forms, and is no substitute 
for an inspection of the data. As a simple illustration, consider a large sample of measure- 
ments in which half are clustered round the value a and half round the value b (a# b). 
The assumption that this constitutes a sample from a normal distribution with mean ,u 
and standard deviation a leads to an exactly parabolic log likelihood function for ,u, but 
the inferences that this would suggest conflict with those obtained directly from the data. 

It is. tempting to contrast the smooth and deceptive character of a likelihood function 
with the spotty but straightforward nature of Anscombe and Tukey's procedures. They 
fit a full linear model to the original data and plot residuals against fitted values. Residuals 
are something which the authors have not calculated, but it would have been interesting 
to see other methods at work on the same examples. One might consider a modification 
of the Anscombe-Tukey procedure in which the predicted value Y is plotted against the 
observed value y. This will lead to a linearizing transformation Y = f(y) (e.g. by Dolby's, 
1963, analysis of the simple family); the procedure can be iterated if necessary and should 
converge under reasonable conditions. It may be objected that the possibility of differing 
variances isnot taken into account, but the usual argument is that the same transformation 
does for both. If a greatly differing transformation is necessary to equalize the variances, 
then the experiment is unlikely to be very successful. 

In  the second part of their paper, the authors separate the contributions of linearity, 
constant variance and normality, but the place of normality in their analysis is logically 
different from that occupied by the other two, since normality is not a constraint which 
they either apply or relax. For that, they would presumably need to carry through the 
entire analysis with some other distribution. 

Professor M. S. BARTLETT: Like Professor Tukey, I think that the authors have made 
a major step forward in this paper on the theory of transformations. I think also, like 
Professor Plackett, I was a little uneasy about the extent to which complicated analysis 
might seem necessary. 

Again, like Mr Nelder, I found myself wondering about the Box and Cox nature of the 
paper and in particular whether this kind of oscillatory character between likelihood and 
Bayes analysis had any relevance to the Box and Cox aspect! Perhaps Professor Cox 
may wish to comment on this; on this point of Bayes versus likelihood I would especially 
welcome his views on whether he is advocating them as equally useful or whether he has 
reached any conclusions as to whether one is better than the other. In particular I would 
certainly draw attention to the point made in the paper, and I think Professor Plackett 
made this point also, that whichever analysis you make, the inference is very conditional 
on your set of assumptions from which you start. 

Now to come to other minor points, I think I have only two to make. One was in the 
approximation used for the log likelihood, the max log likelihood and the use of x2with 
this, and I wondered whether Professor Cox, or for that matter, Professor Box, could make 
any comment on the accuracy in this in other than very large samples. One knows that 
the distribution is valid up to but not including order lln, and one knows, for example, 
from Professor Box's work, that if you want to go to order lln you have to bring in a 
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different multiplying factor to your x2approximation. And it would help to know whether 
there is any possibility of getting the sort of confidence limits based on the x2 analysis a 
bit more exact, and if not, how misleading they might occasionally be. 

I think my last point is one that was raised by Professor Tukey and that is, I did wonder 
about the uniqueness of this order of taking the various factors, normality, additivity and 
homogeneity of variances, and whether you Would reach anything like the same sort of 
conclusion if you tried to take them in a different order. 

Dr M. R. SAMPFORD:Like Professor Tukey, I am rather nervous about the effect of the 
assumed normality of the transformed variable on the additivity, in particular, and to a 
lesser extent on the homogeneity of variance, when in fact no single transformation will 
achieve all three properties. The relatively small amount of information about h obtained 
from the normality assumption in the example (Table 8) seems to be reassuring on this 
point, but the possible effects when the transformed distribution is rather far from normal 
might still be serious. Of course, one can sometimes advance a more plausible distributional 
model, and in this context it may be worth suggesting that, though the title of this paper 
should more properly be "An Analysis of Transformations to Normality", the ingenious 
approach on which it is based could perfectly well be applied to other distributions. For 
example, I have several times encountered response-time distributions-in particular, 
distributions of time to death-that appear log-normal at the lower end of the scale, but 
have a secondary mode in the upper tail. This might suggest that some animals die as a 
direct result of damage caused by the treatment, but that others, having a high tolerance 
or being, by chance, little damaged, may survive the initial shock, only to die later 
as a result of physiological disturbance caused by the damage. One might, by making 
some assumptions about distributions of damage and tolerances, derive a more or less 
plausible class of distributions for transformed times that might be expected to be con- 
sistent with variance homogeneity and at least approximate additivity. The method of 
this paper could then be applied to determine the most satisfactory transformation leading 
to a distribution in this class. This is perhaps a rather extreme example, but I hope suggests 
the potential value of the authors' approach in situations where additivity need not be 
expected to involve, as it often does, near-normality. 

Dr C. A. B. SMITH:I merely wish to draw attention to a recent paper by A. F. Naylor 
(1964). He applied the arcsine, logit, log-log and normal equivalent deviate transformations 
to four sets of biological data. He concluded that for all practical purposes they could be 
considered as equivalent. For example, in most of the entries the expected numbers 
calculated from the four transformations differ only slightly in the first decimal place. 

Mr D. KERRIDGE: TheI have two comments to make, one general and one particular. 
general comment is that it is very pleasant to have a paper in which the idea is obvious. 
I am not saying this in any derogatory sense. I think all the great ideas were obvious 
ones. Nothing could be more obvious than the idea of taking a parametric family and 
estimating the parameter. It is strange that such an obvious idea should take such a long 
time to be seen, but in many ways, the simpler the idea, the greater the discovery. There is, 
for example, much more chance that a simple idea will be used in practice. The particular 
comment concerns the rather strange prior distribution which has the interesting property 
that it contains the observations. We cannot let the night go without saying something 
about that. Clearly this is not an expression of belief, so some people would not call it a 
probability. It is not prior, because it is determined a posteriori, and so it is a pseudo-prior 
pseudo-probability. Now I am not against it because of its strangeness, since obviously 
the authors have extremely good reasons for using it. They use it because it works. It is 
very interesting indeed to find a practical example in which you have to use something 
which clearly is a pseudo-probability. I believe that as we get to use Bayes's theorem 
instead of talking about it, as I hope we are going to do in the future, we are going to come 
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up against many more of these peculiar things. For example, I think that to get sensible 
significance tests in Bayesian theory we are going to have to use prior probabilities which 
depend on the number of observations. These again will be pseudo-probabilities, in a 
sense pseudo-prior too. So this is a very interesting first example of something which will 
eventually, I think, shed some light on what probabilities really are. My view is that 
they do not express beliefs. They are a convenient figment introduced to do something 
we do not really understand yet, but by examining examples of this sort I hope that one 
day we will achieve understanding. 

Mr E. M. L. BEALE:I should like to add my thanks to Professors Box and Cox for a 
most valuable paper, and to ask one question. Would the authors ever consider using a 
transformation of the type (1) when some y's are negative, or one of type (2) where some 
y,+ h, is negative? Such a transformation obviously has strange arithmetic properties. 
It gives a real answer if A, is integral, and I think one can always overcome any problems 
created by the fact that y may not be uniquely determined by the value of y(". But would 
the transformation ever make sense statistically? 

The following written contribution was received after the meeting: 

Professor F. J. ANSCOMBE:
The authors are to be congratulated on a most remarkable 

paper. The basic idea is highly original, and the tackling of horrendous difficulties is 
breath-taking. The examples are illuminating, and the preliminary "rather informal" 
analysis of the textile example is statistry in the grand manner-but, indeed, the whole 
paper is that. 

Because of my own efforts with residuals, I have been particularly interested by 
Section 6. In my 1961 paper I gave a formula for roughly estimating the power transforma- 
tion that would remove Tukey's type of removable non-additivity, and also one for 
estimating the power transformation that would remove an exponential dependence of 
error variance on the mean. The formulas were based essentially on the statistics denoted 
by TI,and T,,, respectively, in this paper. I did not also give a formula aimed at removing 
skewness of the error distribution, based on the statistic here denoted by T,,, though I 
have since used such a formula; in the notation of my 1961 paper the formula goes 

(My p is Box and Cox's h, 8 is the overall sample mean, s the residual root mean square, 
and g, and g, are analogues of Fisher's g-statistics.) It was my thought that one would 
calculate one or more of these expressions, and (if more than one) hope they would 
somewhat agree. No doubt, with factorial data showing pronounced effects for at least 
two factors, one would attach primary importance to additivity. With only one effective 
factor, there would be no question of additivity, and one would attach primary importance 
to constancy of variance. With no effective factors, and in particular with a simple homo- 
geneous sample, there would be nothing to worry about except skewness. 

Now, Professors Box and Cox have shown that these three separate estimates should 
(very nearly) be averaged in a certain proportion to yield a best estimate of the power. 
This result, for the relatively simple calculations based on residuals from a least-squares 
analysis on one scale, parallels the subtle decomposition of the likelihood function into 
three parts in Section 5. 

Professor Cox replied briefly at the meeting and the authors subsequently replied 
more fully in writing as follows: 

We are very grateful to the speakers for their encouraging and helpful remarks. 
One important general issue raised by Professors Tukey, Plackett, Bartlett and 

Dr  Sampford cbncerns priorities for the criteria of simplicity of the model and specifically 
of additivity, A, homogeneity of variance, H, and normality, N. We certainly agree on 
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the importance of the first of these, as indeed we indicate in our remarks at the end of 
Section 2. In the formal analysis of Section 5 we have considered N, HN, AHN as three 
models in that order. If one is to employ a parametric approach one must, it seems, start 
from some distributional assumption although, of course, if desired this could be broader 
than that adopted here. Furthermore, there is no reason in principle why A should not 
have been taken before H in discussing the biological example. We would then have to 
fit an additive model with separate within-cell variances. The rough justification for 
thinking that the procedure given in the paper genuinely separates out the effects of 
N,H and A is that M(h; z), on which (47) and (51) depend, is a valid descriptive 
measure of heterogeneity of variance independently of N. Likewise P(h; z) is a descriptive 
measure of non-additivity independently of H and N. If we started from a non-normal 
model, we would get a different measure of heterogeneity of variance, but except in 
extreme circumstances it is unlikely that it would be minimized by a value of h very 
different from that minimizing M(h; z). An analogous remark applies to F(h; z). Under 
non-normality the weighting of the different requirements will be different, but it is hard 
to see how a radically different value of h could emerge from the final analysis. 

Concerning Professor Tukey's point about the appropriateness of the weighting given 
by the likelihood in the biological example, the truth seems to be that in this example 
non-additivity is not in fact the major contribution in determining h. The sizes of the 
mean squares in Table 3 seem rather to bear this out than to contradict it. Concerning 
Tables 3 and 6 a striking thing is not only the removal of non-additivity, or correspondingly 
in Table 6 the simplification of the model, but also the large increase in sensitivity of the 
experiment. The result achieved by transformation is in fact equivalent to threefold 
increase in experimental effort. 

In the. paper we were at pains to stress that, where the procedures do seem relevant, 
we recommend using them in a flexible way, and that the assumptions on which they are 
based are a tentative working basis for the analysis rather than anything to be adopted 
irrevocably. In particular, in the discussion of the textile example we deliberately gave 
first the "common-sense" analysis before the more elaborate one. As Mr Kerridge has 
very rightly stressed, the basic idea is an extremely simple one; in particular, the absence 
of iterative calculations is a considerable practical advantage. We hope that this will 
reassure Professor Plackett that we are not advocating unnecessary elaboration. Mr Nelder 
has stated extremely clearly the need for a more searching examination of "assumptions". 

We have not specifically investigated the point raised by Professor Bartlett concerning 
the adequacy of the chi-squared approximation for confidence intervals for h. However, 
the line we have followed in finding a closer approximation to the posterior density of h 
leads to posterior intervals based on the Fdistribution and a similar approximation might 
be found for confidence intervals. The use of L,(h) instead of L,,,(h) was suggested by 
analogy with Bartlett's (1937) procedure of applying the likelihood-ratio procedure after 
suitable contrasts have been removed by transformation. The difficulty when h is unknown 
is that the transformations to remove the parameters 8 depend on A, so that the argument 
is at best approximate. We were most interested in Mr Nelder's remarks on this point 
and hope that he will develop his ideas further. 

The maximum-likelihood approach and the Bayesian approach have deliberately been 
given as entirely separate but parallel developments. Professor Plackett suggests that we 
justify the Bayesian approach only because it leads to "better" confidence intervals; this 
is not so. Several speakers have commented on the special prior distribution (19) which 
involves the observations. As we remarked in the paper, it is possible that there is an 
alternative and better approach to this; one way may be to make the prior distributions 
for the contrasts depend on the general population mean. However, the observations 
enter (19) only in a mild way in establishing the overall level of the observations, usually 
the overall geometric mean in our special cases. I t  is essential that some allowance should 
be made for the fact that the prior distribution for the magnitude of the contrasts depends 
on the overall magnitude of the observations. 
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In answer to Mr Beale's question, we feel that, while it is probably possible to develop 
the theory for non-monotonic transformations of the dependent variable, we cannot think 
of any situations where such transformations would be physically allowable. 

We are grateful to Dr  Smith for his reference to Naylor's work. However, Naylor 
seems to be considering situations where the transformations are, over the relevant range, 
practically linear functions of one another. In our examples the relative range of variation 
of the observations is high, the transformations are very non-linear and this is of course 
why we are able to obtain fairly sharp discrimination between the different values of A. 
In the quanta1 response case, the transformations in question become essentially different 
only in the tails of the response curve, and observations there would be required for the 
differences to be detectable and of practical importance. 

We are very interested in Professor Anscombe's remarks on residuals. Further 
comparisons of the analysis of residuals with the methods of our paper would be of value. 

We are interested in Dr Hartigan's problem and formulation. However, this seems 
essentially different from ours, partly because in our applications we are primarily interested 
in changes in response, rather than in absolute responses, and partly because one of our 
primary objectives is to find a scale on which the factor effects are succinctly characterized 
by a few parameters. Even if the distributional assumptions were to be phrased non- 
parametrically (which we would in any case not wish to do), we must have parameters 
in order to describe at all concisely the changes in response in a complex system. 
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